dgld.models.CoLA.colautils

dgld.models.CoLA.colautils.get_subargs(args)[source]
dgld.models.CoLA.colautils.loss_fun(pos_scores, neg_scores, criterion, device)

calculate loss function in Binary CrossEntropy Loss

Parameters
  • pos_scores (torch.Tensor) – anomaly score of positive sample

  • neg_scores (torch.Tensor) – anomaly score of negative sample

  • criterion (torch.nn.Module) – loss function calculation funciton

  • device (str) – device for calculation

Returns

loss_accum – loss of single epoch

Return type

torch.Tensor

dgld.models.CoLA.colautils.loss_fun_BCE(pos_scores, neg_scores, criterion, device)[source]

calculate loss function in Binary CrossEntropy Loss

Parameters
  • pos_scores (torch.Tensor) – anomaly score of positive sample

  • neg_scores (torch.Tensor) – anomaly score of negative sample

  • criterion (torch.nn.Module) – loss function calculation funciton

  • device (str) – device for calculation

Returns

loss_accum – loss of single epoch

Return type

torch.Tensor

dgld.models.CoLA.colautils.loss_fun_BPR(pos_scores, neg_scores, criterion, device)[source]

calculate loss function in Bayesian Personalized Ranking

Parameters
  • pos_scores (torch.Tensor) – anomaly score of positive sample

  • neg_scores (torch.Tensor) – anomaly score of negative sample

  • criterion (torch.nn.Module) – loss function calculation funciton

  • device (str) – device for calculation

Returns

loss_accum – loss of single epoch

Return type

torch.Tensor

dgld.models.CoLA.colautils.set_subargs(parser)[source]

get hyperparameter by parser from command line

Returns

final_args_dict – dict of args parser

Return type

dictionary

dgld.models.CoLA.colautils.test_epoch(epoch, loader, net, device, criterion)[source]

test_epoch, test model in one epoch

Parameters
  • epoch (int) – epoch number during testin

  • loader (torch.nn.DataLoader) – dataloader for testing

  • net (torch.nn.Module) – model

  • device (str) – device for testing

  • criterion (torch.nn.Module) – loss, the same as the loss during training

Returns

predict_scores – anomaly score

Return type

numpy.ndarray

dgld.models.CoLA.colautils.train_epoch(epoch, loader, net, device, criterion, optimizer)[source]

train_epoch, train model in one epoch

Parameters
  • epoch (int) – epoch number during training

  • loader (torch.nn.DataLoader) – dataloader for training

  • net (torch.nn.Module) – model

  • device (str) – device for training

  • criterion (type) – loss

  • optimizer (torch.optim.Adam) – optimizer for training

Returns

loss_accum – loss of single epoch

Return type

torch.Tensor