dgld.models.SLGAD.model
- class dgld.models.SLGAD.model.Discriminator(out_feats)[source]
Bases:
Module
This is a discriminator component for contrastive learning of positive subgraph and negative subgraph
- Parameters
out_feats (int) – The number of class to distinguish
- forward(readout_emb, anchor_emb)[source]
Functions that compute bilinear of subgraph embedding and node embedding
- Parameters
readout_emb (Torch.tensor) – the subgraph embedding
anchor_emb (Totch.tensor) – the node embedding
- Returns
logits – the logit after bilinear
- Return type
Torch.tensor
- training: bool
- class dgld.models.SLGAD.model.OneLayerGCN(in_feats=300, out_feats=64, bias=True, args=None)[source]
Bases:
Module
A onelayer subgraph GCN can use global adjacent metrix.
- Parameters
in_feats (Torch.tensor, optional) – the feature dimensions of input data, default 300
out_feats (Torch.tensor, optional) – the feature dimensions of output data, default 64
bias (bool, optional) – whether the bias of model exists or not, default True
args (parser, optional) – extra custom made of model, default None
- forward(bg, in_feat)[source]
The function to compute forward and loss of model with given subgraph
- Parameters
bg (list of dgl.heterograph.DGLHeteroGraph) – the list of subgraph, to compute forward and loss
in_feat (Torch.tensor) – the node feature of geive subgraph
- Returns
h (Torch.tensor) – the embedding of batch subgraph node after one layer GCN
subgraph_pool_emb (Torch.tensor) – the embedding of batch subgraph after one layer GCN, aggregation of batch subgraph node embedding
anchor_out (Torch.tensor) – the embedding of batch anchor node
- training: bool
- class dgld.models.SLGAD.model.OneLayerGCNWithGlobalAdg(in_feats, out_feats=64, global_adg=True, args=None)[source]
Bases:
Module
A onelayer subgraph GCN can use global adjacent metrix.
- Parameters
in_feats (Torch.tensor) – the feature dimensions of input data
out_feats (Torch.tensor, optional) – the feature dimensions of output data, default 64
global_adg (bool, optional) – whether use the global information of node, here means the degree matrix, default True
args (parser, optional) – extra custom made of model, default None
- forward(bg, in_feat, anchor_embs, attention=None)[source]
The function to compute forward of GCN
- Parameters
bg (list of dgl.heterograph.DGLHeteroGraph) – the list of subgraph, to compute forward and loss
in_feat (Torch.tensor) – the node feature of geive subgraph
anchor_embs (Torch.tensor) – the anchor embeddings
attention (Functions, optional) – attention machanism, default None
- Returns
h (Torch.tensor) – the embedding of batch subgraph node after one layer GCN
subgraph_pool_emb (Torch.tensor) – the embedding of batch subgraph after one layer GCN, aggregation of batch subgraph node embedding
anchor_out (Torch.tensor) – the embedding of batch anchor node
- reset_parameters()[source]
Reinitialize learnable parameters. .. note:
The model parameters are initialized as in the `original implementation <https://github.com/tkipf/gcn/blob/master/gcn/layers.py>`__ where the weight :math:`W^{(l)}` is initialized using Glorot uniform initialization and the bias is initialized to be zero.
- training: bool
- class dgld.models.SLGAD.model.OneLayerGCNWithGlobalAdg_simple(in_feats, out_feats=64, global_adg=True)[source]
Bases:
Module
A onelayer subgraph GCN can use global adjacent metrix.
- Parameters
in_feats (Torch.tensor) – the feature dimensions of input data
out_feats (Torch.tensor, optional) – the feature dimensions of output data, default 64
global_adg (bool, optional) – whether use the global information of node, here means the degree matrix, default True
- forward(bg, in_feat, subgraph_size=4)[source]
The function to compute forward of GCN
- Parameters
bg (list of dgl.heterograph.DGLHeteroGraph) – the list of subgraph, to compute forward and loss
in_feat (Torch.tensor) – the node feature of geive subgraph
anchor_embs (Torch.tensor) – the anchor embeddings
attention (Functions, optional) – attention machanism, default None
- Returns
h (Torch.tensor) – the embedding of batch subgraph node after one layer GCN
subgraph_pool_emb (Torch.tensor) – the embedding of batch subgraph after one layer GCN, aggregation of batch subgraph node embedding
anchor_out (Torch.tensor) – the embedding of batch anchor node
- reset_parameters()[source]
Reinitialize learnable parameters. The model parameters are initialized as in the original implementation where the weight \(W^{(l)}\) is initialized using Glorot uniform initialization and the bias is initialized to be zero.
- training: bool
- class dgld.models.SLGAD.model.SLGAD(in_feats=1433, out_feats=64, global_adg=True, alpha=1.0, beta=0.6, args=None)[source]
Bases:
object
- fit(g, device='cpu', batch_size=300, lr=0.003, weight_decay=1e-05, num_workers=4, num_epoch=100, seed=42)[source]
train the model
- Parameters
g (DGL.Graph) – input graph with feature named “feat” in g.ndata
device (str, optional) – device, default ‘cpu’
batch_size (int, optional) – batch size for training, default 300
lr (float, optional) – learning rate for training, default 0.003
weight_decay (float, optional) – weight decay for training, default 1e-5
num_workers (int, optional) – num_workers using in pytorch DataLoader, default 4
num_epoch (int, optional) – number of epoch for training, default 100
seed (int, optional) – random seed, default 42
- Returns
self – return the model.
- Return type
mpdel
- predict(g, device='cpu', batch_size=300, num_workers=4, auc_test_rounds=256)[source]
test the model
- Parameters
g (DGL.Graph) – input graph with feature named “feat” in g.ndata.
device (str, optional) – device, default ‘cpu’
batch_size (int, optional) – batch size for predicting, default 300
num_workers (int, optional) – num_workers using in pytorch DataLoader, default 4
auc_test_rounds (int, optional) – number of epoch for predciting, default 256
- Returns
predict_score_arr – the anomaly score of anchor nodes
- Return type
Torch.tensor
- class dgld.models.SLGAD.model.SL_GAD_Model(in_feats=300, out_feats=64, global_adg=True, args=None)[source]
Bases:
Module
SL-GAD_model, given two positive subgraph and one negative subgraph, return the loss and score of target nodes
- Parameters
in_feats (Torch.tensor, optional) – the feature dimensions of input data, default 300
out_feats (Torch.tensor, optional) – the feature dimensions of output data, default 64
global_adg (bool, optional) – whether use the global information of node, here means the degree matrix, default True
args (parser, optional) – extra custom made of model, default None
- forward(pos_batchg, pos_in_feat, neg_batchg, neg_in_feat, args)[source]
The function to compute forward and loss of SL-GAD model
- Parameters
pos_batchg (list of DGL.Graph) – two batch of positive subgraph
pos_in_feat (list of Torch.tensor) – node features of two batch of positive subgraph
neg_batchg (list of DGL.Graph) – one batch of negative subgraph
neg_in_feat (list of Torch.tensor) – node features of one batch of negative subgraph
args (parser) – extra custom made of model
- Returns
L (Torch.tensor) – loss of model
single_predict_scores (Torch.tensor) – anomaly score of anchor nodes
- training: bool