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Abstract

Network representation learning (RL) aims to
transform the nodes in a network into low-
dimensional vector spaces while preserving the in-
herent properties of the network. Though net-
work RL has been intensively studied, most ex-
isting works focus on either network structure or
node attribute information. In this paper, we pro-
pose a novel framework, named ANRL, to incorpo-
rate both the network structure and node attribute
information in a principled way. Specifically, we
propose a neighbor enhancement autoencoder to
model the node attribute information, which recon-
structs its target neighbors instead of itself. To
capture the network structure, attribute-aware skip-
gram model is designed based on the attribute en-
coder to formulate the correlations between each
node and its direct or indirect neighbors. We con-
duct extensive experiments on six real-world net-
works, including two social networks, two citation
networks and two user behavior networks. The re-
sults empirically show that ANRL can achieve rel-
atively significant gains in node classification and
link prediction tasks.

1 Introduction
Networks are general data structures to explore and model
complex systems in the real world, including social networks,
academic networks and the World Wide Web, etc. In the
era of big data, networks have been an important medium
to efficiently store and access relational knowledge of inter-
acting entities. Mining knowledge in networks has drawn
continuous attention in both academia and industry, e.g., on-
line advertisement targeting and recommendation. Most of
these tasks require carefully designed models with a lot of
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expert efforts for feature engineering, while RL is an alterna-
tive for relative automatic feature representation. Equipped
with RL, knowledge discovery in networks, such as cluster-
ing [Narayanan et al., 2007], link prediction [Lü and Zhou,
2011] and classification [Kazienko and Kajdanowicz, 2012],
can be greatly facilitated by learning in low-dimensional vec-
tor spaces.

Related works in network RL can be traced back to graph
based dimensional reduction methods, such as Locally Linear
Embedding (LLE) [Roweis and Saul, 2000] and Laplacian
Eigenmap (LE) [Belkin and Niyogi, 2003]. Both LLE and
LE maintain the local structure in data space by constructing
a nearest neighbor graph. To keep connected nodes closer to
each other in the representation space, corresponding eigen-
vectors of the affinity graph are calculated as its represen-
tations. A major issue with these methods is that they are
difficult to scale to large networks due to the high compu-
tational complexity in calculating eigenvectors. Inspired by
the recent success of word2vec model [Mikolov et al., 2013a;
2013b], many network structure based RLmethods have been
proposed and shown promising performance in various appli-
cations [Perozzi et al., 2014; Cao et al., 2015; Tang et al.,
2015b; Grover and Leskovec, 2016;Wang et al., 2016]. How-
ever, node attribute information, which may play important
roles in many applications, has not been paid much atten-
tion. Nodes affiliated with various attributes are commonly
observed in real-world networks, termed as attributed infor-
mation networks (AINs). For example, in Facebook social
network, a user node is often associated with personalized
profile information including age, gender, education as well
as posted contents. Some recent efforts have explored AINs
by integrating both network topology and node attribute in-
formation to learn better representations [Tang et al., 2015a;
Yang et al., 2015; Pan et al., 2016].

Representation learning in AINs is still at its early stage
with rather limited capability due to the reasons that: (1)
network topology and node attributes are two heterogeneous
information sources, thus it is challenging to preserve their
properties in a common vector space; (2) the observed net-
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work data is often incomplete and even noisy, which brings
more difficulties for obtaining informative representations.
To address the aforementioned challenges, we propose a uni-
fied framework, termed as ANRL, by jointly integrating net-
work structure and node attribute information to learn robust
representations in AINs. More specifically, we leverage the
strong representation power of deep neural networks to cap-
ture the complex correlations of the two information sources,
which is composed of a neighbor enhancement autoencoder
and attribute-aware skip-gram model. To summarize, our
main contributions are as follows:

• We propose a unified framework ANRL, which seam-
lessly integrates network structural proximity and node
attributes affinity into low-dimensional representation
spaces. To be more specific, we design a neighbor en-
hancement autoencoder, which can retain better similar-
ity between data samples in the representation space. We
also propose an attribute-aware skip-gram model to cap-
ture the structure correlations. These two components
share connections to the encoder, which captures the
node attributes as well as network structure information.

• We conduct extensively experiments on six datasets
through two tasks: link prediction and node classifica-
tion, and empirically demonstrate the effectiveness of
the proposed model.

2 Related Work
Some earlier works [Roweis and Saul, 2000; Belkin and
Niyogi, 2003] and other spectral methods target to preserve
the local geometry structure of the data, and represent them
with a lower dimension space. These approaches are parts of
dimensionality reduction techniques and can be regarded as
the pioneer of graph embedding. Recently, network represen-
tation learning has received increasing popularity in network
analysis and they concentrate on embedding an existing net-
work instead of constructing its affinity graph. Among them,
DeepWalk [Perozzi et al., 2014] performs truncated random
walks to generate node sequences, which are treated as sen-
tences and fed into skip-gram model to learn representations.
Node2vec [Grover and Leskovec, 2016] extends DeepWalk
by employing breadth-first (BFS) and depth-first (DFS) graph
searches to explore diverse neighborhoods. Instead of per-
forming random walks, LINE [Tang et al., 2015b] optimizes
both first order and second order graph proximities. Later,
GraRep [Cao et al., 2015] proposes to capture k-th order re-
lational information for graph representation. SDNE [Wang
et al., 2016] incorporates graph structure into deep autoen-
coder to preserve the highly non-linear first order and second
order proximity.

Attributed information networks are ubiquitous in many
domains. It is promising to achieve better representations by
including both network structure and node attributes infor-
mation. Some existing algorithms have investigated the pos-
sibility of jointly embedding these two information sources
into a unified space. For example, TADW [Yang et al.,
2015] incorporates DeepWalk and associated text features
into the matrix factorization framework. PTE [Tang et al.,
2015a] utilizes label information and different levels of word

co-occurrence information to generate predictive text rep-
resentations. TriDNR [Pan et al., 2016] uses information
from three parties including node structure, node content, and
node labels (if available) to jointly learn node representations.
Although the above mentioned approaches indeed incorpo-
rate node attributes information into representations, they are
specifically designed for text data and not suitable for many
other types of features (e.g., continuous numerical features).

More recently, several feature type independent represen-
tation learning algorithms have been proposed to further en-
hance the performance via unsupervised or semi-supervised
manner, which can handle all kinds of feature types and cap-
ture structural proximity as well as attribute affinity [Huang
et al., 2017; Liao et al., 2017; Rossi et al., 2018]. AANE
[Huang et al., 2017] is a distributed embedding approach that
jointly learns node representations by decomposing attribute
affinity matrix and penalizing the embedding difference be-
tween connected nodes with network lasso regularization.
Planetoid [Yang et al., 2016] develops both transductive and
inductive methods to jointly predict the class label and neigh-
borhood context in the graph. SNE [Liao et al., 2017] gen-
erates embeddings by leveraging an end-to-end neural net-
work model to capture the complex interrelations between
network structure and node attribute information. Another
semi-supervised learning framework SEANO [Liang et al.,
2018] takes the input form the aggregation of input sample
attributes and its average neighborhood attributes to mitigate
the negative effect of outliers in the representation learning
procedure.

There also has been some efforts exploring representation
learning in the heterogeneous information networks. Metap-
ath2vec [Dong et al., 2017] utilizes meta-path based random
walks to generate heterogeneous node sequences and em-
ploys a heterogeneous skip-gram model to learn node repre-
sentations. [Li et al., 2017] proposes a model that can handle
the representation learning in a dynamic environment instead
of static networks. [Wang et al., 2017] study the problem of
representation learning in signed information networks. We
leave these possible extensions as future work.

3 Proposed Model
3.1 Notations and Problem Formulation
Let G = (V, E ,X) be an attributed information network,
where V denotes the set of n nodes and E represents the set of
edges. X ∈ Rn×m is a matrix that encodes all node attributes
information, and xi describes the attributes associated with
node i. We formally define the attributed information net-
work representation learning as follows:

Definition 3.1 Given a network G = (V, E ,X), we aims to
represent each node i ∈ V as a low-dimensional vector yi by
learning a mapping function f : vi 7→ yi ∈ Rd, where d ≪
|V| and the mapping function f preserves not only network
structure but also node attribute proximity.

3.2 Neighbor Enhancement Autoencoder
To encode node’s attribute information, we design a neigh-
bor enhancement autoencoder model to facilitate the noise-
resilient representation learning procedure. Similarly, the
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neighbor enhancement autoencoder consists of an encoder
and a decoder, while we aim to reconstruct its target neigh-
bors instead of the node itself. It is worth noting that the pro-
posed model degenerates to the traditional autoencoder when
our target neighbor is the input node itself. More specifically,
for the node vi with its feature vector xi and the target neigh-
bors function T (·), the hidden representation of each layer is
defined as follows:

y
(1)
i = σ(W(1)xi + b(1)),

y
(k)
i = σ(W(k)y

(k−1)
i + b(k)), k = 2, ...,K, (1)

whereK denotes the number of layers for the encoder and de-
coder. σ(·) represents the possible activation functions such
as ReLU, sigmod or tanh. W(k) and b(k) are the transforma-
tion matrix and bias vector in the k-th layer, respectively. Our
goal is to minimize the following autoencoder loss function:

Lae =
n∑

i=1

∥x̂i − T (vi)∥22, (2)

where x̂i is the reconstruction output of decoder and T (vi)
returns the target neighbors of vi. T (·) incorporates prior
knowledge into the model and can be adopted by the follow-
ing two formulations:

• Weighted Average Neighbor. For a given node vi,
the target neighbors can be calculated as corresponding
weighted average neighborhood. That is to say, T (vi) =

1
|N (i)|

∑
j∈N (i) wijxj , where N (i) is the neighbors of

node vi in the network and xj is the attributes associ-
ated with node vj . wij > 0 for weighted networks and
wij = 1 for unweighted networks.

• Elementwise Median Neighbor. Similarly to weighted
average neighbor, the elementwise median neighbor of
node vi is defined as: T (vi) = x̃i = [x̃1, x̃2, · · · , x̃m],
where x̃k is the median value of its relevant neigh-
borhood feature vectors at the k-th dimension, i.e.,
x̃k = Median(wi1x1k, wi2x2k, · · · , wi|N (i)|x|N (i)|k).
Medain(·) returns the median value of its input.

Our approach possesses more advantages than traditional
autoencoders in retaining better proximity among nodes. In-
tuitively, the obtained representations are more robust to vari-
ations, since it constrains closely located nodes to have sim-
ilar representations by forcing them to reconstruct the sim-
ilar target neighbors. Thus, it captures both node attributes
and local network structure information. In addition, the pro-
posed neighbor enhancement autoencoder model is a general
framework that can be applied to autoencoder variants such
as denoising autoencoder and variational autoencoder.
3.3 Attribute-aware Skip-gram Model
To formulate the network structure information, skip-gram
model has been widely adopted in recent works [Perozzi
et al., 2014; Grover and Leskovec, 2016], which assumes
nodes with similar context should be similar in latent seman-
tic space. Based on that, we propose an attribute-aware skip-
gram model to incorporate attribute information for more
smooth representations. Specifically, the objective function
minimizes the following log probability of skip-gram model

xi 

xi

Figure 1: The architecture of the proposed ANRL model.

by giving current node vi with its associated attributes xi for
all random walk contexts c ∈ C:

Lsg = −
n∑

i=1

∑
c∈C

∑
−b≤j≤b,j ̸=0

log p(vi+j |xi), (3)

where vi+j is the node context in the generated random se-
quence and b is the window size. The conditional probability
of p(vi+j |xi) is the likelihood of the target context given the
node attributes and we formally define p(vi+j |xi) as:

p(vi+j |xi) =
exp(v

′T
i+jf(xi))∑n

v=1 exp(v
′T
v f(xi))

, (4)

where xi is the attribute information associated with node
vi and f(·) can be arbitrary attribute encoder function, e.g.,
CNN for image data and RNN for sequential data. v

′

i is
the corresponding representations when node vi is treated as
“context” node.

It models not only node attributes but also global struc-
ture information. Directly optimizing Equation (4) is compu-
tationally expensive, which requires the summation over the
entire set of nodes when computing the conditional probabil-
ity of p(vi+j |xi). We adopt the negative sampling approach
proposed in [Mikolov et al., 2013b] that samples multiple
negative samples according to some noisy distributions. In
details, for a specific node-context pair (vi, vi+j), we have
the following objective:

logσ(v
′T
i+jf(xi))+

|neg|∑
s=1

Evn∼Pn(v)[logσ(−v
′T
n f(xi))], (5)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function and
|neg| is the number of negative samples. We set Pn(v) ∝
d
3/4
v as suggested in [Mikolov et al., 2013b], where dv is the

degree of node v.
3.4 ANRL Model: A Joint Optimization

Framework
In this subsection, we present the ANRL model to jointly
utilize network structure and node attributes information to
learn their latent representations. As illustrated in Figure
1, the overall architecture consists of two coupled modules,
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i.e., neighbor enhancement autoencoder and attribute-aware
skip-gram model. The encoder transforms the input attributes
into a low-dimensional vector space and extends out two out-
put branches. The left output branch is a decoder which
reconstructs the target neighbors of its input samples. The
right output branch predicts the associated graph context of
the given inputs. These two components are tightly inter-
connected as they share the first several layers. Through
this way, the final representation of yK

i captures the node at-
tributes as well as network structure information.

The objective function of the joint ANRL model is formu-
lated as the weighted combination of Lsg and Lae as defined
in Equations (2) and (3):

L = Lsg + αLae + βLreg (6)

= −
n∑

i=1

∑
c∈C

∑
−b≤j≤b,j ̸=0

log
exp(uT

i+jy
(K)
i )∑n

v=1 exp(u
T
v y

(K)
i )

+ α
n∑

i=1

∥x̂i − T (vi)∥22 +
β

2

K∑
k=1

(∥W(k)∥2F + ∥Ŵ(k)∥2F ),

where n is the total number of nodes, C is the set of node
sequence generated by random walks and b is the window
size. xi represents node vi’s feature vector and y

(K)
i is

the representation for node vi after encoding with K layers;
W (k), Ŵ (k) are weight matrices for encoder and decoder re-
spectively in the k-th layer. U is the weight matrix for graph
context prediction and uv corresponds to the v-th column in
U . α is the hyper parameter to balance the loss of autoen-
coder module and skip-gram module. β is the ℓ2 norm regu-
larizer coefficient.

In this way, ANRL preserves node attributes, local net-
work structure and global network structure information in
a unified framework. It is worth noting that the function f(·)
of attribute-aware skip-gram module is exactly the encoder
part of the autoencoder module, which transforms the node
attributes information into representation space y

(K)
i . As a

result, the network structure and node attributes information
will jointly affect y(K)

i . Furthermore, we only use one output
layer to capture the graph context information for simplicity
and it can be easily extended to multiple non-linear transfor-
mation layers.

To minimize L, we adopt the stochastic gradient algo-
rithm for optimizing Equation (6). We iteratively optimize
these two coupled components until the model converges. All
model parameters are denoted as Θ and the learning algo-
rithm is summarized in Algorithm 1.

4 Experiments
In this section, we conduct extensive experiments to verify
the superiority of the proposed ANRL through comparing
with several state-of-the-art methods on multiple real-world
datasets.
4.1 Datasets
We summarize statistics of the six datasets in Table 1 with
more descriptions as follows:

Algorithm 1 Joint ANRL Learning Framework

Input: graph G = (V, E ,X), window size b, walks per ver-
tex γ, walk length t, trade-off parameters α, regularizer
coefficient β, embedding size d

Output: node representationsY ∈ R|V|×d

1: Construct node context corpus C by starting γ times of
random walks with length t at each node

2: Construct target neighbors for each node by function T (·)
3: Random initialization for all parameters setΘ
4: while not converged do
5: Sample a mini-batch of nodes with its context
6: Compute the gradient of∇Lae based on Equation (2)
7: Update autoencoder module parameters
8: Compute the gradient of∇Lsg based on Equation (5)
9: Update skip-gram module parameters

10: end while
11: Obtain representationsY = Y(K) based on Equation (1)

Datasets #|V| #|E| #|Attr| #|L|
Facebook 4,039 88,234 1,283 -
UNC 18,163 766,800 2,789 -
UniID 23,377 29,188 3,924 -
Citeseer 3,312 4,714 3,703 6
Pubmed 19,717 44,338 500 3

Fraud Detection 40,386 1609,569 97 2

Table 1: Statistics of the datasets. ‘-’ indicates unknown labels.

• Social Network. Facebook1 [Leskovec and Mcauley,
2012] and UNC [Traud et al., 2012] datasets are two
typical social networks used in [Grover and Leskovec,
2016; Liao et al., 2017]. Nodes represent users and
edges represent friendship relations.

• Citation Network. Citeseer and Pubmed 2 which are
used in [Yang et al., 2016] consist of bibliography publi-
cation data. The edge represents that each paper may cite
or be cited by other papers. The publications are clas-
sified into one of the following six classes: Agents, AI,
DB, IR, ML, HCI in Citeseer and one of the three classes
(i.e., “Diabetes Mellitus Experimental”, “Diabetes Mel-
litus Type 1”, “Diabetes Mellitus Type 2”) in Pubmed.

• User behavior Network. We also employ two real-
world user behavior datasets named UniID and Fraud
Detection provided by Alibaba Group. For UniID
dataset, the nodes in the network represent the identifiers
for physical devices and the edges indicate the observed
co-occurrence of two identifiers in the same user behav-
ior records. Fraud Detection dataset includes cookies as-
sociated with attributes and their interactions with sell-
ers. To get the homogeneous cookie graph, we project
this bipartite graph onto cookie nodes, i.e., we connect
two cookies only if they have at least five common seller
nodes. We want to identify whether those cookies are
suspicious or not.

1https://snap.stanford.edu/data/
2http://linqs.cs.umd.edu/projects/projects/lbc
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Comparing Algorithms
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Figure 2: Link prediction performance comparisons of different algorithms on the Facebook, UNC and UniID. The y-axis represents the AUC
value of each method while the x-axis shows the name of different methods. Note that we omit the prefix of the proposed ANRL variants.

4.2 Competitors
We compare ANRL with several state-of-the-art network RL
algorithms that can be divided as the following groups :
1. Attribute-only: The first group of algorithms consider

node attributes information only, which are used to ver-
ify the effectiveness of attributes in node classification
task. We choose SVM and autoencoder as our baseline
algorithms.

2. Structure-only: This group of baselines leverage net-
work structure information only and ignore the node at-
tributes. DeepWalk [Perozzi et al., 2014] and node2vec
[Grover and Leskovec, 2016] use truncated random
walks to generate node sequences, then they are fed into
skip-gram model to obtain the latent node representa-
tions. LINE [Tang et al., 2015b] and SDNE [Wang et al.,
2016] exploits the network structure’s first-order prox-
imity and second-order proximity.

3. Attribute + Structure: Methods of this group try to
preserve node attribute and network structure proxim-
ity, which are competitive competitors. We consider
AANE [Huang et al., 2017], SNE [Liao et al., 2017],
Planetoid-T [Yang et al., 2016], TriDNR [Pan et al.,
2016] and SEANO [Liang et al., 2018] as our compared
algorithms. More detailed descriptions can be found in
Section 2.

4. ANRL Variants: To analyze the performance of our
proposed model, we consider three variants: ANRL-
WAN which use Weighted Average Neighbor function
to construct its target neighbors, ANRL-EMN which
takes Elementwise Median Neighbor function to gen-
erate its target neighbors as defined in Section 3.2 and
ANRL-OWN which reconstructs itself (i.e., OWN) as
traditional autoencoder does.

For all baselines, we used the implementation released by
the original authors. The parameters for baselines are tuned
to be optimal. We set the embedding size d as 64 in Fraud De-
tection dataset and 128 for the remaining datasets. For LINE,
we concatenate both first-order and second-order as our final
representations. Furthermore, we set window size b as 10,
walk length l as 80, walks per node γ as 10, negative samples

Datasets Number of neurons in each layer
Facebook 1283–500–128–500–1283
UNC 2789–1000–500–128–500–1000–2789
UniID 3924–1000–500–128–500–1000–3924
Citeseer 3703–1000–500–128–500–1000–3703
Pubmed 500–200–128–200–500

Fraud Detection 97–64–97

Table 2: Detailed network layer structure information.

as 5. For ANRL, the number of layers and dimensions for left
output branch are shown in Table 2 and we only use one layer
in right output branch.

4.3 Link Prediction
In this subsection, we evaluate the ability of node represen-
tations in reconstructing the network structure via link pre-
diction. We generate the labeled dataset of edges as many
other works do [Grover and Leskovec, 2016; Wang et al.,
2016], which randomly holds out 50% existing links as posi-
tive instances; For negative instances, we randomly sample
an equal number of non-existing links. Then, we use the
residual network to train the embedding models. After hav-
ing obtained the representations for each node, we use these
representations to perform link prediction task in the labeled
edge dataset. Specifically, we rank both positive and nega-
tive instances according to the cosine similarity function. To
judge the ranking quality, we employ the AUC to evaluate the
ranking list and a higher value indicates a better performance.

We perform link prediction task on three unlabeled datasets
(i.e., Facebook, UNC, UniID datasets) and the results is
shown in Figure 2. We summarize the following observations
and analyses:

• A general observation we can draw from the result is
that our method achieves relatively significant improve-
ments in AUC over the baselines in both three datasets.
For instance, our method achieve about 3.5% AUC im-
provement over the best performance baseline in UNC
dataset.

• Since DeepWalk, node2vec, LINE and SDNE only uti-
lize network structure information, their performance

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3159



Datasets Citeseer Pubmed Fraud Detection
Evaluation Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

SVM 0.667 0.626 0.856 0.855 0.725 0.719
autoencoder 0.630 0.565 0.792 0.800 0.732 0.726
DeepWalk 0.583 0.534 0.809 0.795 0.509 0.464
node2vec 0.607 0.561 0.815 0.802 0.571 0.519
LINE 0.542 0.512 0.766 0.749 0.659 0.654
SDNE 0.569 0.528 0.699 0.677 0.662 0.656
AANE 0.579 0.541 0.784 0.765 0.654 0.643
SNE 0.632 0.615 0.803 0.797 0.662 0.654

Planetoid-T 0.656 0.594 0.851 0.847 0.692 0.693
TriDNR 0.633 0.587 0.843 0.824 0.686 0.685
SEANO 0.713 0.662 0.859 0.848 0.703 0.704

ANRL-OWN 0.652 0.606 0.842 0.845 0.724 0.720
ANRL-EMN 0.716 0.668 0.865 0.867 0.733 0.731
ANRL-WAN 0.729 0.673 0.876 0.871 0.759 0.755

Table 3: Node classification results on Citeseer, Pubmed and Fraud Detection datasets. We use blue to highlight wins.

is relative worse when the network is extremely sparse
such as UniID dataset. Interestingly, we notice that
node2vec achieves the best results among this group
baselines, which is mainly because that node2vec can
explore diverse network structure information via biased
random walks.

• Being consistent with previous works’ findings, we also
observe that incorporating both node attributes and net-
work structure information improves the link predic-
tion performance, which reflects the value of attributes.
Among them, AANE and TriDNR only exploit first-
order network structure information and fails to capture
sufficient information for link prediction. However, the
remaining algorithms gain superior performance by per-
forming random walks on the network to capture higher-
order proximity information.

• More specifically, ANRL exploits node attributes infor-
mation (via both two modules), global network structure
information (via attribute-aware skip-gram module) and
local network structure information (via neighbor en-
hancement autoencoder module). We argue that one ma-
jor reason for the performance lift is because our model
takes both local and global network structure informa-
tion into consideration.

4.4 Node Classification
Similarly to previous works [Perozzi et al., 2014; Grover and
Leskovec, 2016], we report the performances of node clas-
sification. We randomly select 20 samples from each class
and treat them as the labeled data to train semi-supervised
baselines following the same strategy in [Yang et al., 2016].
After having obtained the node representations, we randomly
sample 30% labeled nodes to train a SVM classifier and the
rest of the nodes are used to test performances. We repeat
this process 10 times, and report the average performances in
terms of both Macro-F1 and Micro-F1. The detailed results
are shown in Table 3 and to summarize, we have the follow-
ing observations:

• ANRL-WAN achieves the best performance among all

the methods for all settings. The classification perfor-
mance is followed by other structure and attribute based
methods, and then followed by structured based methods
with several exceptions. This further justifies the useful-
ness of attributes, and properly modeling them can lead
to better representations with significant performance
gains.

• It is worth noting that traditional attribute-only methods
outperform most of structure-only approaches, because
network structure alone provides very limited useful in-
formation (compared to node attributes) for node clas-
sification task. Yet, we observe that autoencoder is a
little weaker than SVM, which indicates the dimension
reduction procedure may lose some useful information.

• In particular, SEANO outperforms several state-of-the-
art attribute and structure preserving methods by aggre-
gating additional neighborhood attributes into represen-
tation learning phase. AANE performs poorly in this
group of competitors, which involves the decomposition
operation of attribute affinity matrix. This significant de-
generates the performance of AANE, because we usu-
ally do not know the similarities between each node and
need to compute them based on certain similarity mea-
sure.

• Finally, ANRL-WAN and ANRL-EMN perform better
than ANRL-OWN and most of the other baselines algo-
rithms. As can be seen from the table, ANRL-WAN out-
performs ANRL-OWN with a significant improvement,
which shows the effectiveness of our proposed neighbor
enhancement autoencoder. Furthermore, our attribute-
aware skip-gram module and neighbor enhancement au-
toencoder module force the latent representations more
smooth and robust, which are important properties in
many tasks.

5 Conclusions
In this paper, we investigate the representation learning in
attributed information networks. Accordingly, we design a
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coupled deep neural network model, which incorporates both
node attributes and network structure information into the
embedding. To further address the structure proximity and
attribute affinity preserving, we develop a neighbor enhance-
ment autoencoder and attribute-aware skip-gram model to ex-
ploit the complex interrelations between structural informa-
tion and attributes. Experimental results on several real-world
datasets show that the proposed ANRL outperforms represen-
tative state-of-the-art embedding approaches.
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