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ABSTRACT
Graph classification aims to extract accurate information from

graph-structured data for classification and is becoming more and

more important in the graph learning community. Although Graph

Neural Networks (GNNs) have been successfully applied to graph

classification tasks, most of them overlook the scarcity of labeled

graph data in many applications. For example, in bioinformatics,

obtaining protein graph labels usually needs laborious experiments.

Recently, few-shot learning has been explored to alleviate this prob-

lem with only a few labeled graph samples of test classes. The

shared sub-structures between training classes and test classes are

essential in the few-shot graph classification. Existing methods

assume that the test classes belong to the same set of super-classes

clustered from training classes. However, according to our observa-

tions, the label spaces of training classes and test classes usually do

not overlap in a real-world scenario. As a result, the existing meth-

ods don’t well capture the local structures of unseen test classes. To

overcome the limitation, in this paper, we propose a direct method

to capture the sub-structures with a well initialized meta-learner

within a few adaptation steps. More specifically, (1) we propose a

novel framework consisting of a graph meta-learner, which uses

GNNs based modules for fast adaptation on graph data, and a step

controller for the robustness and generalization of meta-learner;

(2) we provide quantitative analysis for the framework and give a

graph-dependent upper bound of the generalization error based

on our framework; (3) the extensive experiments on real-world

datasets demonstrate that our framework gets state-of-the-art re-

sults on several few-shot graph classification tasks compared to

baselines.
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1 INTRODUCTION
Many real-world networks can be formulated as graphs for model-

ing different relationships among nodes, such as social networks,

chemical molecule structures and citation networks. Recently, there

have been various attempts to extend the Convolutional Neural

Network (CNNs) and pooling methods to graph-structured data.

These methods are named as Graph Neural Networks (GNNs) and

have been successfully applied to different graph related tasks con-

taining graph classification, node classification and link prediction

[55, 57]. Graph classification aims to extract accurate information

from graph-structured data for classification. However, most ex-

isting GNNs based graph classification methods overlook that it’s

complicated and time consuming to collect or label the graph data.

Learning with few labeled graph data is still a challenge for the

practical applications of graph classification.

Few-shot learning, aiming to label the query data when given

only a few labeled support data, is a natural way to alleviate the

problem. There are many papers discussing few-shot learning with

meta-learning [12], data augmentation [53] or regularization [50],

but most of them don’t consider the graph data. Furthermore, there

have been several methods for few-shot node classification [20, 38,

56] and few-shot link prediction [10, 23, 32, 43], but they only focus

on node-level embedding. Recently, Chauhan et al. [7] proposed

few-shot graph classification based on graph spectral measures and

got satisfactory performance. From the global structure of dataset,

they bridge the test classes and training classes by assuming that

the test classes belong to the same set of super-classes clustered

from training classes. However, the above methods based on graph

spectral measures might have some limitations for the following

reasons: (1) the label spaces of training classes and test classes

usually do not overlap in few-shot settings; (2) the bridgingmethods

above may diminish the model to capture the local structure of test

data.
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Figure 1: Comparison of different methods. (a) The method from the global structure of the dataset. The most representative
graph of each class is viewed as class-prototype graph. The super-classes are clustered from training classes. (b) Our method
from the view of local structure. Θ is meta-learner’s parameters and θ1,θ2 are task specific parameters derived from meta-
learner’s fast adaptation. The components in dotted boxes have similar triangle structure. We assume the similarity can be
discovered by a well initialized meta-learner within a few adaptation steps.

From the perspective of the graph’s local structure, we observe

that the graphs of training classes and test classes have similar

sub-structures. For example, different social networks usually have

similar groups; different protein molecules usually have similar

spike proteins. We assume these similarities can be discovered

by a well initialized meta-learner within a few adaptation steps.

Therefore, we consider fast adaptation by a meta-learner from

learned graph classification tasks to new tasks. Figure 1 illustrates

the existing method and our assumption.

Currently, GNNs have reliable ability to capture local structures

over graphs by convolutional operations and pooling operations,

but lack of fast adaptation mechanism when dealing with never

seen graph classes. Inspired by Model Agnostic Meta-Learning

(MAML, [12]), which has attracted great attention because of its

fast adaptation mechanism, we leverage GNNs as graph embed-

ding backbone and meta-learning as a training paradigm to rapidly

capture task-specific knowledge in graph classification tasks and

transfer them to new tasks.

However, directly applying MAML for fast adaptation is subop-

timal due to the following reasons: (1) MAML requires painstaking

hyperparameter searches to stabilize training and achieve high gen-

eralization [1]; (2) unlike images, graphs have arbitrary node size

and sub-structure, which brings uncertainty for adaptation. There

have some variants of MAML trying to overcome these problems by

incorporating an online hyperparameter adaptation [4], reducing

optimization difficulty [31] or increasing context parameters for

adaptation [58], but they don’t consider the structure of graph data.

In this paper, we design a novel component named as adaptive

step controller to learn optimal adaptation step for meta-learner to

improve its learning robustness and generalization. The controller

evaluates the meta-learner and decides when to stop adaptation by

two kinds of inputs: (1) graphs’ embedding quality, which is viewed

as a meta-feature and indicated with Average Node Information

(ANI, the average amount of node information in a batch of graphs);

(2) meta-learner’s training state, which is indicated with training

loss of classification.

We formulate our framework as Adaptive Step MAML (AS-

MAML). To the best of our knowledge, we are the first to consider

the few-shot graph classification problem from the view of the

graph’s local structure and propose a fast adaptation mechanism

on graphs via meta-learning. Our contributions are summarized as

follows:

• We propose a novel GNNs based graph meta-learner, which

captures the features efficiently of sub-structures on unseen

graphs by fast adaptation mechanism.

• We design a novel controller for meta-learner. Driven by

Reinforcement Learning (RL, [19]), the controller provide

optimal adaptation step for the meta-learner via graph’s em-

bedding quality and training loss. Our ablation experiments

show its effectiveness to improve learning robustness and

generalization.

• We perform quantitative analysis and provide a general-

ization guarantee of key algorithms via a graph-dependent

upper bound.

• We evaluate our framework’s performance against different

baselines on four graph datasets and achieve state-of-the-art

performance in almost all the tasks. We also evaluate the

transferability of popular graph embedding modules on our

few-shot graph classification tasks.

2 RELATEDWORKS
2.1 Graph Classification
In graph classification tasks, each full graph is assigned a class

label. There exist several branches for graph classification. The

first is graph kernel methods which design kernels for the sub-

structures exploration and exploitation of graph data. The typical

kernels include Shortest-path Kernel [5], Graphlet Kernel [40] and

Weisfeiler-Lehman Kernel [39].
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As the main branch in recent years, GNNs have been successfully

applied to graph classification. GNNs focus on node representa-

tions, which are iteratively computed by message passing from the

features of their neighbor nodes using a differentiable aggregation

operation. GCN [21] proposed Graph Convolutional Neural Net-

work (termed as GCN) and got satisfying results based on directly

feature aggregation from neighborhood nodes. GAT [44] imported

attention mechanism for graph convolutional operations. Graph-

SAGE [16] proposed an inductive framework that leverages node

features to generate node embeddings efficiently for unseen nodes.

In our framework, we use these classical methods to update nodes

of graphs, while other methods like Graph Isomorphism Network

(GIN) [46] are also applicable.

In the meantime, inspired by pooling in CNNs, a bunch of re-

searchers concentrates on efficient pooling methods for accurate

graph summary and computation efficiency. Beyond pooling layers

in CNNs, graph pooling layers can enable GNNs to reason and get

global representation from adjacent nodes. More and more evidence

shows that graph pooling promotes the graph classification perfor-

mance [9, 13, 25]. SAGPool [25] implemented self-attention pool-

ing on graphs considering both node features and graph topology.

EdgePool [9] implemented a localized and sparse pooling trans-

form backed by the notion of edge contraction. Graph U-nets [13]

implemented novel graph pooling and unpooling operations. Based

on these operations, they developed a new model containing graph

encoder and graph decoder and got satisfactory performance on

graph classification tasks.

2.2 Few-Shot Learning and Meta-Learning
Few-shot classification aims to learn a model under the circum-

stances of low sample resources and is usually powered by meta-

learning in recent years. Meta-learning was also known as learning

to learn, with a meta-learner observing various task learning pro-

cesses and summarizing meta-knowledge to accelerate the learning

efficiency of new tasks. Baxter et al. [3] proposed a model to learn

inductive bias from the perspective of bias learning, and they ana-

lytically showed that the number of examples required of each task

decreases as the number of task rises.

Recent meta-learning related works can be classified into the

following categories: optimization (or gradients) based methods

and memory based methods. The optimization based methods aim

to train a model to learn optimization [26, 34], learn a good initial-

ization [12] for rapid adaptation, or train parameter generator for

task-specific classifier [36]. Moreover, the memory based methods

learn new tasks by reminiscence mechanism in virtue of physical

memory [37].

Furthermore, almost all the previous few-shot learning methods

are devised for image data, where images are prone to be repre-

sented in Euclidean space. Because we all have the idea that CNNs

based models can perform efficient transfer in Euclidean space by

feature reuse [33], in virtue of that different images usually share

common edge features and corner features. However, graph data

such as social networks, which are appropriate to be formed into

non-Euclidean space instead of Euclidean space. Few-shot learning

in non-Euclidean space is addressed in our work.

2.3 GNNs and its Generalization on Graph data
We have seen several works of few-shot node classification promot-

ing performance via GNNs [15, 20, 27–29, 38, 47–49], but they just

leverage the message passing mechanism of GNNs to enhance the

performance on node classification, without involving the general-

ization of GNNs themselves and compatibility with graph classifi-

cation task. For graph classification, Knyazev et al. [22] focus on

the ability of attention GNNs to generalize to larger, more complex

or noisy graphs. Lee et al. [24] imported a domain transfer method

by transferring the intrinsic geometric information learned in the

source domain to the target. Hu et al. [18] systematically studied the

effectiveness of pre-training strategies on multiple graph datasets.

Based on graph spectral measures, Chauhan et al. [7] proposed

few-shot graph classification using the notion of super-graph by

two steps: (1) they define the p-th Wasserstein distance to measure

the spectral distance among graphs and select the most representa-

tive graph as prototype graph for each class; (2) by clustering the

prototype graphs based on spectral distance, they clustered the pro-

totype graph again into a super-graph consisting of super-classes.

Therefore, they assume that the test classes belong to the same set

of super-classes clustered from the training classes. We loosen the

assumption and emphasize fast adaptation to boost few-shot graph

classification.

3 PROBLEM SETUP
We form the few-shot problem as N-way-K-shot graph classification.

Firstly, given graph data G =
{
(G1, y1), (G2, y2), · · · , (Gn , yn )

}
,

where Gi = (Vi , Ei ,Xi ). We use ni to denote the number of node

set Vi . So each graph Gi has an adjacent matrix Ai ∈ R
ni×ni

,

which is constructed from an edge set Ei , and a node attribute

matrix Xi ∈ R
ni×d

, where d is the dimension of node attribute. Sec-

ondly, according to label y, we split G into {(Gtrain , ytrain )} and
{(Gtest , ytest )} as training set and test set respectively. Notice that
ytrain and ytest must have no common classes. We use episodic

training method, which means at the training stage we sample a

task T each time, and each task contains support data Dtrain
sup =

{(Gtrain
i , ytraini )}

s
i=1 and query dataD

train
que = {(Gtrain

i , ytraini )}
q
i=1,

where s and q are the number of support data and query data respec-

tively. Given labeled support data, our goal is to predict the labels

of query data. Please note that in a single task, support data and

query data share the same class space. If s = N × K , which means

that support data contain N classes and K labeled samples per class,

we name the problem as N-way-K-shot graph classification. At the

test stage when performing classification tasks on unseen classes,

we firstly fine tune the meta-learner on the support data of test

classes Dtest
sup = {(G

test
i , ytesti )}si=1 , then we report classification

performance on Dtest
que = {(G

test
i , ytesti )}qi=1.

4 PROPOSED FRAMEWORK
Overall, our few-shot graph classification framework consists of

GNNs based meta-learner and a step controller to decide the adap-

tation steps of meta-learner. We use MAML to implement a fast

adaptation mechanism for meta-learner because of its model agnos-

tic property. Du et al. [10] proposed an RL based step controller to

guide meta-learner for link prediction. We argue that classification
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Figure 2: Diagram of the AS-MAML framework’s learning process in a single episode on the 2-way-1-shot graph classifica-
tion task. The yellow arrows show meta-learner’s T step adaptations on support graphs. The blue dash arrows show T step
evaluations (Accuracies) on the query graphs. The orange dash arrows show the backpropagation (BP) according to T -th loss
on query graphs. The step controller receives ANIs and classification losses on support graphs of each step. After that, the
controller outputs the adaptation step T . Finally, the controller receives accuracies on query graphs as rewards and updates
its own parameters.

loss is suboptimal to be viewed as rewards for overcoming over-

fitting. Therefore, we adopt a novel step controller to accelerate

training and overcome overfitting. Our step controller is also driven

by RL but learns the optimal adaptation step by using ANIs and

losses as inputs and classification accuracy as rewards. Figure 2

demonstrates the training process of our framework.

4.1 Graph Embedding Backbone
We explain our proposed framework with typical graph convolu-

tional modules and pooling modules as embedding backbone, due

to that novel graph convolutional modules or pooling modules are

out of concern for this paper. The first step to represent a graph is

to embed the nodes it contains. We investigate several embedding

methods such as GCN, GAT, GraphSAGE and GIN. Here we focus

on GraphSAGE as following reasons: (1) GraphSAGE has more

flexible aggregators in few-shot learning scenarios; (2) Errica et at.

[11] set GraphSAGE as a strong baseline when compared to GIN

for the graph classification task. Hence we use mean aggregator of

GraphSAGE as follows:

hlv = σ
(
W ·mean

({
hl−1v

}
∪
{
hl−1u ,∀u ∈ N (v )

})
, (1)

where hlv is the l-th layer representation of nodev , σ is the sigmoid

function, W is the parameters and N (v ) contains the neighbor-

hoods of v . Please note that this mean aggregator just belongs to

the group of typical aggregators we use in experiments. We will

provide concrete analysis for other aggregators in Section 5 and

Section 6.4.

After that, we discuss existing pooling operations. Under the cir-

cumstances of few-shot learning, the meta-learner urgently needs

a flexible pooling strategy with learning capability to strengthen its

generalization. Here, we focus on self-attention pooling (SAGPool)

[25] as our pooling layer thanks to its flexible attention parameters.

The main step of SAGPool is to calculate the attention score matrix

of graph Gi as follows:

Si = σ
(
D̃
− 1

2

i Ãi D̃
− 1

2

i XiΘatt

)
, (2)

where the Si ∈ Rni×1 indicates the self-attention score, ni is node
number of the graph. σ is the activation function (e.g., tanh), Ãi ∈

Rni×ni is the adjacency matrix with self-connections, D̃i ∈ R
ni×ni

is the diagonal degree matrix of Ãi , Xi ∈ R
ni×d

is n input features

with dimension d , and Θatt ∈ R
d×1

is the learnable parameters

of pooling layer. Based on the attention score, we select top c <
ni nodes that have larger scores with keeping their origin edges

unchanged.

To get fixed representation dimension for each graph, we need

Read-Out operation to form each graph embedding vector into

identical dimension. Following Zhang et al. [54], we use the con-

catenation of mean-pooling andmax-pooling for each level of graph

embeddings of Gi as follows:

rli = R
(
Hl
i

)
= σ *.

,

1

nli

∑
p=1

Hl
i (p, :)∥

d
max

q=1
Hl
i (:,q)

+/
-
, (3)

where rli ∈ R
2d

is the l-th layer embedding, nli is the node number

in l-th layer, Hl
i denotes l-th layer hidden representation matrix , ∥

is concatenation operation, p and q are row number and column

number respectively, d is feature dimension, and σ is the activation

function (e.g., Rectified Linear Unit, ReLU [8]).

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1058



Algorithm 1 Training Stage of AS-MAML

Input: Task distribution p (T ) over {(Gtrain , ytrain )}
Parameter: Graph embedding parameters θe , classifier
parameters θc , step controller parameters θs , learning rate

α1,α2,α3
Output: The trained parameters θe ,θc ,θs

1: Randomly initialize θe , θc , θs
2: while not convergence do
3: Sample task Ti with support graphsD

train
sup and query graphs

Dtrain
que

4: Get adaptation step T via Equation 8

5: Set fast adaptation parameters: θ ′ = θ = {θe ,θc }
6: for t = 0→ T do
7: Evaluate∇θ ′LTi ( fθ ′ ) onD

train
sup by classification loss L(t )

.

8: Update θ ′ : θ ′ ← θ ′ − α1∇θ ′LTi ( fθ ′ )

9: Calculate ANI M(t )
via Equation 6

10: Calculate stop probability p (t ) via Equation 7

11: Calculate reward Q (t )
on Dtrain

que by Equation 9

12: end for
13: θ ← θ − α2∇θLTi ( fθ ′ ) on Dtrain

que
14: for t = 0→ T do
15: θs ← θs + α3Q

(t )∇θs lnp (t )
16: end for
17: end while

Following the graph embedding backbone, we compute the final

graph embedding of Gi as

zi = r1i + r2i + · · · + rLi (4)

and put it into Multi-Layer Perceptron (MLP) classifier to perform

classification using cross-entropy loss.

4.2 Meta-Learner for Fast Adaptation
We use θe and θc to denote the parameters of graph embedding

modules and MLP classifier respectively, where θe contains the pa-

rameters of node embedding layers and pooling layers. To achieve

the fast adaptation of θe and θc , we put them into a nested loop

framework to create a GNNs based meta-learner. Specifically, our

meta-learner is optimized from two procedures. One of the proce-

dures is called the outer loop aiming to get optimal initialization

for new classification tasks, and one is called the inner loop to

implement fast adaptation based on a suitable initialization. Al-

gorithm 1 elaborates on how to train a graph meta-learner at the

training state. First, we sample support data Dtrain
sup and query data

Dtrain
que in an episode. Then we perform adaptation operation by

updating θe and θc forT steps on Dtrain
sup . Lines 7 to 8 in Algorithm

1 demonstrate the adaptation of meta-learner. After adaptation,

demonstrated by line 13, we use the losses on Dtrain
que to perform

backpropagation and update θe as well as θc . Similarly, at the test

stage, the meta-learner will perform adaptation on labeled support

graphs Dtest
sup and predict the label of query graphs Dtest

que .

4.3 Adaptation Controller
Finding optimal combinations of learning rates and step size is

difficult for MAML [1]. Besides, arbitrary graph size and structure

bring difficulty for ascertaining optimal step size manually. As an

empirical solution to alleviate these problems, we design an RL

based controller to decide optimal step size for the adaptation of

meta-learner when given other hyper-parameters. Therefore, our

controller must roughly know when to stop adaptation according

to the embedding quality and training state (denoted by loss). We

focus on Average Node Information (ANI) to indicate the embed-

ding quality. Intuitively, if a node can be well reconstructed by its

neighborhoods, it has less information for the graph classification.

Similarly, the rising of batch graphs’ ANI indicates that the pooling

module has learned to select the most informative nodes. Hou et al.

[17] proposed similar concept called Feature Smoothness measuring

node information over graphs. Here we adopt another practical

method defined by [54], where they compute node information as

the Manhattan distance between the node representation itself and

the one constructed from its neighbors. Inspired by their work, we

define the ANI of a single graph Gi as follows:

ANI li =
1

nli

∑
j=1








[(
Ili −
(
Dl
i

)−1
Al
i

)
Hl
i

]

j






1
, (5)

where l denotes the embedding layer of the graph, nli denotes the
number of node, j denotes the row index of matrix or j-th node,

∥ · ∥
1
denotes the L1 norm of row vector, Al

i denotes the adjacency

matrix, Dl
i is the degree matrix of Al

i , Hl
i denotes l-th layer hidden

representation matrix. In our work, we only use the last layer of

graph embedding (i.e., HL
i ). And unless specifically stated, we use

scalar value ANI to denote the average node information of the

batch graphs:

ANI = 1/n ∗
n∑
i=1

ANILi , (6)

where n denotes the number of batch graphs, L denotes the L-th

layer of graph embedding.

Next we set the number of initial step as Ti , the ANIs in Ti steps
as M ∈ RTi×1 and denote classification losses as L ∈ RTi×1. Then
we compute stop probability p (t ) at step t as follows:

h(t ) = LSTM

( [
L(t ) ,M(t )

]
,h(t−1)

)
,p (t ) = σ

(
Wh(t ) + b

)
, (7)

where W and b are the parameters of a MLP module, σ is sigmoid

function and h(t ) is the output of LSTM module. Note that the

adaptation will not stop until Ti steps at current task regardless of

p (t ) . We set p (t ) as a prior for the next task:

Ti+1 =

⌊
1

p (Ti )

⌋
, (8)

where ⌊⌋ is round down operation.We can observe that we compute

T of next task according to the ANIs and losses, where both of them

are produced by current task. The reason behind it is that if we stop

adaptation according to p (t ) in current task, it will output larger

variance of step and bring instability for optimization. Besides, we

get controller’s rewards as following:
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Q (t ) =

T∑
t=1

r (t ) =
T∑
t=1

(eT − et − η ∗ t ), (9)

where T is total steps and et is the classification accuracy on query

data at step t , and η ∗ t denotes the penalty item. Then we update

our controller by policy gradients, which is a typical method in RL:

θs = θs + α3Q
(t )∇θs lnp (t ), (10)

where lnp (t ) is the log of stop probability p(t) ·, ∇θs is the gradients
over θs and α3 is learning rate.

5 GRAPH STRUCTURE-DEPENDENT BOUND
FOR META-LEARNING

In this section, we theoretically analyze the proposed framework

with unnecessary details omitted. Driven by graph data, we will

build a generalization error bound in the meta-learning scenario

considering the locality of graph structure (e.g., the degrees of nodes

in a graph). Before getting closer to analysis, we first give the key

results: (1) The bound is dependent on the number of graphs in

the support example of test classes and the number of graphs of

training classes. (2) The bound is dependent on the locality structure

of graphs between training classes and test classes. The first result

is common in meta-learning scenarios, while the second result is

derived from the structure of graphs.

From the perspective of representation learning and probability

distribution, our framework try to minimize the distance of latent

distributions between Gtrain and Gtest directly. Based on this

premise, we use the integral probability metric (IPM, [30]) as a

general distance metric to produce the upper bound. IPM has been

employed in the analysis of transfer learning [51], non-parametric

estimation [42] and generative models [52]. Generally, IPM can be

formalized as:

γH (P,Q) := sup

h∈H

���EPh(z) − EQh(z)
��� , (11)

where P and Q denote two different probability distributions, re-

spectively,H denotes the collection of real-valued functions (e.g.,

square loss function and margin loss function ).

We set the empirical distribution of Gtrain as
ˆP. With a slight

abuse of notation, in a single task at the test stage, we set the

empirical distribution of support graph Dtest
sup as

ˆQ, and set the

expected distribution query dataDtest
que asQ. Then in the adaptation

process at test stage, we actually want to minimize the following

bound:

γH ( ˆP,Q) = sup

h∈H

���EˆPh(G ) − EQh(G )��� , (12)

whereh(G ) is the classification loss of meta-learner after the adapta-

tion on Dtest
sup . Then with the help of IPM, γH ( ˆP,Q)can be bounded

by following theorem [6]:

Theorem 1. Let H denote a class of functions whose members
map from Gi to [a, b], and suppose that the training data test data
are independent, and that the data instances of each are i.i.d. within a
sample. Let ϵ > 0. Then with probability at least 1 − ϵ over the draws

of the training and query samples,

γH
(
ˆP,Q
)
≤ γH

(
ˆP, ˆQ
)
+ 2R

(
H |{Gi }

m
i=1

)
+ 3

√
(b − a)2 log(2/ϵ )

2m
,

(13)

where m is the number of support graphs Dtest
sup , R

(
H |{Gi }

m
i=1

)
denotes the empirical Rademacher complexity [2] of the function class
H w.r.t. the support graphs.

Now we provide the proof of Theorem 1 referencing Cai et al.

[6]. First, IPM is interrelated with uniform deviation with empirical
Rademacher complexity [2]:

Theorem 2. Let H denote a class of functions whose members
map from zi to [a, b], and suppose that {zi }mi=1 is sampled from a i.i.d
distribution P. Then for ϵ > 0. Then with probability at least 1 − ϵ
over the sample,

sup

h∈H

���EˆPh(z) − EPh(z)
��� ≤ 2R

(
H |{zi }

m
i=1

)
+ 3

√
(b − a)2 log(2/ϵ )

2m
,

(14)

where ˆP represents the empirical distribution of the sample,R
(
H |{zi }

m
i=1

)
denotes the empirical Rademacher complexity of the function class
H w.r.t. the sample.

Proof. Then according to Cai et al. [6], we can derive the Equa-

tion 12 as:

γH ( ˆP,Q) ≤ γH
(
ˆP, ˆQ
)
+ sup

h∈H

����E ˆQ
h(G ) − EQh(G )

���� (15)

When the last term of Formula 15 substituted by Theorem 14, The-

orem 1 is proved. □

After giving the proof of Theorem 1, γH
(
ˆP, ˆQ
)
can be optimized

by the adaptation of meta-learner on the test stage. As the final

step, we focus on the evaluation of R
(
H |{Gi }

m
i=1

)
. The diversity of

graph structure brings difficulty for directly calculating this term.

We adopt the method proposed by K. Garg et al. [14], who gave an

upper bound for R
(
H |{Gi }

m
i=1

)
, by transforming each graph to the

corresponding collection of local computation trees. Because when

updating every node embedding, the node to be updated can be

viewed as a root node of a tree, with its neighbor nodes as children.

Given this hypothesis, they derived a strict upper bound mainly

based on the degree of nodes, where the degree was used to denote

the local complexity of the graph. Furthermore, the local complexity

of the graph is made full use by our model. In the experiment of

Section 6.5, our model performs better over datasets which have

clear local structure.

6 EXPERIMENTS
In the experiments, we focus on two aspects: (1)How does the frame-

work perform on few-shot graph classification tasks? (2) How does

the controller work when training meta-learner? In this section, we

will introduce experiment datasets, comparison with baselines and

details of implementation. Finally, we demonstrate the effectiveness

of key modules by ablation study and detail analysis.
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Datasets |G | Avg.|V | Avg.|E | C0 C1 C2

COIL-DEL 3900 21.54 54.24 60 16 20

Graph-R52 8214 30.92 165.78 18 5 5

Letter-High 2250 4.67 4.50 11 0 4

TRIANGLES 45000 20.85 35.50 7 0 3

Table 1: Statistics of datasets. For each dataset, we show to-
tal graph number |G |, average node number Avg.|V |, Aver-
age edge number Avg.|E | and class number for training (C0),
validation (C1) and test (C2).

6.1 Datasets
We select four public graph datasets including COIL-DEL, R52,

Letter-High and TRIANGLES. These datasets are publicly available

1 2
. The statistics are summarized in Table 1. The visualization

of each datasets are shown in Figure 3. In the work proposed by

[7] for few-shot graph classification, they focus on two datasets

containing Letter-High and TRIANGLES. We use two additional

datasets where Graph-R52 was built from text classification dataset

and COIL-DEL was built from images.

COIL-DEL. COIL-DEL is built on images, and each graph is con-

structed by applying corner detection and Delaunay triangulation

to corresponding image [35].

R52. R52 is a text dataset in which each text is viewed as a

graph. We transformed it into a graph dataset as follows: if two

words appear together in a specified sliding window, they have

an undirected edge in the graph. We keep classes with more than

20 samples and finally get 28 classes. We name the new dataset as

Graph-R52 for clarity.

Letter-High. Each graph represents distorted letter prototype

drawings with representing lines by undirected edges and ending

points of lines by nodes [35]. More specifically, Letter-High contains

15 classes from English alphabets: A, E, F, H, I, K, L, M, N, T, V, W,

X, Y, Z.

TRIANGLES. The dataset was proposed for the task of triangle

counting, where the model is required to give the number of trian-

gles of each graph. TRIANGLES contains 10 different graph classes

numbered from 1 to 10 corresponding to the number of triangles

in graphs of each class. In our experiments, we use the partition of

[7], where they remove oversize graph samples so the total sample

size of TRIANGLES is reduced from 45000 to 2000.

6.2 Baselines
We adopt four groups of baselines made up of Graph Kernel, Fine-

tuning, GNNs-Prototypical-Classifier (GNNs-Pro) and Graph Spec-

tral Measures (GSM) [7] . For Graph Kernel baselines, we perform

N-way-K-shot graph classification over the test set directly because

there are no parameters to transfer. The baselines of the last three

groups train a GNNs based graph classifier by performing classifi-

cation over C0 training classes (see Table 1). On the test stage, they

perform N-way-K-Shot classification.

1
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

2
https://www.cs.umb.edu/ smimarog/textmining/datasets/

(a) COIL-DEL (b) Graph-R52

(c) TRIANGLES (d) Letter-High

Figure 3: Visualization of typical instances of the used
datasets, where their different graph size and graph struc-
tures bring challenges for graph classification models.

Graph Kernel. This group of methods firstly measure the sim-

ilarity between labeled support data and query data on the test

stage. After that, the similarity matrix was put into a Prototypical

Classifier, which has none of the parameters [41], to get predicted

labels of query data. We choose typical graph kernel algorithms

including Shortest-path Kernel (SP) [5], Graphlet Kernel [40] and

Weisfeiler-Lehman Kernel (WL) [39].

Finetuning. In this baseline, we train a naive graph classifier

consisting of GraphSAGE, SAGPool and MLP classifier. On the

test stage, we change the output dimension of the last layer of

the classifier and fine-tune (re-train) the layer’s parameters, while

keeping other modules unchanged.

GNNs-Pro. We train a graph classifier following Finetuning. On

the test stage, we replace the MLP classifier with Prototypical Clas-

sifier. We choose GCN [21], GraphSAGE [16] and GAT [44] as graph

convolutional modules, and Self-attention Pooling (SAGPool) [25],

TopK Pooling (TopKPool) [13] and Edge Pooling (EdgePool) [9] as

graph pooling modules.

GSM. Chauhan et al. [7] proposed the GSM based method cus-

tomized for few-shot graph classification. On the training stage,

they compute prototype graphs from each class, then they cluster

the prototype graphs to produce super-classes. After that, they

predict the origin class and super-class of each graph. On the test

stage, they only update the classifier based on the classification of

origin classes.

6.3 Experimental Details
To ensure a fair comparison, we use three convolutional layers

followed by corresponding pooling layers for the GNNs based base-

lines and our proposed framework.We set the same node dimension

as 128 for all GNNs based baselines. For the adaptation step, we
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Categories Baselines

COIL-DEL Graph-R52

5-way-5-shot 5-way-10-shot 2-way-5-shot 2-way-10-shot

Kernels

GRAPHLET 47.47 ± 1.06 49.04 ± 0.98 56.52 ± 1.46 57.16 ± 1.47

SP 38.33 ± 0.62 42.18 ± 0.69 74.38 ± 1.50 76.96 ± 1.34

WL 43.05 ± 1.25 52.28 ± 1.47 76.90 ± 1.48 75.91 ± 1.46

Finetuning finetuning 68.21 ± 1.29 72.38 ± 1.40 71.87 ± 2.04 72.39 ± 1.88

GNNs-Pro

GCN, TopKPool 78.01 ± 1.83 78.98 ± 1.53 69.98 ± 1.53 70.19 ± 1.37

GCN, EdgePool 76.21 ± 1.54 79.43 ± 1.58 67.24 ± 1.34 67.72 ± 1.59

GCN, SAGPool 76.58 ± 1.19 79.16 ± 1.06 69.88 ± 1.40 70.46 ± 1.47

GraphSAGE, TopKPool 69.80 ± 1.25 74.18 ± 1.73 70.43 ± 1.76 70.52 ± 1.83

GraphSAGE, EdgePool 80.08 ± 1.26 80.96 ± 1.26 68.13 ± 1.59 70.72 ± 1.58

GraphSAGE, SAGPool 79.30 ± 1.12 80.91 ± 1.62 68.10 ± 1.40 70.49 ± 1.32

GAT, TopKPool 76.37 ± 1.10 77.29 ± 1.40 71.99 ± 1.51 73.31 ± 1.44

GAT, EdgePool 81.00 ± 1.22 83.57 ± 0.99 66.49 ± 1.32 70.49 ± 1.17

GAT, SAGPool 72.54 ± 1.07 73.99 ± 1.00 67.78 ± 1.52 74.10 ± 1.57

Ours

AS-MAML (wo/AS) 79.54 ± 1.48 81.24 ± 1.27 74.12 ± 1.39 76.05 ± 1.17

AS-MAML (w/AS) 81.55 ± 1.39 84.75 ± 1.30 75.33 ± 1.19 78.33 ± 1.17

Table 2: Accuracies with a standard deviation of baseline methods and our framework. We tested 200 and 500 N-way-K-shot
tasks on COIL-DEL and Graph-R52, respectively. The bold black numbers denote the best results we get, and the blue numbers
denote the second best results. AS-MAML (wo/AS) denotes our framework without Adaptive Step (AS) which is controlled by
our step controller, and AS-MAML (w/AS) denotes the whole framework we proposed.

Methods Shots

Datasets

TRIANGLES Letter-High

GSM

5-shot 71.40 ± 4.34 69.91 ± 5.90

10-shot 75.60 ± 3.67 73.28 ± 3.46

Ours

5-shot 86.47 ± 0.74 76.29 ± 0.89

10-shot 87.26 ± 0.69 77.87 ± 0.75

Table 3: Accuracies evaluated from GSM and AS-MAML we
proposed. For AS-MAML, we test 200 N-way-K-shot tasks on
both datasets. ForGSM,weuse the best results in their paper.

set the minimum and maximum step by 4 and 15. We implement

GNNs based baselines and our framework with PyTorch Geometric

(PyG
3
) and graph kernel baselines based on GraKel

4
. We use SGD

optimizer with 1e-5 for weight decay and versatile learning rates

0.0001, 0.001, 0.0001 for α1, α2 and α3, respectively.

6.4 Comparison with Graph Kernel,
Finetuning and GNNs-Pro

To evaluate the performance of our framework, we performed 5-

way-5-shot and 5-way-10-shot graph classification on the COIL-

DEL dataset. On the Graph-R52 dataset, we performed 2-way-5-shot

and 2-way-10-shot graph classification. The results are reported

in Table 2. Our framework utilizes GraphSAGE and SAGPool as

graph embedding backbone. So firstly we compare our framework

with the finetuning baseline built on GraphSAGE and SAGPool. We

found our framework is superior to the finetuning baseline with

3
https://github.com/rusty1s/pytorch_geometric

4
https://github.com/ysig/GraKeL

a large margin, which indicates that the meta-leaner works well

with a fast adaptation mechanism. Moreover, under the 5-way-10-

shot setting in the GraphSAGE-SAGPool baseline, our framework

achieves about 3.84% improvement on the COIL-DEL dataset.

Surprisingly, traditional graph kernel based baselines achieve

competitive performance on the Graph-R52 dataset. The reasons

are two-fold: (1) our graphs from texts contain many well defined

sub-graphs built by text themes and their neighbor words, and this

pattern gives graph kernels a favorable position; (2) the parameters

of kernel methods are far less than GNNs based methods. So they

are not prone to be overfitting, which is GNNs’ common problem

for the few-shot task. However, finding an appropriate kernel is

difficult (e.g., From Table 2, SP behaves badly compared to WL and

GRAPHLET on the COIL-DEL dataset).

6.5 Comparison with GSM Based Method
The GSM based method proposed by Chauhan et al. [7] did not

adopt the episodic training paradigm, which is a key idea in our

paper, so the method is inappropriate to be trained by N-way-K-

shot graph classification on COIL-DEL and Graph-R52 dataset. For

a fair comparison, we evaluate our framework on TRIANGLES and

Letter-High, which are typical datasets used in their paper. As their

partition, we randomly split out 20% examples from the training set

to perform validation. Following their test configuration, we per-

form 3-way-K-shot and 4-way-K-shot classification on TRIANGLES

and Letter-High respectively. The comparison of performances is

shown in Table 3. From the table, we conclude that our framework

outperforms theirs with a large margin. The reason behind it is

that they assume the test classes belong to the same set of super-

classes built from the training classes. However, the label spaces of

training classes and test classes usually do not overlap in few-shot
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Figure 4: Illustrations of the learning process under the 5-way-10-shot setting on the COIL-DEL dataset. (a) Test accuracies
calculated fromAS-MAML (wo/AS) andAS-MAML (w/AS) respectively. The adaptation step ofAS-MAML (wo/AS) is 6, and other
hyper-parameters are same as AS-MAML (w/AS). The initial values are reported after 0-th training epoch. (b) The normalized
ANIs and training accuracies in the first 50 epochs. Both of them are extracted from support graphs of the training set. (c) The
variations of the adaptation step on the training stage. the value at epoch 0 is the initial adaptation step, and then we calculate
an average for every 5 epochs.

settings. We observe that the graphs of training classes and test

classes have similar sub-structures, which can be discovered by

a well initialized meta-learner within a few adaptation steps. As

mentioned before, different classes in TRIANGLES have similar

triangle structure. Therefore our framework gets the most obvious

improvement on this dataset.

6.6 Ablation Study and Detail Analysis
In this section, we show the effect of the controller module by abla-

tion study. First of all, without the adaptive step (AS), we evaluate

the performance of our framework by just putting GraphSAGE,

SAGPool into meta-learner. From Table 2, we found that under the

2-way-10-shot setting on Graph-R52, AS-MAML (wo/AS) brings

about 3.06% improvement compared with the finetuning baseline.

Furthermore, the step controller brings about 2.28% improvement

under the 2-way-10-shot setting on Graph-R52 and 3.51% improve-

ment under the 5-way-5-shot setting on COIL-DEL.

We did a deeper analysis for ANI and give more details of the step

controller module under the 5-way-10-shot setting on the COIL-

DEL dataset. Figure 4(a) shows the effect on the test set after adding

the adaptive step (AS). The scatter diagram (Figure 4(b)) shows

that ANIs have a positive correlation with classification accuracies,

which means larger ANI indicates better graph embedding for the

MLP classifier module. The advantage of ANI against classification

accuracy is that a larger ANI implies more discriminative graph

embedding modules, while a better classification accuracy may

mean that the MLP classifier module is overfitted on poor graph

embedding modules. Finally, Figure 4(c) shows the variations of

the adaptation step produced by the controller. At the beginning,

the controller receives larger losses and smaller ANIs, so it gives

more adaptation steps to meta-learner for encouraging exploration.

When themeta-learner has been trainedwell, the controller receives

smaller losses and larger ANIs, so it outputs smaller step size to

alleviate overfitting.

7 CONCLUSION AND FUTUREWORKS
Modeling real-world data into graphs is getting more attention

in recent years. In this paper, we focus on the few-shot graph

classification and propose a novel framework named AS-MAML.

To control the meta-learner’s adaptation step, we proposed a novel

step controller in a RL way by using ANI to demonstrate embedding

quality. Beyond that, ANI is calculated by an unsupervised way

like estimating Mutual Information on graphs [45]. Exploring and

utilizing them for graph representation learning is an interesting

future work. Moreover, we expect better graph embedding methods

to improve the performance of our framework, including GIN and

its variants. We also expect our work can be expanded to more

challenging graph classification tasks like skeleton based action

recognition, protein classification and subgraph analysis of social

networks.
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