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ABSTRACT
In recommendation systems (RS), user behavior data is observa-

tional rather than experimental, resulting in widespread bias in

the data. Consequently, tackling bias has emerged as a major chal-

lenge in the field of recommendation systems. Recently, Doubly

Robust Learning (DR) has gained significant attention due to its

remarkable performance and robust properties. However, our ex-

perimental findings indicate that existing DR methods are severely

impacted by the presence of so-called Poisonous Imputation, where
the imputation significantly deviates from the truth and becomes

counterproductive.

To address this issue, this work proposes Conservative Doubly

Robust strategy (CDR) which filters imputations by scrutinizing

their mean and variance. Theoretical analyses show that CDR offers

reduced variance and improved tail bounds. In addition, our exper-

imental investigations illustrate that CDR significantly enhances

performance and can indeed reduce the frequency of poisonous

imputation.
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1 INTRODUCTION
Enabled by a variety of deep learning techniques, the field of recom-

mendation systems (RS) has seen significant advancements [44, 46].

Nonetheless, the direct application of these advanced RS models in

real-world scenarios is often impeded by the presence of numerous

biases. Among these, selection bias is especially prominent, refer-

ring to the occurrence that the observed data might not faithfully

represent the entirety of user-item pairs [28, 29]. Selection bias has

detrimental effects not only on the accuracy of the recommenda-

tions, but it may also foster unfairness and potentially exacerbate

the Matthew effect [14, 29, 45].

A myriad of methods to counter selection bias have been intro-

duced in recent years. These approaches fall primarily into three

categories: 1) Generative models [19, 40, 41], which resorts to a

causal graph to depict the generative process of observed data and

infer user true preference accordingly. However, given the com-

plexity of real-world RS scenarios, accurately constructing a causal

graph poses a significant challenge. 2) Inverse Propensity Score

(IPS) [34, 36], which adjusts the data distribution by reweighing the

observed samples. While IPS can theoretically achieve unbiased-

ness, its performance is highly sensitive to propensity configura-

tion and prone to high variance. 3) Doubly Robust Learning (DR)

[9, 10, 15, 38], which enhances IPS by incorporating error imputa-

tion for all user-item pairs. DR enjoys the doubly robust property

where unbiasedness is guaranteed if either the imputed values or

propensity scores are accurate.

Encouraged by the promising performance and theoretical ad-

vantages of DR, this study opts for the DR approach. However,

we highlight a potential limitation of current DR methods — they

conduct imputation for all user-item pairs, potentially leading to

poisonous imputation. In DR, imputation values rely on the impu-

tation model, which is typically trained on a small set of observed

data and extrapolated to the entire user-item pairs. Consequently,
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it is inevitable for the imputation model to produce inaccurate es-

timations on certain user-item pairs. Poisonous imputation arises

when the imputed values significantly diverge from the truth to

such an extent that they negatively impact the debiasing process

and could even compromise the model’s performance. Upon exam-

ining existing DR methods on real-world datasets, we found that

the ratio of poisonous imputation is notably high, often exceed-

ing 35%. Addressing poisonous imputation is thus essential for the

effectiveness of a DR method.

A straightforward solution to this issue could be to directly iden-

tify and eliminate poisonous imputations. However, this is prac-

tically infeasible due to the unavailability of ground-truth labels

of user preference for the majority of user-item pairs. To address

this challenge, we propose a Conservative Doubly Robust strategy
(CDR) that constructs a surrogate filtering protocol by scrutinizing

the mean and variance of the imputation value. Theoretical analy-

ses demonstrate our CDR achieves lower variance and better tail

bound compared to conventional DR. Remarkably, our solution is

model-agnostic and can be easily plug-in existing DR methods. In

our experiments, we implemented CDR in four different methods,

demonstrating that CDR yields superior recommendation perfor-

mance and a reduced ratio of poisonous imputation.

To summarize, this work makes the following contributions:

• Exposing the issue of poisonous imputation within existing

Doubly Robust methods in Recommendation Systems.

• Proposing a Conservative Doubly Robust strategy (CDR)

that mitigates the problem of poisonous imputation through

examination of the mean and variance of the imputation

value.

• Performing rigorous theoretical analyses and Conducting

extensive empirical experiments to validate the effectiveness

of CDR.

2 ANALYSES OVER DOUBLY ROBUST
LEARNING

In this section, we first formulate the task of recommendation

debiasing (Sec. 2.1), and then present some background of doubly

robust learning (Sec. 2.2). Finally, we identify the issue of poisonous

imputation on existing DR methods (Sec. 2.3).

2.1 Task Formulation
Suppose we have a recommender system composed of a user setU
and an item set I. Let D = U × I denote the set of all user-item

pairs. Further, let 𝑟𝑢𝑖 ∈ R be the ground-truth label (e.g., rating) for
a user-item pair (𝑢, 𝑖), indicating how the user likes the item; and

𝑟𝑢𝑖 be the corresponding predicted label from a recommendation

model. The collected historical rating data can be notated as a set

R𝑜 = {𝑟𝑢𝑖 |𝑜𝑢𝑖 = 1}, where 𝑜𝑢𝑖 denotes whether the rating of a

user-item pair (𝑢, 𝑖) is observed. The goal of a RS is to accurately
predict user preference and accordingly identify items that align

with users’ tastes. The ideal loss for training a recommendation

model can be formulated as follow:

L𝑖𝑑𝑒𝑎𝑙 = | D |−1
∑︁

(𝑢,𝑖 ) ∈D
𝑒𝑢𝑖 (1)

Where 𝑒𝑢𝑖 denotes the prediction error between 𝑟𝑢𝑖 and 𝑟𝑢𝑖 , e.g.,
𝑒𝑢𝑖 = |𝑟𝑢𝑖 − 𝑟𝑢𝑖 |2 with RMSE loss or 𝑒𝑢𝑖 = −𝑟𝑢𝑖 log(𝑟𝑢𝑖 ) − (1 −
𝑟𝑢𝑖 ) log(1 − 𝑟𝑢𝑖 ) with BCE loss. However, only a small portion of

𝑟𝑢𝑖 is observed in RS, rendering the ideal loss non-computable.

Moreover, the challenge is further accentuated by the presence

of selection bias, as the observed data might not faithfully repre-

sent the entirety of user-item pairs. For instance, samples with

higher ratings are more likely to be observed [29]. Utilizing a

naive estimator that calculates directly on the observed data with

L𝑛𝑎𝑖𝑣𝑒 =| D |−1 ∑(𝑢,𝑖 ) ∈D 𝑜𝑢𝑖𝑒𝑢𝑖 would yield a biased estimation

[34]. Hence, the exploration for a suitable surrogate loss towards

unbiased estimation of the ideal loss is ongoing.

2.2 Existing Estimators
Now we review two typical estimators for addressing selection bias.

Inverse Propensity Score Estimator (IPS) [34]. The IPS estimator

aims to adjust the training distribution by reweighing the observed

instances as:

L𝐼𝑃𝑆 = | D |−1
∑︁

(𝑢,𝑖 ) ∈D

𝑜𝑢𝑖𝑒𝑢𝑖

𝑝𝑢𝑖
(2)

where 𝑝𝑢𝑖 is an estimation of the propensity score 𝑝𝑢𝑖 = P(𝑜𝑢𝑖 = 1).
The bias and variance of IPS estimator can be written as:

𝐵𝑖𝑎𝑠 [L𝐼𝑃𝑆 ] = |𝐸𝑜 [L𝐼𝑃𝑆 ] − L𝐼𝑑𝑒𝑎𝑙 |

=| D |−1 |
∑︁

(𝑢𝑖 ) ∈D

(𝑝𝑢𝑖 − 𝑝𝑢𝑖 )
𝑝𝑢𝑖

𝑒𝑢𝑖 |

𝑉𝑎𝑟 [L𝐼𝑃𝑆 ] = E𝑜 [(L𝐼𝑃𝑆 − E𝑜 [L𝐼𝑃𝑆 ])2]

=| D |−2
∑︁

(𝑢,𝑖 ) ∈D

𝑝𝑢𝑖 (1 − 𝑝𝑢𝑖 )
𝑝2
𝑢𝑖

𝑒2𝑢𝑖

(3)

Once the 𝑝𝑢𝑖 reaches its ideal value (i.e., 𝑝𝑢𝑖 = 𝑝𝑢𝑖 ), the IPS esti-

mator could provide an unbiased estimation of the ideal loss (i.e.,
E𝑜 [L𝐼𝑃𝑆 ] = L𝐼𝑑𝑒𝑎𝑙 ).

Doubly Robust Estimator (DR) [38]. DR augments IPS by intro-

ducing the error imputation with the following loss:

L𝐷𝑅 = | D |−1
∑︁

(𝑢,𝑖 ) ∈D
(𝑒𝑢𝑖 +

𝑜𝑢𝑖 (𝑒𝑢𝑖 − 𝑒𝑢𝑖 )
𝑝𝑢𝑖

) (4)

where 𝑒𝑢𝑖 represents the imputed error, derived from a specific

imputation model that strives to fit the predicted error. Recent

work [15] has established the bias and variance of DR as follow:

𝐵𝑖𝑎𝑠 [L𝐷𝑅] =| D |−1 |
∑︁

(𝑢,𝑖 ) ∈D

(𝑝𝑢𝑖 − 𝑝𝑢𝑖 )
𝑝𝑢𝑖

(𝑒𝑢𝑖 − 𝑒𝑢𝑖 ) |

𝑉𝑎𝑟 [L𝐷𝑅] =| D |−2
∑︁

(𝑢,𝑖 ) ∈D

𝑝𝑢𝑖 (1 − 𝑝𝑢𝑖 )
𝑝2
𝑢𝑖

(𝑒𝑢𝑖 − 𝑒𝑢𝑖 )2
(5)

As can be seen, DR change the bias term for each (𝑢, 𝑖) from

(𝑝𝑢𝑖−𝑝𝑢𝑖 )
𝑝𝑢𝑖

𝑒𝑢𝑖 in IPS to
(𝑝𝑢𝑖−𝑝𝑢𝑖 )

𝑝𝑢𝑖
(𝑒𝑢𝑖 − 𝑒𝑢𝑖 ) and the variance from

𝑝𝑢𝑖 (1−𝑝𝑢𝑖 )
𝑝2

𝑢𝑖

𝑒2
𝑢𝑖

to
𝑝𝑢𝑖 (1−𝑝𝑢𝑖 )

𝑝2

𝑢𝑖

(𝑒𝑢𝑖 − 𝑒𝑢𝑖 )2. DR enjoys the doubly ro-

bust property that if either 𝑝𝑢𝑖 = 𝑝𝑢𝑖 or 𝑒𝑢𝑖 = 𝑒𝑢𝑖 holds, L𝐷𝑅
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Coat Yahoo KuaiRand

DR-JL 45.9% 41.9% 38.8%

MRDR 48.1% 43.1% 41.2%

DR-BIAS 44.1% 40.4% 39.2%

TDR 42.3% 36.2% 36.3%

Table 1: The proportion of "poisonous imputation" in three
different datasets using four typical DR methods.

could be an unbiased estimator (i.e., 𝐵𝑖𝑎𝑠 [L𝐷𝑅] = 0). This advanta-

geous property typically results in DR being less biased than IPS in

practice, empirically leading to superior performance.

2.3 Limitation of DR
From the eq.(5), we can conclude that the accuracy of imputation

𝑒𝑢𝑖 is of highly importance — both the bias and variance term are

correlated with |𝑒𝑢𝑖 − 𝑒𝑢𝑖 |. Indeed, if the imputed error 𝑒𝑢𝑖 diverges

significantly from the predicted error 𝑒𝑢𝑖 such that |𝑒𝑢𝑖 − 𝑒𝑢𝑖 | >
𝑒𝑢𝑖 , the imputation 𝑒𝑢𝑖 becomes counterproductive. Particularly,

imputing 𝑒𝑢𝑖 for the user-item pair (𝑢, 𝑖) results in increased bias

and variance, rather than reduced. We denote this phenomenon as

poisonous imputation:

Definition 2.1 (Poisonous Imputation). For any user-item pair

(𝑢, 𝑖), the imputation 𝑒𝑢𝑖 is considered as a poisonous imputation if

|𝑒𝑢𝑖 − 𝑒𝑢𝑖 | > 𝑒𝑢𝑖 .

In practical RS, given that the imputation model is typically

trained on a limited set of observed data and generalized to the

entire user-item pairs, poisonous imputation is frequently encoun-

tered. To provide empirical evidence for this point, we conducted

an empirical analysis on four representative DR methods (DR-JL

[38], MRDR [15], DR-BIAS [9], and TDR [22]) across three real-

world debiasing datasets (YahooR3, Coat, and KuaiRand). These

DR methods were finely trained on the biased training data, after

which 𝑒𝑢𝑖 and 𝑒𝑢𝑖 were calculated for the user-item pairs in the

test data where ground-truth ratings are accessible. The proportion

of poisonous imputation is reported in Table 1. Surprisingly, the
ratio of poisonous imputation is considerably high, often
exceeding 35% across all datasets and baseline models. It is
noteworthy that even though DR generally exhibits superior per-

formance over IPS, a substantial amount of poisonous imputation

still exists. The issue of poisonous imputation is particularly severe,

thereby warranting attention and resolution.

3 METHODOLOGY
In this section, we first introduce the proposed conservative doubly

robust strategy, and then conduct theoretical analyses to validate

its merits.

3.1 Conservative Doubly Robust Learning
Considering the widespread occurrence of poisonous imputation,

we contend that performing imputation blindly on all user-item

pairs, as is customary with current methods, may not be the optimal

strategy. Instead, it would be more effective to adopt a conservative

and adaptive imputation approach that focuses on user-item pairs

Figure 1: Illustration of how our CDR improves the tradi-
tional DR methods — leveraging a filter protocol to remove
the poisonous imputation that may hurt debiasing.

which confer benefits while excluding those leading to poisonous

imputation. As previously discussed, the ideal filtering protocol

involves comparing |𝑒𝑢𝑖 − 𝑒𝑢𝑖 | with 𝑒𝑢𝑖 . If |𝑒𝑢𝑖 − 𝑒𝑢𝑖 | < 𝑒𝑢𝑖 , the

imputation should be retained as it could potentially reduce both

variance and bias; if not, it implies a poisonous imputation which

should be discarded. However, this approach is impractical as the

ground-truth labels are typically inaccessible in real-world scenar-

ios and 𝑒𝑢𝑖 cannot be calculated. As such, an alternative filtering

protocol is necessary.

Towards this end, we propose a Conservative Doubly Robust

(CDR) strategy in this work that filters imputation by examining

the mean and variance of 𝑒𝑢𝑖 . The foundation of CDR is based on

the following important lemma:

Lemma 1. Given that 𝑒𝑢𝑖 and 𝑒𝑢𝑖 are independently drawn from
two Gaussian distributions N(𝜇𝑢𝑖 , �̂�2𝑢𝑖 ) and N(𝜇𝑢𝑖 , 𝜎2𝑢𝑖 ), where 𝜇𝑢𝑖 ,
𝜇𝑢𝑖 , �̂�𝑢𝑖 , 𝜎𝑢𝑖 are bounded with |𝜇𝑢𝑖 − 𝜇𝑢𝑖 | ≤ 𝜀𝜇 , |�̂�2𝑢𝑖 − 𝜎

2

𝑢𝑖
| ≤ 𝜀2𝜎 ,

𝑚𝜇 ≤ 𝜇𝑢𝑖 ≤ 𝑀𝜇 and𝑚𝜎 ≤ �̂�𝑢𝑖 ≤ 𝑀𝜎 , for any confidence level 𝜌
(0 ≤ 𝜌 ≤ 1), the condition P( |𝑒𝑢𝑖 − 𝑒𝑢𝑖 | < 𝑒𝑢𝑖 ) ≥ 𝜌 holds if

�̂�𝑢𝑖

𝜇𝑢𝑖
≤

(√
5Φ−1 (𝜌) +

2𝑀𝜇𝜀𝜎

𝑚𝜎 (
√
5𝑚𝜎 + 2𝜀𝜎 )

+
2

√
5𝜀𝜇√

5𝑚𝜎 + 2𝜀𝜎

)−1
(6)

where Φ−1 (.) denotes the inverse of CDR of the standard normal
distribution.

The proof of the lemma is included in the appendix A. This

lemma indicates that through the formulation of a distribution hy-

pothesis for 𝑒𝑢𝑖 and 𝑒𝑢𝑖 , the evaluation of poisonous imputation

can be reframed as a scrutiny of the mean and variance of 𝑒𝑢𝑖 . The

hypothesis presented in the lemma is practical. On one hand, we

hypothesize that the distribution of 𝑒𝑢𝑖 approximates that of 𝑒𝑢𝑖
(i.e., |𝜇𝑢𝑖 − 𝜇𝑢𝑖 | ≤ 𝜀𝜇 , |�̂�2𝑢𝑖 − 𝜎

2

𝑢𝑖
| ≤ 𝜀2𝜎 ), a supposition that naturally

follows since the imputation model endeavors to fit 𝑒𝑢𝑖 . On the

other hand, we opt to employ the Gaussian distribution for analy-

sis. This choice is informed by its widespread usage in statistical

inference, as well as its standing as a second-order Taylor approxi-

mation of any distribution.While more complex distributions might

yield more precise results, e.g., considering higher-order moments,
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the analytical complexity and computational burden would signifi-

cantly increase. Our empirical findings indicate that the Gaussian

distribution suffices to deliver superior performance.

In fact, our proposed filtering protocol (inequality (6)) is intu-

itively appealing due to three observations: 1) A larger value of �̂�𝑢𝑖
makes the preservation of the imputation less likely. This is consis-

tent with the understanding that a higher variance implies a less

reliable prediction, thus making it more susceptible to discarding.

2) A larger value of 𝜇𝑢𝑖 makes the preservation of the imputation

more likely. This can be rationalized by the notion that if the error

𝑒𝑢𝑖 is large, the imputation is safer as it is more difficult to exceed

2𝑒𝑢𝑖 . 3) Larger values of 𝜀𝜇 and 𝜀𝜎 increase the likelihood of filter-

ing the imputation. Larger values for these parameters suggest a

more significant distributional gap between 𝑒𝑢𝑖 and 𝑒𝑢𝑖 , thereby

necessitating more conservative filtering.

Instantiation of CDR. CDR can be incorporated into various

DR methods by leveraging an additional filtering protocol. This

protocol consists of two steps:

1) Estimation of 𝜇𝑢𝑖 , �̂�𝑢𝑖 : We utilize the Monte Carlo Dropout

method [11] for estimating themean and variance of the imputation,

owing to its generalization and easy implementation. Specifically,

we apply dropout 10 times on the imputation model (i.e., randomly

omitting 50% of the dimensions of embeddings) and then calculate

the mean and variance of 𝑒𝑢𝑖 from the dropout model. To ensure

a fair comparison, we should note that dropout is only employed

during the calculation of 𝜇𝑢𝑖 , �̂�𝑢𝑖 , and not during the training of the

imputation model.

2) Filtering based on the condition
�̂�𝑢𝑖
𝜇𝑢𝑖

< 𝜂: Note that the right-

hand side of inequality (6) involves complex computation and five

parameters. To simplify our implementation, we re-parameterize

the right-hand side of the inequation as a hyperparameter 𝜂. This

parameter𝜂 can be interpreted as an adjusted threshold that directly

modulates the strictness of the filtering process.

With the above filtering protocol, the CDR estimator can be

formulated as:

L𝐶𝐷𝑅 = |D|−1
∑︁

(𝑢,𝑖 ) ∈D
(𝑜𝑢𝑖𝑒𝑢𝑖
𝑝𝑢𝑖

+ 𝛾𝑢𝑖𝑒𝑢𝑖 (1 −
𝑜𝑢𝑖

𝑝𝑢𝑖
)) (7)

where 𝛾𝑢𝑖 ∈ {0, 1} indicate whether the imputation 𝑒𝑢𝑖 is retained.

3.2 Theoretical Analyses
In order to elucidate the advantages of the Conservative Doubly

Robust (CDR) strategy, we present the following lemma:

Lemma 2. Given the imputed errors 𝑒𝑢𝑖 , estimated propensity
scores 𝑝𝑢𝑖 , and the retention of the imputation 𝛾𝑢𝑖 , the bias and vari-
ance of the CDR estimator can be expressed as follows:

𝐵𝑖𝑎𝑠 [L𝐶𝐷𝑅] =
1

|D| |
∑︁

(𝑢,𝑖 ) ∈D

(𝑝𝑢𝑖−𝑝𝑢𝑖 )
𝑝𝑢𝑖

(𝛾𝑢𝑖 (𝑒𝑢𝑖−𝑒𝑢𝑖 )+(1−𝛾𝑢𝑖 )𝑒𝑢𝑖 ) |

𝑉𝑎𝑟 [L𝐶𝐷𝑅] =
1

|D|2
∑︁

(𝑢,𝑖 ) ∈D

𝑝𝑢𝑖 (1−𝑝𝑢𝑖 )
𝑝2
𝑢𝑖

(𝛾𝑢𝑖 (𝑒𝑢𝑖−𝑒𝑢𝑖 )2+(1−𝛾𝑢𝑖 )𝑒2𝑢𝑖 )

(8)

With probability 1 − 𝜅, the deviation of the CDR estimator from its
expectation has the following tail bound:

|L𝐶𝐷𝑅−E𝑜 [L𝐶𝐷𝑅] | ≤

√√√√√
log

(
2

𝜅

)
2|D|2

∑︁
𝑢,𝑖∈D

(𝛾𝑢𝑖
(𝑒𝑢𝑖−𝑒𝑢𝑖 )2

𝑝2
𝑢𝑖

+(1−𝛾𝑢𝑖 )
𝑒2
𝑢𝑖

𝑝2
𝑢𝑖

)

(9)

The proof is presented in appendix B. CDR can be understood as

an integration of IPS and DR . If |𝑒𝑢𝑖 −𝑒𝑢𝑖 | > 𝑒𝑢𝑖 , CDR will filter out

the poisonous imputation and regress to IPS, as IPS demonstrates

superior bias and variance properties compared to DR . Otherwise,

CDR will retain the imputation, benefiting from the merits of DR .

Indeed, CDR has the following advantages:

Corollary 3.1. Under the condition of Lemma 1 and 𝜀𝜇 ≪ 𝜇𝑢𝑖 , 𝜀
2

𝜇 ≪
�̂�2
𝑢𝑖
, with a proper filtering threshold 𝜂, CDR enjoys better variance

and tail bound than IPS and DR.

The proof is presented in appendix C. This corollary substantiates

the superiority of CDR, thereby yielding better recommendation

performance. We will empirical validate it in the following section.

4 EXPERIMENTS
In this section, we designed experiments to test the performance of

the proposed method on three real-world datasets. Our aim was to

answer the following four research questions:

RQ1: Does the proposed CDR improve the debiasing performance?

RQ2: Does CDR indeed reduce the ratio of poisonous imputation

in DR?

RQ3: How does the hyperparameter 𝜂 (filtering threshold) affect

debiasing performance?

RQ4: Does CDR incur much more computational time?

4.1 Experimental Setup
Datasets. To evaluate the performance of debiasing methods on

real-world datasets, The ground-truth unbiased data are necessary.

We closely refer to previous studies[13, 15, 34, 38], and use the fol-

lowing three benchmark datasets:Coat, Yahoo!R3 andKuaiRand-
Pure. All three datasets consist of a biased dataset, collected from

normal user interactions, and an unbiased dataset collected from

random logging strategy. Specifically, Coat includes 6,960 biased
ratings and 4,640 unbiased ratings from 290 users for 300 items;

Yahoo!R3 comprises 54,000 unbiased ratings and 311,704 biased

ratings from 15,400 users for 1,000 items; whileKuaiRand includes

7,583 videos and 27,285 users, containing 1,436,609 biased data and

1,186,059 unbiased data from 7,583 videos and 27,285 users. Follow-

ing recent work [4], we regard the biased data as training set, and

utilize the unbiased data for model validation (10%) and evaluation

(90%). Also, the ratings are binarized with threshold 3. That is, the

observed rating value larger than 3 is labeled as positive, otherwise

negative.

Baselines.We validate the effectiveness of CDR on four base-

lines including three benchmark DR methods and one classical

baseline just based on imputation:

• EIB[35]: the classical baseline that relies on data imputation

for tackling selection bias.
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Table 2: Performance comparison between our CDR with other baselines on three real-world datasets. The best result in that
column is bolded and the runner-up is underlined. We incorporate CDR into four baseline models and report the relative
improvements gained by employing CDR compared to the respective baseline.

Method

Coat Yahoo KuaiRand

AUC NDCG@5 Recall@5 AUC NDCG@5 Recall@5 AUC NDCG@5 Recall@5

MF 0.7053 0.6025 0.6173 0.6720 0.6252 0.7155 0.5432 0.2932 0.2905

IPS 0.7144 0.6173 0.6267 0.6785 0.6345 0.7214 0.5446 0.2987 0.2987

CVIB 0.7230 0.6278 0.6347 0.6811 0.6482 0.7229 0.5512 0.3099 0.3027

INV 0.7416 0.6394 0.6542 0.6767 0.6443 0.7251 0.5465 0.3081 0.3013

TDR 0.7388 0.6378 0.6525 0.6789 0.6436 0.7269 0.5523 0.3088 0.3026

EIB 0.7225 0.6288 0.6382 0.6844 0.6427 0.7241 0.5456 0.3010 0.2938

EIB+CDR 0.7509 0.6533 0.6608 0.6909 0.6549 0.7310 0.5510 0.3087 0.2975

impv% +3.93% +3.90% +3.54% +0.95% +1.90% +0.95% +0.99% +2.56% +1.26%

DR-JL 0.7286 0.6271 0.6355 0.6834 0.6474 0.7236 0.5485 0.2967 0.2924

DR+CDR 0.7502 0.6557 0.6658 0.6881 0.6558 0.7307 0.5540 0.3153 0.3045

impv% +2.96% +4.56% +4.77% +0.69% +1.31% +0.98% +1.00% +6.27% +4.14%

MRDR 0.7319 0.6317 0.6447 0.6829 0.6484 0.7243 0.5503 0.3041 0.2949

MRDR+CDR 0.7508 0.6520 0.6587 0.6879 0.6571 0.7311 0.5547 0.3167 0.3078
impv% +2.58% +3.21% +2.17% +0.73% +1.34% +0.94% +0.80% +4.14% +4.48%

DR-BIAS 0.7424 0.6408 0.6578 0.6860 0.6486 0.7269 0.5478 0.3024 0.2952

DR-BIAS+CDR 0.7513 0.6567 0.6678 0.6912 0.6565 0.7323 0.5533 0.3098 0.3048

impv% +1.20% +2.48% +1.52% +0.76% +1.22% +0.74% +1.00% +2.45% +3.25%

• DR-JL[38]: the basic doubly robust learning strategy that

employs both propensity and imputation for recommenda-

tion debiasing. In DR-JL, the imputation is learned by mini-

mizing the error deviation on observed data.

• MRDR[15]: the method improves DR-JL by considering the

variance reduction for learning imputation model.

• DR-BIAS[9]: the novel strategy that learns imputation with

balancing the variance and bias.

We also compare the methods with:

• Base Model: the basic recommendation model without em-

ploying any debiasing strategy.

• IPS[34]: the strategy that addresses bias via weighing the

observed data with the inverse of the propensity.

• INV[41]: the state-of-the-art debiasing method that lever-

ages causal graph to disentangle the invariant preference

and variant factors from the observed data.

• TDR[22]: the state-of-the-art DR method that learns impu-

tation with a parameterized imputation model and a non-

parameter strategy. Here we do not implement CDR in TDR

due to its high complexity. Nevertheless, our experiments

show that even CDR is plug-in the basic DR-JL, it could

outperform TDR.

Also, for fair comparison, we closely refer to recent work [4] and

take the widely used Matrix Factorization (MF) [21] as the base

recommendation model.

Metrics.We employed three concurrent metrics, namely, Area

Under the Curve (AUC), Recall (Recall@5) and Normalized Dis-

counted Cumulative Gain (NDCG@5) to assess debiasing perfor-

mance. NDCG@K evaluates the quality of recommendations by

taking into account the importance of each item’s position, based

on discounted gains.

𝐷𝐶𝐺𝑢@𝐾 =
∑︁

(𝑢,𝑖 ) ∈D𝑡𝑒𝑠𝑡

𝐼 (𝑧𝑢,𝑖 <= 𝐾)
𝑙𝑜𝑔(𝑧𝑢,𝑖 + 1)

𝑁𝐷𝐶𝐺@𝐾 =
1

| U |
∑︁
𝑢∈U

𝐷𝐶𝐺𝑢@𝐾

𝐼𝐷𝐶𝐺𝑢@𝐾

(10)

where IDCG represents the ideal DCG, D𝑡𝑒𝑠𝑡 denotes the test

data, 𝑧𝑢,𝑖 represents the position of item 𝑖 within the recommended

rank for user 𝑢.

Recall@K measures the number of recommended items that are

likely to be interacted with by the user within top 𝐾 items.

𝑅𝑒𝑐𝑎𝑙𝑙𝑢@𝐾 =

∑
(𝑢,𝑖 ) ∈D𝑡𝑒𝑠𝑡 𝐼 (𝑧𝑢,𝑖<=𝑘 )

| D𝑢
𝑡𝑒𝑠𝑡 |

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
1

| U |
∑︁
𝑢∈U

𝑅𝑒𝑐𝑎𝑙𝑙𝑢@𝐾

(11)

where D𝑢
𝑡𝑒𝑠𝑡 indicates all ratings of the user 𝑢 in dataset D𝑡𝑒𝑠𝑡 .

Experimental details. Our experiments were conducted on

PyTorch, utilizing Adam as the optimizer. We fine-tuned the learn-

ing rate within {0.005, 0.01, 0.05, 0.1}, weight decay within {1e - 5,

5e - 5, 1e - 4, 5e - 4, 1e - 3, 5e - 3, 1e - 2}, threshold’s parameter 𝜂

within {0.1, 0.5, 1, 3, 5, 7, 10, 50}, and batch size within {128, 256,

512, 1024, 2048} for Coat , {1024, 2048, 4096, 8192, 16384} for Ya-

hoo!R3 and { 2048, 4096, 8192, 16384, 32768} for KuaiRand. The

hyperparameters of all the baselines are finely tuned in our exper-

iments or referred to the orignal paper. The code is available at

ℎ𝑡𝑡𝑝𝑠 : //𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝐶𝑟𝑎𝑧𝑦𝐷𝑢𝑚𝑝𝑙𝑖𝑛𝑔/𝐶𝐷𝑅_𝐶𝐼𝐾𝑀2023.
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Table 3: Empirical runtime (s) comparison on Coat, Yahoo and KuaiRand datasets.

Datasets MF IPS EIB DR-JL MRDR DR-bias EIB+CDR DR-JL+CDR MRDR+CDR DR-bias+CDR

Coat 33.87 36.72 112.80 136.72 131.69 138.23 135.62 147.31 153.28 149.31

Yahoo 59.34 68.91 542.35 632.79 687.34 678.28 643.21 732.13 706.39 714.32

KuaiRand 834.13 1034.24 5018.23 6390.25 6246.36 6421.56 7124.54 6893.49 7154.83.13 7245.71

4.2 Performance Comparison (RQ1)
Table 2 presents performance comparison of our with other Base-

lines. We draw the following observations:

1) CDR consistently boosts the recommendation performance

on four baselines and three benchmark datasets. Especially in

KuaiRand, the improvement is impressive — achieving average

0.95%, 3.86%, 3.28% improvement in terms of AUC, NDCG and Re-

call respectively. This result validates that our filtering protocol is

effective, which could indeed filter the harmful imputation. We will

further validate this point in the next experiment.

2) By comparing CDR with other baselines, we can find the best

performance always achieved by CDR. CDR is simple but achieves

SOTA performance.

4.3 Study on the Poisonous Imputation (RQ2)
To further validate the effectiveness of CDR,we conducted empirical

study on the ratio of the poisonous imputation. We finely trained

CDR an compared baselines on the biased training data, and then

compared |𝑒𝑢𝑖 − 𝑒𝑢𝑖 | with 𝑒𝑢𝑖 for the user-item pairs in the test data

where ground-truth ratings are accessible. The results are presented

in Figure 2.

As can be seen, CDR consistently has lower ratio of poisonous

imputation than its corresponding baselines over three datasets.

This result clearly validate that the proposed filter is reasonable

and can remove a certain ratio of poisonous imputation. As such,

CDR achieves better debiasing performance than DR.

4.4 Effect of Parameter 𝜂 (RQ3)
𝜂 serves as an adjusted threshold that directly modulates the strict-

ness of the filtering process. Thus, exploring model performance

w.r.t. 𝜂 could help us to better understand the nature of CDR. The

performance with varying 𝜂 is presented in Figure 3.

As can be seen, with 𝜂 increasing, the performance will become

better first. The reason is that the larger 𝜂 would bring more impu-

tation. As the threshold 𝜂 is relatively low, the injected imputation

is usually confidence, yielding performance improvement. How-

ever, when 𝜂 surpasses a certain value, the performance becomes

worse with further increase of 𝜂. This can be interpreted by the

more inaccurate imputation is injected. poisonous imputation oc-

curs which would deteriorate model performance. There exists a

trade-off on the selection of 𝜂. When 𝜂 is set to a proper value, the

model achieves the optimal performance.

4.5 Running time comparison 𝜂 (RQ4)
Additionally, we conducted experiments on the efficiency of CDR

compared with other baselines on three datasets: Coat, Yahoo, and

KuaiRand. As shown in the table 3, despite CDR introduces multiply

time dropout for evaluating the mean and variance of the imputa-

tion, it does not incur much more computation burden. The reason

can be attributed to the two factors: 1) The calculation of the mean

and variance only involves forward propagation, without requiring

the time-consuming backward propagation; 2) CDR would filter a

certain ratio of the imputation, which make the samples in training

reduced, leading to acceleration when training the recommendation

model.

5 RELATEDWORK
In this section, we review the most related work from the following

two perspectives.

Debiasing in Recommendation. Bias is a critical issue in rec-

ommendation systems as it not only hurt recommendation accuracy,

but can limit the diversity of recommended items and reinforce

unfairness [5, 43]. There are various sources of bias found in RS

data, such as selection bias [28, 29], exposure bias [24], confor-

mity bias [25, 37], position bias [17, 18] and popularity bias [1].

To address this issue, the academic community has probed into a

multitude of methodologies to rectify the bias in recommendation

systems. Given the focus of this study on selection bias, we primar-

ily concentrate our review on the latest advancements in tackling

this particular bias. For a more comprehensive understanding, we

recommend readers to refer to the bird’s-eye-view survey [5] for

additional details.

Recent work on selection bias can be mainly categorized into

three types:

1) Generative Models, which resorts to a causal graph to depict

the generative process of observed data and infer user true prefer-

ence accordingly. The most representative methods are [6, 16, 19,

29], which jointly model the which rating value the user gives and

which items the user select to rate. More recently, some researchers

utilize the causal graph to disentangle the invariant preference from

other variant factors [40, 41] thereby enabling the recommendation

to depend on the reliable invariant user preferences.

2) Inverse Propensity Score, which adjusts the data distribution

by reweighing the observed samples with the inverse of the propen-

sity. Once the propensity reaches the ideal value, IPS could provide

an unbiased estimation of the ideal loss. Recent studies [34, 39]

have introduced a range of methodologies to learn propensities

including calculating from item popularity, fitting a model to the

observation, or computing from a limited set of unbiased data.

3) Doubly Robust Learning, which enhances IPS by incorporat-

ing error imputation for all user-item pairs. DR enjoys the doubly

robust property where unbiasedness is guaranteed if either the

imputed values or propensity scores are accurate. The merit of

DR relies on the accuracy of the imputation model. Thus, vari-

ous learning strategies are proposed by recent work. For example,
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Figure 2: The percentage(%) of "poisonous imputation" in three different datasets using the original EIB, DR-JL, MRDR and
DR-BIAS methods, as well as the improved methods with integrating CDR.

Figure 3: Recommendation performance of CDR with varying threshold 𝜂 on three datasets.

DR-JL [38] jointly learn the recommendation model and imputa-

tion model from the observed data, while the imputation model is

optimized to minimize the error deviation on observed data; Au-

toDebias [4] leverages the unbiased data to supervise the learning

of the imputation via meta-learning; MRDR [15] considers the vari-

ance reduction in learning imputation model; DR-BIAS [9] learns

the imputation with balancing the variance and bias. More recently,

some researchers consider to further boost the instability and gen-

eralization of DR with leveraging the stable regularizer [23] and

non-parameter imputation module [22]. While these approaches

offer promising solutions for debiasing recommendation, they all

impute the error for all user-item pairs and may suffer from the

issue of poisonous imputation.

Uncertainty Estimation. Utilization of probabilistic models to

assess and control uncertainty (a.k.a. variance), has found broad

applications across numerous fields. This approach is usually char-

acterized by probabilistic inference, which allows for continuous

updating of beliefs about model parameters. Uncertainty estima-

tion have found extensive use in diverse domains including ma-

chine learning, natural language processing, and signal process-

ing. A prevalent approach incorporates Bayesian neural networks

[3, 20, 26, 31], providing a flexible and efficient framework to encap-

sulate uncertainty within neural network predictions. Another line

for uncertainty estimation is the MC-dropout technique [11, 12, 32],

which simply perform multiple dropout and estimate the uncer-

tainty (variance) via different models after dropout. Recent work

has connected MC-dropout with Bayesian inference and shows

that MC-dropout serves as a form of variational Bayesian inference

with leveraging a spike and slab variational distribution. Besides,

methods like Kronecker Factored Approximation (KFAC) [33] and

Markov Chain Monte Carlo (MCMC) [27, 42] have been deployed
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to propagate uncertainties in intricate models. In this work, we

simply choose MC-dropout to estimate the uncertainty of the im-

putation model, while it can be easily replaced by other advanced

technologies.

6 CONCLUSION AND FUTUREWORK
This study identifies the issue of poisonous imputation in recent

Doubly Robust (DR) methods – these methods indiscriminately

perform imputation on all user-item pairs, including those with

poisonous imputations that significantly deviate from the truth

and negatively impact the debiasing performance. To counter this

problem, we introduce a novel Conservative Doubly Robust (CDR)

strategy that filters out poisonous imputation by examining the

mean and variance of the imputation value. Both theoretical analy-

ses and empirical experiments have been conducted to validate the

superiority of our proposal.

For future research, it would be compelling to explore more

advanced filtering protocols. Our CDR strategy is based on the

assumption on Gaussian distribution of the imputation, which may

not be high accurate. Employing sophisticated techniques such as

Generative Adversarial Networks (GAN) [7] or diffusion models

[8] to account for more flexible distributions could be promising.

Moreover, as per Table 3, DR methods typically exhibit much more

computational burden compared to basic models. Therefore, in-

vestigating methods to accelerate DR presents another promising

direction for future work.
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A PROOF OF LEMMA 1
Note that 𝑃 ( |𝑒𝑢𝑖 − 𝑒𝑢𝑖 | < 𝑒𝑢𝑖 ) = 𝑃 (𝑒𝑢𝑖 − 2𝑒𝑢𝑖 < 0). For conve-
nient, let 𝑔 = 𝑒𝑢𝑖 − 2𝑒𝑢𝑖 . Considering 𝑒𝑢𝑖 and 𝑒𝑢𝑖 are two inde-

pendent variables subject to gaussian distribution N(𝜇𝑢𝑖 , �̂�2𝑢𝑖 ) and
N(𝜇𝑢𝑖 , 𝜎2𝑢𝑖 ) respectively, we can easily write the distribution of 𝑔

as N(𝜇𝑢𝑖 − 2𝜇𝑢𝑖 , �̂�
2

𝑢𝑖
+ 4𝜎2

𝑢𝑖
) [2]. Let 𝑧 be a variable from standard

gaussian distribution. We further have:

𝑃 (𝑥 < 0) = 𝑃 ( 𝑥 − (𝜇𝑢𝑖 − 2𝜇𝑢𝑖 )√︃
�̂�2
𝑢𝑖

+ 4𝜎2
𝑢𝑖

< − 𝜇𝑢𝑖 − 2𝜇𝑢𝑖√︃
�̂�2
𝑢𝑖

+ 4𝜎2
𝑢𝑖

)

≥ 𝑃 (𝑧 < −
𝜇𝑢𝑖 − 2(𝜇𝑢𝑖 + 𝜀𝜇 )√︃
�̂�2
𝑢𝑖

+ 4(�̂�2
𝑢𝑖

+ 𝜀2𝜇 )
)

= 𝑃 (𝑧 <
𝜇𝑢𝑖 − 2𝜀𝜇√︃
5�̂�2

𝑢𝑖
+ 4𝜀2𝜇

)

(12)

where the inequality holds, as 𝜇𝑢𝑖 , 𝜇𝑢𝑖 , �̂�𝑢𝑖 , 𝜎𝑢𝑖 are bounded with

|𝜇𝑢𝑖 − 𝜇𝑢𝑖 | ≤ 𝜀𝜇 , |�̂�2𝑢𝑖 − 𝜎
2

𝑢𝑖
| ≤ 𝜀2𝜎 . And when 𝜇𝑢𝑖 = 𝜇𝑢𝑖 + 𝜀𝜇 , 𝜎2𝑢𝑖 =

�̂�2
𝑢𝑖

+ 𝜀2𝜇 , the right-hand side achieves minimum. Eq.(12) further has

the following lower bound:

𝑃 (𝑧 <
𝜇𝑢𝑖 − 2𝜀𝜇√︃
5�̂�2

𝑢𝑖
+ 4𝜀2𝜎

)

≥
1

𝑃 (𝑧 <
𝜇𝑢𝑖 − 2𝜀𝜇√
5�̂�𝑢𝑖 + 2𝜀𝜎

)

= 𝑃 (𝑧 <
𝜇𝑢𝑖√
5�̂�𝑢𝑖

− ( 2𝜇𝑢𝑖𝜀𝜎√
5�̂�𝑢𝑖 (

√
5�̂�𝑢𝑖 + 2𝜀𝜎 )

+
2𝜀𝜇√

5�̂�𝑢𝑖 + 2𝜀𝜎
))

≥
2

𝑃 (𝑧 <
𝜇𝑢𝑖√
5�̂�𝑢𝑖

− (
2𝑀𝜇𝜀𝜎√

5𝑚𝜎 (
√
5𝑚𝜎 + 2𝜀𝜎 )

+
2𝜀𝜇√

5𝑚𝜎 + 2𝜀𝜎
))

(13)

where the first inequaility holds due to the fact that

√
5�̂�𝑢𝑖 + 2𝜀𝜎 ≥√︃

5�̂�2
𝑢𝑖

+ 4𝜀2𝜎 , while the second inequaility holds since 𝜇𝑢𝑖 is upper-

bounded by𝑀𝜇 and �̂�𝑢𝑖 is lower-bounded by𝑚𝜎 .

If we let:

�̂�𝑢𝑖

𝜇𝑢𝑖
<

(√
5Φ−1 (𝜌) +

2𝑀𝜇𝜀𝜎

𝑚𝜎 (
√
5𝑚𝜎 + 2𝜀𝜎 )

+
2

√
5𝜀𝜇√

5𝑚𝜎 + 2𝜀𝜎

)−1
(14)

We can find the following inequaility holds:

𝑃 (𝑧 <
𝜇𝑢𝑖√
5�̂�𝑢𝑖

− (
2𝑀𝜇𝜀𝜎

𝑚𝜎 (
√
5𝑚𝜎 + 2𝜀𝜎 )

+
2𝜀𝜇√

5𝑚𝜎 + 2𝜀𝜎
)) > 𝜌 (15)

Thus, we have P( |𝑒𝑢𝑖 − 𝑒𝑢𝑖 | < 𝑒𝑢𝑖 ) > 𝜌 . The lemma gets proof.

B PROOF OF LEMMA 2
The bias and variance of CDR can be easily obtained based on the

following equations:

𝐵𝑖𝑎𝑠 [L𝐶𝐷𝑅] = |𝐸𝑜 [L𝐶𝐷𝑅] − L𝐼𝑑𝑒𝑎𝑙 |

=
1

|D| |
∑︁

(𝑢,𝑖 ) ∈D

(𝑝𝑢𝑖−𝑝𝑢𝑖 )
𝑝𝑢𝑖

(𝛾𝑢𝑖 (𝑒𝑢𝑖−𝑒𝑢𝑖 )+(1−𝛾𝑢𝑖 )𝑒𝑢𝑖 ) |

𝑉𝑎𝑟 [L𝐶𝐷𝑅] = E𝑜 [(L𝐶𝐷𝑅 − E𝑜 [L𝐶𝐷𝑅])2]

=
1

|D|2
∑︁

(𝑢,𝑖 ) ∈D

𝑝𝑢𝑖 (1−𝑝𝑢𝑖 )
𝑝2
𝑢𝑖

(𝛾𝑢𝑖 (𝑒𝑢𝑖−𝑒𝑢𝑖 )2+(1−𝛾𝑢𝑖 )𝑒2𝑢𝑖 )

(16)

The proof of tail bound refers to [38] but replaces the L𝐷𝑅 with

L𝐶𝐷𝑅 . We first let 𝑙𝑢𝑖 =
𝑜𝑢𝑖𝑒𝑢𝑖
𝑝𝑢𝑖

+𝛾𝑢𝑖𝑒𝑢𝑖 (1− 1

𝑝𝑢𝑖
). Note that 𝑜𝑢𝑖 is an

bernoulli variable and thus the variable 𝑙𝑢𝑖 takes the value in the

interval [𝛾𝑢𝑖𝑒𝑢𝑖 , 𝑒𝑢𝑖𝑝𝑢𝑖
+ 𝛾𝑢𝑖𝑒𝑢𝑖 (1 − 1

𝑝𝑢𝑖
)] of size 𝑠𝑢𝑖 = (1 − 𝛾𝑢𝑖 ) 𝑒𝑢𝑖𝑝𝑢𝑖

+
𝛾𝑢𝑖

𝑒𝑢𝑖−𝑒𝑢𝑖
𝑝𝑢𝑖

. Considering the 𝑜𝑢𝑖 are independent for different (𝑢, 𝑖),
Hoeffding inequality [30] can be employed with:

𝑃 ( |
∑︁
𝑢,𝑖

𝑙𝑢,𝑖 − E𝑜 [
∑︁
𝑢,𝑖

𝑙𝑢𝑖 ] | ≥ | D|𝜖) ≤ 2 exp( −2|D|2𝜖2∑
𝑢,𝑖
𝑠2
𝑢𝑖

) (17)

Set the right-hand side of the inequality to 𝜅 and then we can get

the lemma 2.

C PROOF OF COROLLARY 3.1
Here we primarily concentrate on demonstrating that CDR out-

performs IPS in terms of variance and tail bound. A similar proof

process can be applied to DR. Setting 𝜌0 = 0.6 allows us to derive a

set of effective imputations 𝑆 = {(𝑢, 𝑖) |𝑃 ( |𝑒𝑢𝑖 − 𝑒𝑢𝑖 | < 𝑒𝑢𝑖 ) > 𝜌0}.
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If 𝑆 = ∅, then CDR regresses to IPS, at least performing equiva-

lently to IPS. Otherwise, it is always possible to identify a user-item

pair (𝑢∗, 𝑖∗) that that has the largest �̂�𝑢𝑖
𝜇𝑢𝑖

among 𝑆 . We can define

𝜌 = Φ( 𝜇𝑢𝑖√
5�̂�𝑢𝑖

), under the condition that only the imputation with

the highest
�̂�𝑢𝑖
𝜇𝑢𝑖

is preserved. Taking into account the continuous

values of �̂�𝑢𝑖 , 𝜇𝑢𝑖 , the probability of two imputations sharing the

exact same value is negligible. Hence, only the imputation for the

pair (𝑢∗, 𝑖∗) is preserved.
To compare the variance and tail bounds between CDR and IPS,

we can identify that the key difference pertains to the pair (𝑢∗, 𝑖∗).
Here CDR utilizes (𝑒𝑢𝑖 − 𝑒𝑢𝑖 )2 while IPS utilizes 𝑒2𝑢𝑖 . As the relation
|𝑒𝑢𝑖 − 𝑒𝑢𝑖 | < 𝑒𝑢𝑖 holds for (𝑢∗, 𝑖∗) with at least 𝜌 probability, and

considering 𝜌 > 𝜌0, we can conclude that CDR achieves better

variance and tail bound compared to DR.
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