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ABSTRACT
Extracting users’ interests from their behavior, particularly their
1-hop neighbors, has been shown to enhance Click-Through Rate
(CTR) prediction performance. However, online recommender sys-
tems impose strict constraints on the inference time of CTR models,
which necessitates pruning or filtering users’ 1-hop neighbors to
reduce computational complexity. Furthermore, while the graph
information of users and items has been proven effective in collab-
orative filtering models, recursive graph convolution can be com-
putationally costly and expensive to implement. To address these
challenges, we propose the Non-Recursive Cluster-scale Graph In-
teracted (NRCGI) model, which reorganizes graph convolutional
networks in a non-recursive and cluster-scale view to enable CTR
models to consider deep graph information with low computational
cost. NRCGI employs non-recursive cluster-scale graph aggregation,
which allows the online recommendation computational complex-
ity to shrink from tens of thousands of items to tens to hundreds of
clusters. Additionally, since NRCGI aggregates neighbors in a non-
recursive view, each hop of neighbors has a clear physical meaning.
NRCGI explicitly constructs meaningful interactions between the
hops of neighbors of users and items to fully model users’ intent
towards the given item. Experimental results demonstrate that NR-
CGI outperforms state-of-the-art baselines in three public datasets
and one industrial dataset while maintaining efficient inference.

CCS CONCEPTS
• Information systems→Computational advertising; •Human-
centered computing → Social recommendation.
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1 INTRODUCTION
Click-through rate (CTR) prediction is a vital task in recommender
systems, especially in online environments where user behavior
data offers valuable insights into their interests [3, 14, 20, 21, 37]. As
a result, interest-based CTR models that learn user intent from their
historical behaviors have achieved state-of-the-art performance in
CTR prediction [30, 39, 41, 42]. Specifically, these models treat the
historical behaviors of a target user as item sequences and employ
either transformers [31, 33] or sequential-based structures [23, 42]
to extract the user’s intents towards a target item. However, the
computational complexity of these models grows linearly with the
length of input sequences. Given the strict constraints on online
inference speed, it is crucial to reduce the length of input sequences
while ensuring the sequences contain sufficient information.

To balance the trade-off between inference speed and recom-
mendation performance, some CTR models truncate user historical
behaviors [13, 38, 41, 42]. For instance, DIN [42] truncates the most
recent interactions and utilizes a local activation unit to adaptively
learn the representation of user interests from historical behaviors
based on the attention mechanism. Similarly, DIEN [41] models the
evolving interest with attention-enhanced GRU [7]. Another line
of research aims to filter out unrelated items [25, 26, 28, 32]. For
example, SIM [26] proposes two cascaded search units to extract
user interests based on the searched relevant items.

Despite the success of existing models in learning from user
behavior data, there remains a gap in the development of effective
structures for reducing the order ofmagnitude of the input sequence.
Recent research has shown that Graph Neural Network (GNN)-
based models, such as NGCF [34] and LightGCN [19], have achieved
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significant improvements in predicting user-item interactions by
leveraging deep graph information [2, 9, 15]. However, these GNN-
based models rely on recursive item-level graph convolution, which
can lead to an exponential increase in computational cost [4, 5,
11]. While effective, incorporating item-level graph convolution
in online CTR prediction models can significantly impact online
inference time and adversely affect the user experience. Therefore,
it is crucial to develop an efficient structure that can reduce the
order of magnitude of the input sequence to handle the exponential
growth of neighbors without compromising inference speed.

To address the aforementioned problem, we propose a novel
Non-Recursive Cluster-scale Graph Interacted (NRCGI) CTR model.
Unlike recursive item-level graph convolutional models, the NRCGI
model proposes a non-recursive cluster-scale graph convolutional
solution. By using non-recursive graph convolutional techniques,
we can pre-compute the graph representation of each user and item,
which accelerates the online inference process. We propose a bi-
parted graph classification strategy that groups users with similar
behaviors into the same cluster and does the same for items. Since
users or items with similar behaviors have similar embeddings,
conducting non-recursive graph convolutions on a cluster scale
can reduce the order of magnitudes from item level to cluster level,
namely, from tens of thousands to tens to hundreds. Moreover,
the aggregated clusters can better describe a user’s intent than
providing a mass of items. Furthermore, non-recursive cluster-scale
graph convolutions preserve the physical meanings of each hop of
neighbors, for instance, a user’s 1-hop neighbors represent their
behavior histories, and their 2-hop neighbors represent users with
similar interests. Based on this, we propose a graph interaction
model that comprehensively considers all possible interactions
between the hop of neighbors of users and items. These approaches
allow NRCGI to fully exploit graph information to enhance CTR
prediction while maintaining efficient online inference. In summary,
our contribution can be concluded as follows:
• NRCGI utilizes Non-Recursive Cluster-scale Extraction (NRCE)
to efficiently and meaningfully pre-aggregate the neighbors of
users and items offline. With the assistance of Graph-Interacted
Prediction (GIP), NRCGI enhances CTR prediction using graph
information while maintaining efficient online inference.

• We propose the global graph clustering to cluster users and items
based on their behaviors, and then we introduce offline cluster-
scale plain-aggregation to achieve non-recursive cluster-scale
information extraction.

• We propose the online GIP structure to aggregate the cluster-
scale embeddings and explicitly construct meaningful graph in-
formation interactions, comprehensively considering the implicit
relations between the graph structures of users and items.

• Extensive experiments on three public datasets and one industrial
dataset demonstrate that NRCGI outperforms state-of-the-art
CTR models in terms of both efficiency and effectiveness.1

2 METHODOLOGY
As depicted in Figure 1, in the Non-Recursive Cluster-scale Extrac-
tion (NRCE) stage, NRCGI pre-aggregates individual nodes into
clusters, and then into several embedding vectors for any given hop

1Source code is available at https://github.com/YuanchenBei/NRCGI.

of neighbors, reducing their number by several magnitudes com-
pared to the original neighbors. The Graph-Interacted Prediction
(GIP) stage then aggregates the cluster embeddings and constructs
the graph interaction to predict the click-through rate. In this sec-
tion, we elaborate on each component of our approach.

2.1 Non-Recursive Cluster-scale Extraction
As shown in the offline part of Figure 1, NRCE first globally clus-
ters all users and items into several clusters. Thus, given any hop
of neighbors, NRCE directly assigns the neighbors to their corre-
sponding clusters. On one hand, global clustering can easily cluster
any given hop of neighbors. On the other hand, global clustering
can model users’ interests in more macroscopic views, thus will be
more robust and less affected by individual users.

Global Graph Clustering. As shown in the bottom of Figure 1,
we inspire by and modify the Louvain algorithm [12, 22] to co-
cluster the users and the items on the global user-item bipartite
graph. The core idea is to define the graph modularity 𝑄 in the
user-item interaction graph and maximize it iteratively [8, 40].𝑄 is
defined as:

𝑄 =
1
𝑚

∑︁
𝑐∈𝐶

(𝜓 𝑖𝑛
𝑐 − 𝜓𝑢𝑠𝑒𝑟

𝑐 ·𝜓 𝑖𝑡𝑒𝑚
𝑐

𝑚
), (1)

where𝑚 is the total number of edges,𝐶 is the set of clusters,𝜓 𝑖𝑛
𝑐 is

the number of edges inside cluster 𝑐 , and𝜓𝑢𝑠𝑒𝑟
𝑐 and𝜓 𝑖𝑡𝑒𝑚

𝑐 represent
the sum of degrees of all users and all items in cluster 𝑐 , respectively.

Within each iteration, the goal is to maximize the modularity
gain Δ𝑄 . Formally, for the specific user node 𝑎, its modularity gain
is defined as follows:

Δ𝑄 =
𝑘𝑖𝑡𝑒𝑚𝑎,𝑐

𝑚
− 𝑘𝑎 ·𝜓 𝑖𝑡𝑒𝑚

𝑐

𝑚2 , (2)

where 𝑘𝑖𝑡𝑒𝑚𝑎,𝑐 is the number of all edges between node 𝑎 and all item
nodes in the cluster 𝑐 , 𝑘𝑎 is the degree of node 𝑎. The modularity
gain for item nodes can be calculated in a similar way. Finally, after
the modularity converges, we have several clusters that cluster the
users and items together according to the global interactions. Then
by splitting the users and items, we have the user clusters and the
item clusters, respectively.

Cluster-scale Plain-Aggregation. For each user/item, NRCE
first extracts its graph structure by hop-order traversal, unfolding
its 3-layer subgraph into two additional node lists, representing its
1-hop and 2-hop neighbors, respectively. For a given hop 𝑙 and node
𝑣 , the 𝑙-hop neighbors of node 𝑣 can be formally represented with
N (𝑙 )
𝑣 = {𝑛 (𝑙 )

𝑣,1 , · · · , 𝑛
(𝑙 )
𝑣, |N (𝑙 )

𝑣 |
}, where |N (𝑙 )

𝑣 | denotes the number of

the 𝑙-hop neighbors for node 𝑣 . By assigning each node with its
corresponding cluster, the given hop of neighbors can be present as
a set of clusters, namely C (𝑙 )

𝑣 . Then, the cluster-wise embeddings
can be pre-aggregated as:

𝒆 (𝑙 )𝑣,𝑐 = 𝐴𝑔𝑔{𝒆 𝑗 , 𝑓 𝑜𝑟 𝑗 ∈ 𝒄 (𝑙 )𝑣,𝑐 }, (3)

where 𝐴𝑔𝑔 denotes the aggregation function of the cluster, which
we select sum pooling by default.

After the offline NRCE stage, we store the pre-aggregated cluster-
wise embeddings of the 1-hop and 2-hop neighbors of each user/item
into memories or key-value databases [17, 27] to be further utilized
in the following online GIP stage.

https://github.com/YuanchenBei/NRCGI
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Figure 1: The overall framework of NRCGI, consists of two stages: (i) the offline Non-Recursive Cluster-scale Extraction (NRCE)
stage: we first globally cluster users and items using a tailored clustering method. Then, we assign multi-hop neighbors into
clusters based on global graph clustering and pre-aggregate the cluster-level embeddings; (ii) the online Graph-Interacted
Prediction (GIP) stage: we aggregate the cluster-level embeddings and construct graph interaction terms to predict the CTR.

2.2 Graph-Interacted Prediction
GIP first obtains hop-wise representations of the target user/item
and then mines their relations with the graph-interacted struc-
tures. Unlike existing GNN models [19, 34], which merge all graph
embeddings into one super vector [1, 36], GIP explicitly specifies
the meanings of each hop of neighbors and constructs meaningful
graph interactions for better modeling the user-item relations.

As presented as the online part in Figure 1, GIP first obtains
hop-wise representations of the target user/item by cluster-level
attention mechanism. Then for each cluster 𝑐 in C (𝑙 )

𝑣 , its attention
weights can be computed as:

𝛼
(𝑙 )
𝑣,𝑐 = 𝑇𝑎𝑛ℎ(𝑾2 · ((𝑾1 · (𝒆 (0)𝑣 ⊙ 𝒆 (𝑙 )𝑣,𝑐 )) + 𝑏), (4)

where ⊙ is the Hadamard product operation, and 𝑾1, 𝑾2, and 𝑏

denote the trainable parameters of the attention mechanism. By
computing the attention weights, the representation of the 𝑙-hop
neighbors can be given as:

𝒆 (𝑙 )𝑣 =
∑︁

𝑐∈C (𝑙 )
𝑣

𝛼
(𝑙 )
𝑣,𝑐 · 𝒆 (𝑙 )𝑣,𝑐 . (5)

For convenience, we utilize 𝒆 (0)𝑣 to denote the own embedding of
the given node 𝑣 .

Since the above process is a plain neighbor aggregation method,
the aggregated embeddings of different hops of neighbors maintain
different physical meanings in the user-item bipartite graph. To be
specific, for user 𝑢, the user’s 1-hop graph embedding 𝒆 (1)𝑢 repre-
sents the user’s interest, while the user’s 2-hop graph embedding

𝒆 (2)𝑢 contains the users which share similar interest with the user 𝑢,
namely the potentially relevant users. Thus considering the relation
between 𝒆 (1)𝑢 and 𝒆 (0)

𝑖
, it reflects whether the given item 𝑖 shares

similar characters with the user’s historical interest. Meanwhile, the
relation between 𝒆 (2)𝑢 and 𝒆 (0)

𝑖
can infer the intent of the potential

related users of user 𝑢 on the given item 𝑖 .
To explicitly extract all potential meaningful interactions, GIP

computes the Cartesian product across the user’s graph embeddings
and the item’s graph embeddings. Thus the inference function can
be formally written as follows:

𝑦 = 𝑀𝐿𝑃

(
(∥𝐿

𝑙𝑢
𝒆 (𝑙𝑢 )𝑢 ) ∥ (∥𝐿

𝑙𝑖
𝒆 (𝑙𝑖 )
𝑖

) ∥ (∥𝐿,𝐿
𝑙𝑢 ,𝑙𝑖

𝒆 (𝑙𝑢 )𝑢 ⊙ 𝒆 (𝑙𝑖 )
𝑖

)
)
, (6)

where ∥ denotes the concatenating operation. Here, 𝐿 denotes the
depth of the user/item sub-graphs, while 𝑙𝑢 and 𝑙𝑖 range for 0 to 𝐿.

3 EXPERIMENT
3.1 Experimental Setup
Datasets. We conduct experiments on three public datasets and
an industrial dataset for model evaluation. Three public datasets
includeMovieLens dataset [18] (containing 10 million samples),
Electronics subset (containing 1.7 million samples) and Book
subset (containing 8.9 million samples) of Amazon dataset [24].
The industrial dataset is collected from the 14 days of video play
logs on the Channels platform of Weixin, containing about 23
million anonymous samples. The total cluster number ofMovieLens,
Electronics, Book, and Weixin are 5, 93, 146, and 295, respectively.
The dataset split follows the settings in previous works [28, 41].
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Table 1: Overall comparison results (↑: the higher, the better; ↓: the lower, the better). The best and second-best results are
highlighted in bold font and underlined. * indicates the statistical significance 𝑝 < 0.01 compared to the best-performed baseline.

Method
MovieLens Electronics Book WeiXin

AUC (↑) GAUC (↑) LogLoss (↓) AUC (↑) GAUC (↑) LogLoss (↓) AUC (↑) GAUC (↑) LogLoss (↓) AUC (↑) GAUC (↑) LogLoss (↓)

PNN 0.6778 0.6877 0.6430 0.7681 0.7718 0.5678 0.7394 0.7423 0.5847 0.7778 0.7791 0.5730
Wide&Deep 0.6827 0.6901 0.6387 0.7730 0.7747 0.5611 0.7444 0.7451 0.5798 0.7771 0.7788 0.5736
DeepFM 0.6793 0.6871 0.6412 0.7716 0.7742 0.5629 0.7428 0.7438 0.5825 0.7772 0.7799 0.5742
AFM 0.6878 0.6917 0.6348 0.7631 0.7628 0.5636 0.7270 0.7280 0.5913 0.7753 0.7718 0.6126

DIN 0.7178 0.7114 0.6147 0.8071 0.8080 0.5327 0.8212 0.8076 0.5171 0.8027 0.7896 0.5442
DIEN 0.7431 0.7320 0.6054 0.8204 0.8183 0.5221 0.8350 0.8172 0.5001 0.8035 0.7856 0.5409

UBR4CTR 0.6977 0.6965 0.6295 0.7767 0.7766 0.5534 0.7918 0.7855 0.5470 0.7912 0.7838 0.5601
SIM 0.7370 0.7278 0.6079 0.8213 0.8198 0.5179 0.8341 0.8169 0.5004 0.8050 0.7879 0.5560

NGCF 0.7004 0.6994 0.6259 0.8022 0.7999 0.5382 0.8537 0.8411 0.4743 0.8031 0.8007 0.5397
LightGCN 0.7049 0.7036 0.6223 0.8128 0.8109 0.5271 0.8731 0.8634 0.4470 0.8073 0.8051 0.5351

NRCGI (ours) 0.7595* 0.7506* 0.5808* 0.8411* 0.8410* 0.4956* 0.9025* 0.8953* 0.4001* 0.8314* 0.8176* 0.5045*
Improv.% 2.21% 2.54% 4.06% 2.41% 2.59% 4.31% 3.37% 3.69% 10.49% 2.99% 1.55% 5.72%
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Figure 2: Average online inference time comparison.

Baselines and metrics. We compare NRCGI with ten represen-
tative CTR prediction models, including feature-interaction mod-
els: PNN [29], Wide&Deep [6], DeepFM [16] and AFM [35]; user-
interest models: DIN [42], DIEN [41], UBR4CTR [28] and SIM [26]
(hard-search is adopted); and graph-based models: NGCF [34] and
LightGCN [19]. To evaluate the performance, we adopt three widely
used CTR prediction evaluation metrics, i.e., AUC, GAUC, and
LogLoss [10, 42, 43]. Note that we run all the experiments five times
with different random seeds and report the average results.

3.2 Main Results
Table 1 reports the performance comparison between NRCGI and
the baseline models. The improvement is calculated by compar-
ing NRCGI with the best baseline (underlined). From the results,
we observe that, in general, our NRCGI outperforms all the other
state-of-the-art CTR prediction models on all datasets with signifi-
cant margins. Specifically, for the AUC metric, NRCGI outperforms
the best baseline SIM by 2.21%, 2.41%, 3.37%, and 2.99% on Movie-
Lens, Amazon-Electronics, Amazon-Book, and Weixin, respectively.
These results verify that considering the graph information with
NRCE and constructing the graph interactions with GIP help the
CTR model to achieve better prediction performance.

3.3 Efficiency Study
Since CTR models need to infer the user’s intent online, we com-
pare the online response time per user-item pair between NRCGI
and the top-4 performed baselines to present the inference effi-
ciency. From Figure 2, we find that NRCGI achieves relatively the
fastest inference. There are two main reasons: 1) The cluster-scale
aggregation helps in decreasing the number of keys of the attention

Table 2: Ablation study results on AUC metric.

Variant MovieLens Electronics Book WeiXin

NRCGI 0.7595 0.8411 0.9025 0.8314

NRCGI-w/o NRCE 0.7260 0.8293 0.9003 0.8204
NRCGI-w/o GIP 0.7487 0.8358 0.8958 0.8211

mechanism from hundreds of users/items to tens of clusters, reduc-
ing the computational complexity by magnitudes without filtering;
2) The cluster embeddings can be pre-computed and stored asyn-
chronously every minute. Then, the online inference only focuses
on aggregating the cluster-level embedding and thus reducing the
inference time. Noted that we present the online serving inference
time for SIM and NRCGI, where the item filtering results (SIM) and
cluster embeddings (NGCGI) are computed asynchronously.

3.4 Ablation Study
We conduct the ablation study by comparing NRCGI with its two
variations: “NRCGI-w/o NRCE” utilizes traditional recursive graph
aggregation to extract the graph embeddings, while “NRCGI-w/o
GIP” skips the graph interaction terms in the MLP function. Accord-
ing to Table 2, NRCGI significantly outperforms other variations.
This verifies that NRCE is more powerful than recursive GNN mod-
els in CTR prediction and constructing graph interactions with GIP
helps in better modeling the user-item relations.

4 CONCLUSION
In this paper, we propose a novel Non-Recursive Cluster-scale
Graph Interacted model (NRCGI) for CTR prediction, which could
efficiently extract and effectively exploit the graph embeddings
to enhance CTR prediction performance. Specifically, by utilizing
NRCE, NRCGI is able to extract graph embeddings for users/items
without adding computational complexity. Meanwhile, GIP is fur-
ther presented to be a powerful graph feature interaction structure.
Extensive experiments demonstrate the effectiveness of NRCGI.
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