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a b s t r a c t

Real-world networks usually consist of a large number of interacting, multi-typed components which
are usually referred as heterogeneous information networks (HIN). HIN that associated with various
attributes on nodes is defined as attributed HIN (or AHIN). Clustering is a fundamental task for HIN
and AHIN. However, most of the current existing methods focus on single type nodes and there is very
limited existing work that groups objects of different types into the same cluster. This is largely due to
the reasons that object similarities can either be attribute-based or link-based between same type of
nodes and it is challenging to incorporate both in a unified framework. To bridge this gap, in this paper,
we propose a framework, namely Cross Multi-Type Objects Clustering in Attributed Heterogeneous
Information Network, or CMOC-AHIN, to integrate both the attribute information and multi-type node
clustering in a principled way. We empirically show superior performances of CMOC-AHIN on three
large scale challenging data sets and also summarize insights on the performances compared to other
state-of-the-arts methodologies.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, homogeneous information network has
been attracting much attention, and numerous data mining tasks
such as ranking, clustering and classification have been explored.
Most of contemporary information networks analyses have a
basic assumption that the type of objects or links is unique [1–
3]. However, real systems usually consist of a large number of
interacting, multi-typed components, such as social interactions,
biological networks, and communication networks, etc. Such in-
terconnected networks are usually referred to as heterogeneous
information networks (HIN) [1]. Compared to the widely studied
homogeneous network, an HIN contains richer structure and se-
mantic information that provides plenty of research opportunities
as well as challenges [4–7]. Further more, in some real-world HIN,
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objects are often associated with various attributes. For exam-
ple, in bibliographic network, an author may be associated with
attributes like country, organization, address etc. A conference
may be associated with attributes like year, topic, place etc. An
HIN with object attributes is called an attributed HIN or AHIN for
short [6,8].

Clustering is a fundamental task in data mining. It aims at
partitioning a set of data objects (or observations) into a set of
clusters, such that objects in the same cluster are similar to each
other, yet dissimilar to objects in other clusters. Clustering in HIN
attracts much attention recently since it gives insight of the struc-
ture of the network and may benefit other data mining tasks such
as link prediction and ranking [9]. For example, in bibliographic
heterogeneous information network such as DBLP [10], clustering
authors shows the research field or latent co-author relationship
among authors. In social network such as Facebook, clustering
users reveals the social community or the latent interests of users.
To facilitate clustering in large complex networks, it has been
suggested that the user provide some supplementary information
about the data (e.g. pairwise relationships between few data
points), which when incorporated in the clustering process, could
lead to a better data partition [11]. The side-information usually
supplies by providing a constraint to the solution space [12–14]
or learning a better distance metric in the network [15]. Such
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Fig. 1. An illustration of cross multi-type clustering in AHIN (attributes not shown). It contains three types of nodes including author, paper and conference. Traditional
clustering methods focus on single type clustering (the middle subfigure) while our proposed method focus on multi type clustering (the right subfigure).

clustering are called semi-supervised clustering which has been
widely studied in real-world data set.

However, most of the existing clustering methods in HIN or
AHIN targets at one of the node-types, namely, the target type
node and other node types are only used to help cluster the target
node type, which means no clustering will be performed on these
node types. Analyzing the outcomes of these clustering methods
could only see the relationship among the target types of nodes
while ignoring the whole picture of the HIN. In real-world HIN,
different types of nodes may belong to one particular cluster,
in other words, there may exist different types of nodes in one
cluster. For example, in the bibliographic network, the authors,
papers, conferences may belong to one cluster that represents one
research topic. In social network, different types of social roles
may belong to one user, such as jobs, bank accounts and social
accounts from different social platforms. Finding such clusters
could give us more insight of the relationships between different
types of nodes and the latent representations of the clusters. An
example of cross multi-type clustering in bibliographic attributed
heterogeneous information network is illustrated in Fig. 1, where
three types of nodes are contained: author, paper and conference.
Traditional clustering methods focus on single type clustering
(the middle subfigure) while our proposed method focus on multi
type clustering(the right subfigure). Studying the relationship be-
tween all kinds of nodes could also iteratively improve the quality
of clustering. For example, compared with clustering authors in
DBLP data set, the cross multi-type clustering in DBLP data set
could show how the conferences and papers are related to the
research topic. This motivates the cross multi-type clustering in
heterogeneous information network an interesting task in HIN or
AHIN.

Although clustering different types of nodes are important,
very few methods have been proposed for this purpose. The main
challenges of cross multi-type clustering in HIN or AHIN network
are as follows:

1. All the node types in HIN or AHIN need to be studied
together in the same framework and enhance each other
in clustering so that the whole HIN can be partitioned into
clusters with all types of nodes.

2. The similarity measure for clustering should combine both
the attribute information and network structure informa-
tion. Since the cluster may contain different types of nodes,

the measure should also be able to handle both same type
and different types of nodes.

3. Given the side-information by users, label constraints
would be constructed and clustering result should agree
to the label constraints.

To address these challenges, only a few methods have been
proposed to overcome partial challenges. For example, Aggarwal
and Sun at al. [8,16,17] proposed to integrate the attribute infor-
mation into clustering analysis on HIN. Deng et al. Deng et al. [18]
proposed a joint probabilistic topic model for simultaneously
modeling the contents of multi-typed objects of a HIN. However,
to the best of our knowledge, there is not much previous work
that explicitly investigates both in a unified framework. To bridge
this gap, we propose a generic inference framework to integrate
both the attribute information and multi-type data clustering in
a principled way.

The major contributions of this paper can be summarized as
follows:

1. We propose a novel framework to cluster different types of
nodes into clusters in heterogeneous information network.
Similarity based on node attributes and network topology
between nodes are learned in a unified framework.

2. An efficient EM-style updating algorithm is proposed to
learn cluster assignment as well as parameters with respect
to similarity. We provide time complexity analysis of the
proposed method and existing methods.

3. We conduct extensive experiments on three real-world
datasets to evaluate the effectiveness of the proposed
method. We also summarize insights on the performances
compared to other state-of-the-arts methodologies.

The rest of the paper is organized as follows. In Section 2, we
briefly review the related work of clustering in heterogeneous
information networks. In Section 3, we introduce the problem
definition and the proposed CMOC-AHIN framework. In Section 4,
we conduct experiment on two bibliographic networks and a very
challenging and sparse real user behavior data set provided by
a world leading E-commerce company. Finally, we conclude the
paper in Section 5.
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2. Related work

Most real systems usually consist of a large number of in-
teracting, multi-typed components [19], such as human social
activities, communications and computer systems, and biological
networks. In such systems, the interacting components constitute
interconnected networks, or information networks. The informa-
tion network analysis, especially clustering analysis, has gained
extremely wide attentions from academia as well as industry.

Traditional clustering methods, such as K-Means [20], Kmeoids
[21] and Spectral Clustering [22] are based on features of related
objects. Although they have been widely studied in the past
decades, they fail to capture the relation-type data like edges in
networks. Clustering based on network data (a.k.a community de-
tection [23]) is generally an NP-hard problem and many methods
have been proposed to model the data as a homogeneous net-
work and cluster with some defined measures, e.g., normalized
cut [24] and modularity [25], to divide the network into a series of
subgraphs. However, the manual designed metrics highly depend
on the network structure and cannot fit different networks. Some
researchers also proposed to simultaneously model objects’ link
structure and attribute information [26,27] whose basic idea is
to transfer the network structure into the feature representation
of each node based on the connectivity or high-order proximities,
then apply the traditional feature based clustering method. Other
directions include spectral method [28], greedy method [29] and
sampling technique [30–32].

Recently, with the development of deep learning framework,
graph clustering based on deep neural networks has been at-
tracting much attention. Among them, the network embedding
methods [33] jointly learn node embedding as well as community
embedding so that they can benefit each other. In VGAECD [34],
they propose a deep generative model to take clustering into
the prior of the generation process and utilize variational auto-
encoder to learn the node embedding and clustering in a unified
framework. In CommunityGAN [35], instead of studying the ob-
served links, they try to generate and discriminate motifs (clique).
The generator aims to generate (or select) subsets of vertices most
likely to be real motifs and discriminator aims to estimate the
probability that a vertex subset is a real motif.

In practice, partial true cluster labels may also be known
and semi-supervised clustering methods can be adopted, such as
COPKMEANS [20], PCKmeans [12] etc. Semi-supervised clustering
methods in attributed network are also proposed to combine the
network information and attribute information [36,37]. Although
the methods mentioned above solve the clustering problems,
they are designed only for homogeneous information networks
which contains single type nodes and edges, it is hard to apply
on heterogeneous information network with different types of
nodes.

Compared with homogeneous networks, HIN and AHIN inte-
grate multi-typed objects and attribute information which brings
both challenges and opportunities. As a result, more and more
researchers have noticed the importance of HIN and AHIN clus-
tering and many novel data mining tasks have been exploited
in such networks [38,38–40]. In RankClus [41], they proposed a
method that utilizes links across multi-typed objects to generate
high-quality net-clusters. An iterative enhancement algorithm is
developed for effective ranking-based clustering. However, this
method only works on a special HIN with star network schema
without considering the node attributes as well. In HeteSim [42],
a link based similarity measure (or HeteSim) is proposed for
the similarity among different types of nodes. Li et al. [6] pro-
posed a semi-supervised clustering method on the AHIN, in this
framework, the target type nodes are studied by combining the
attribute information and network structure information. How-
ever, only symmetric meta-path in the network are studied and

this limit the extension to different types of nodes, also, only the
target type of nodes is studied and the cluster only contains single
node type. A few existing works focus on the multi-type nodes
clustering in HIN. In CFRM [43], they proposed a general collective
factorization on related matrices for multi-type relational data
clustering. They do the simultaneous clustering for each type of
objects respectively without including attributes of nodes, which
is not multi-type clustering in essence. Zhou et al. [44] proposed a
social influence based clustering framework SI-Cluster to analyze
HIN based on social connections and activities. Alqadah, Zhou
et al. [45] proposed a novel game theoretic framework for defin-
ing and mining clusters in HIN, the clustering problem is modeled
as a game in which players attempt to maximize their reward,
clusters are defined as the Nash equilibrium solution concepts.
Other popular methods include RankClus [9], PathSelClus [46],
GenClus [47], and they all cluster single type of nodes and do not
consider their attributes.

To conclude, although clustering in HIN and AHIN has been
studied in the literature, clustering different types of nodes in
attributed heterogeneous information network has not been well
studied, which motivates our proposed method.

3. The clustering model

In this section, we first provide some formal definition of
the multi-type objects clustering in heterogeneous information
network. Then we introduce our proposed CMOC-AHIN model by
combining the attributes and meta path based node similarity, to
learn the parameters of similarity as well as clustering results, we
further propose an efficient EM-style update algorithm.

3.1. Definitions

Definition 1 (Heterogeneous Information Network [48]). An infor-
mation network is defined as a directed graph G = (V , E) with
an object type mapping function φ : V → T and a link type
mapping function ψ : E → R. Each object v ∈ V belongs to
one particular object type in the object type set T , and each link
e ∈ E belongs to a particular relation type in the relation type
set R. If two links belong to the same relation type, the two
links share the same starting object type as well as the ending
object type. The information network is called heterogeneous
information network if the types of objects |T | > 1 or the types
of relations |R| > 1; otherwise, it is a homogeneous information
network.

Definition 2 (Attributed Heterogeneous Information Network). [6]
Some prior works have considered either the network struc-
ture/object linkage or the node attributes. The attributed hetero-
geneous information network (AHIN) is a graph defined as G =

(V , E, A). The definition of V and E are same as the heterogeneous
information network and A is set of attributes of each node in the
network. Note that different types of nodes have different types of
attributes, and there are some overlapping attributes for different
types of nodes. To make the attribute comparable among both
same and different type nodes, we propose to unity multi-modal
attributes in a consistent way in Section 3.2.1.

Definition 3 (Network Schema [48]). The network schema TG =

(T ,R) of an AHIN G = (V , E, A) is the meta template of the
network representing the relation between different types of
nodes in the network. Given the mapping functions of HIN: the
object type mapping φ : V → T that maps the node in V to
its type T and the link mapping function ψ : E → R that
maps a link-relation in E into a relation in R, TG = (T ,R) can
be represented by a schematic graph with T being the nodes and
R being the edges.
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Fig. 2. An example of an attributed heterogeneous information network
(attributes not shown) with four node types (a) and its network schema (b).

Network schema represents types of objects and linkage
among nodes. Notice that there is an edge between type Ti and Tj
if and only if there exist links that connect objects of these two
types. Fig. 2 is an illustration of AHIN with four types of nodes
T = {A, B, C,D} and its corresponding network schema.

Definition 4 (Meta Path [48]). A meta-path P is a path defined
on a network schema TG = (T ,R) in the form of T1

R1
−→ T2

R2
−→

...
Rl

−→ Tl+1, which defines a composite relation R = R1 ◦ R2 ◦

...Rl between type T1 and Tl+1, where ◦ denotes the composition
operator on relations. We say a path P is symmetric if the defined
relation R is symmetric.

The set of meta-paths are selected by users from all the pos-
sible paths in HIN. Different from the widely studied symmetric
meta-path, the meta-path P in our problem may be asymmetric
especially when studying the relation between different types of
nodes in the network.

Definition 5 (Supervision Constraint). Partial true cluster labels
may be known and we take this prior knowledge as the supervi-
sion constraint of our model. It is defined as (M, C), where M is
the set of must-links and C is the set of cannot-links respectively.
Links in M denote that related pairs belong to the same cluster
and links in C denote that associated pairs cannot belong to the
same cluster. In the cross multi-type clustering problem, (M, C)
may include all node types instead of only single type nodes.

3.2. CrossMulti-Type Objects Clustering in Attributed Heterogeneous
Information Network (CMOC-AHIN)

Cross Multi-type Objects Clustering in AHIN (or
CMOC-AHIN ) Given an AHIN G = (V , E, A) and its network
schema TG = (T ,R), a supervision constraint (M, C), a set
of meta-path P = {P1, P2...PM} and the number of clusters
k, CMOC-AHIN aims to: (1) find an optimal similarity measure
S(νi, νj) between all kinds of nodes in the network based on
both node attributes and meta-path. (2) Group all objects in the
network into K clusters {Ck}

K
k=1 based on the similarity measure

with the agreement of the constraint (M, C). We first define
an overall similarity measure in Section 3.2.1 that combines
attributed based and meta-path based similarities, both of which
is a linear combination of different features. CMOC-AHIN finds the
optimal clusters with the defined measure under the supervision
constraints (M, C), where the latter is included in the penalty
function in Section 3.2.4. An efficient optimization algorithm is
proposed in Section 3.2.5 The notations used in the proposed
CMOC-AHINmodel is summarized in Table 1.

Table 1
Notations used in CMOC-AHIN.
Notation and Description

α Parameter for weighting the attribute based similarity and link
based similarity

{Ck}
K
k=1 K clusters of the clustering results

νi The identifier of node i

λ Weights vector of meta path similarity

ω Weights vector of attribute based similarity

Sf Attribute based similarity measure

Sp Path based similarity measure

S Overall similarity of two nodes

Z Clustering result matrix denoting whether node belongs to
one cluster

N Number of nodes in AHIN

K Number of clusters

µk Center node of cluster k

3.2.1. Similarity measure
1. Attribute based similarity measure: Given two nodes νi

and νj in the network, their associated attribute vectors
are defined as xi and xj, both of which are vectors with
length |A|. Note that we have mixed the attribute set of
different types of nodes so that the attribute vectors are
comparable between different node types. To capture the
importance of each feature dimension, we define a weight
vector ω ∈ R|A|×1, in which wj measure the importance
of the jth feature dimension. The attribute based similarity
Sa(νi, νj) of two nodes νi and νj is defined as:

Sa(νi, νj) =

|A|∑
k=1

ωk · S f (νik, νjk), (1)

where S f (xi, xj) denotes a similarity measure between the
kth attribute of node vi and vj. To make the similarity
comparable, for numerical attributes, we normalize each
attribute to range [0, 1] and define Sf (xik, xjk) = 1 −

|xik − xjk|; for categorical attributes, we let Sf (xik, xjk) = 1
if xik = xjk, and 0 otherwise.

2. Path based similarity measure: Given a relevant path P =

T1
R1

−→ T2
R2

−→ ...
Rl

−→ Tl+1, define source node vs ∈ T1 and
target node vt ∈ Tl+1, we use HeteSim [42] to measure the
similarity between vs and vt :

HeteSim(vs, vt |R1 ◦ R2 ◦ ... ◦ Rl) =
1

|O(vs|R1)||I(vt |Rl)|
O(vs|R1)∑

i=1

I(vt |Rl)∑
j=1

HeteSim(Oi(vs|R1), Ij(vt |Rl)|R2 ◦ ... ◦ Rl−1),
(2)

where O(vs|R1) is the set of out-neighbors of vs based on
relation R1, and I(vs|Rl) is the set of in-neighbors of vt
based on relation Rl. When node νs has no out-neighbor
following the path P (i.e. |O(vs|R1)|= 0) or node νt has
no in-neighbor following the path P (i.e. |O(vt |Rl)|= 0),
HeteSim(vs, vt |R1◦R2◦ ...◦Rl) will be 0. Notice that HeteSim
is a nested structure and can be evaluated iteratively until
νs and νt meet in the middle of meta-path. The atomic
relation R that in the middle of the meta path is defined as:

HeteSim(vs, vt |R) = HeteSim(vs, vt |Ro ◦ RI ) =

1
|O(vs|Ro)||I(vt |RI )|

|O(vs|Ro)|∑
i=1

|I(vt |RI )|∑
j=1

δ(Oi(vs|Ro), Ij(vt |RI )),
(3)
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where δ(vs, vt ) = 1 if vs and vt are the same node, else
δ = 0. To deal the asymmetric meta-path, the middle type
nodes are added in the meta path. Given P meta-paths, we
first define a weight vector λ = {λm}

|P|

m=1 ∈ R1×|P|, where
λm measures the importance of the mth meta-path. The
path based similarity between any node pair νi and νj in
the network is defined as:

Sp(νi, νj) =

|P|∑
m=1

λmHeteSim(νi, νj), (4)

where λk is the weight of the kth corresponding meta-path.
3. Overall similarity The overall similarity of any node pairs

in the network is defined as:

S(νi, νj) = αSa(νi, νj) + (1 − α)Sp(νi, νj) (5)

where α is a hyper parameter as the weighting factor
measuring the relative importance of attribute-based sim-
ilarity and link-based similarity. It can be learned from the
knowledge of partly labeled data.

3.2.2. Clustering learning
Given the comprehensive similarity measure between differ-

ent types of nodes in heterogeneous information network, we are
able to cluster different types of nodes into clusters. It is worth
noting that many existing similarity/distance based clustering
methods can be applied on our problem setting and here we
discuss some representative methods for measuring the quality
of clustering results.

1. Centroid based clustering This group of clustering meth-
ods measure the quality of clustering by the similarity/
distance between nodes and corresponding cluster cen-
ters. The more similar between nodes and corresponding
centers, the higher quality is the clustering results with.
Given the similarity measurement S and cluster assignment
Z , the centroid based clustering can be measured as:

Jc = −

N∑
n=1

K∑
k=1

znkS(vn, vµk ) (6)

where Jc is the loss function of centroid based clustering,
znk = 1 is node vn belongs to cluster k and znk = 0
otherwise. S is the comprehensive similarity measure, vµk
is the centroid of cluster k. The main advantage of the
centroid based clustering is that it is easy to optimize with
heuristic algorithm.

2. Internal clustering methods This group of clustering
methods measure the quality of clustering by the similar-
ity/distance between nodes from same cluster or different
clusters. The more similar between nodes from same clus-
ter or dissimilar between nodes from different clusters, the
higher quality is the clustering results with.
Given the similarity measurement S and cluster assignment
Z , the internal clustering can be measured as:

Jc = −

N∑
m=1

N∑
n=1

δ(m, n)S(vm, vn) = −

N∑
m=1

N∑
n=1

zTmznS(vm, vn)

(7)

where Jc is the loss function of centroid based clustering,
δ(m, n) denotes whether node vm and vn belong to same
cluster, zm, zn is rigorous cluster assignment of node vm, vn
which is a vector with vmk = 1 and 0 for other dimen-
sions. S is the comprehensive similarity measure. However,
compared with centroid based clustering, optimizing the

internal clustering methods has been proved [43] to be a
NP-hard problem. According to the Ky-Fan theorem [49],
the optimization has closed-form solution and we leave it
in our future work.

3.2.3. Supervision constraints
Given some labeled data of the AHIN, the must-link set M is

defined as the set of node pair that has the same label while the
cannot-link set C is defined as the set of node pair that has dif-
ferent labels. To evaluate the similarity measure, we believe that
two nodes in the must-link set M should be similar to each other
while two nodes in the cannot-link set C should be dissimilar to
each other. Formally, we define the similarities of nodes in cluster
k as the sum of pairwise node similarities between its center µk.
For the node pairs in the must-link set M, they are expected to be
linked to each other, which means the sum of similarity of these
node pairs should be maximized; while for the node pairs in the
cannot-link set C, they are expected to be disentangled to each
other, which means the similarity of these node pairs should be
minimized.

3.2.4. Loss function
Taking this supervision constraint into consideration, the final

loss function is defined as:

J = −

N∑
n=1

K∑
k=1

znkS(νn, νµk ) −

K∑
k=1

∑
(i,j)∈M

S(νi, νj)

+

K∑
k=1

∑
(i,j)∈C

S(νi, νj) + γ (∥λ∥
2
+ ∥ω∥

2),

(8)

where N is the number of nodes in AHIN, K is the total number of
clusters, znk is the indicator of whether node νn belongs to cluster
k, µk denotes the centroid object index of cluster k, M is the set
of must-link and C is the set of cannot-link extracted from the
labeled data, ω is a M-dimensional vector referring to the weight
importance in attribute based similarity, λ is a P-dimensional
vector referring to the importance weights in meta-path based
similarity. γ is the regularization term of λ and ω.

3.2.5. Model optimization
We aim to find the optimal clustering {Ck}

K
k=1 or the matrix

Z ∈ RN×K that minimizes the loss function J . Notice that the
loss function J is a function of λ,ω with respect to the weights
of attribute based and meta-path based similarities. We propose
the following EM-style iterative updating steps: in each iteration,
given λ and ω, we first find the optimal clustering Z . Second,
given the clustering result Z , we update λ and ω. The iteration
will continue until the differences of the loss function between
two iterations is convergent and below the predefined threshold
ϵ.

1. Updating Z given λ and ω Given λ and ω, the cluster
center µk from the last iteration, this step aims at finding
the optimal clustering result under the constraint of M and
C. In this step, since λ, ω, M and C are given, the second,
third and last term in Eq. (8) are fixed values, then the
loss function that needs to be minimized in this step is
simplified to be:

J = −

N∑
n=1

K∑
c=1

zncS(νn, νµc ). (9)

Notice that the optimal Z should also satisfy the constraint
of M and C, which means the node pairs in M should have
same labels in Z and node pairs in C should have different
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Algorithm 1 Finding the optimal Z
Input: G = {V , E, A}, K ,ω,λ,µ
Output: C = {C1, C2...CK }, Z
Compute attribute and meta-path similarity elements
t = 0,△L = ∞

Init λ,ω,µ
while t < max_iter and △J < ϵ do

STEP 1: Update the node labels Z
for vn ∈ V do

for k ∈ K do
Measure overall similarity between vn and cluster

center µk by Eq. (5)
Update znk by Eq. (10)

STEP 2: Update center of cluster
Update the center of cluster µk by Eq. (11)
STEP 3: t++

labels in Z . We use a two-step iterative updating rules to
find the optimal Z .
The first step is to update the node label under the con-
straint ofM and C. Given the center of the cluster {µ1, µ2...
µK }, the similarity between each node and every cluster
center is computed by Eq. (5) and the node adopts the label
of its nearest center. However, if the node and a cluster
center do exist in the must link set M, the node should
always adopt this cluster center label. If the node and a
cluster center exist in the cannot link set C, the similarity
between them will be set to 0.

znk =

{
1 if k = argmax

k
S(νn, νµk ) or (νn, νµk ) in M

0 otherwise

(10)

The second step is to update the cluster center. Since the
proposed measure is mixed of attributes and path, similarly
to K-medoids [21], we define the center of cluster that has
the largest sum of similarity to all the other nodes in the
cluster as:

µk = argmax
i

|Ck|∑
j=1

S(νi, νj). (11)

The two step updating algorithm is summarized in Algo-
rithm 1.

2. Finding the optimal λ and ωLg given Z iven the clustering
result znc and center of cluster µk, the loss function J is a
function of λ and ω:

J = −

N∑
n=1

K∑
c=1

zncS(νn, νµc ) −

K∑
c=1

∑
(i,j)∈M

S(νi, νj)

+

K∑
c=1

∑
(i,j)∈C

S(νi, νj) + γ (∥λ∥
2
+ ∥ω∥

2)

(12)

where

S(νi, νj) = α[

|A|∑
k=1

ωk · S f (νik, νjk)]

+ (1 − α)[
|P|∑

m=1

λmHeteSim(νi, νj)] (13)

Note that the first term calculates the similarity between
each node and their assigned cluster center, the second

term calculates the similarity of nodes in the must-link
set, the third term calculate the similarity of nodes in
the cannot-link set. All of the above terms select parts of
node pairs from the network, and we define three selection
matrix T 1, T 2, T 3 ∈ RN×N : in each matrix T , T i,j = 1 if the
node pair (i, j) is selected, otherwise T i,j = 0. The similarity
matrix between any node pair in the network is defined as
matrix S , where S i,j is the overall similarity between node
νi and νj. Then the loss function can be rewritten as:

J (λ,ω) = −

N∑
i=1

N∑
j=1

T 1 i,jS i,j −

N∑
i=1

N∑
j=1

T 2i,jS i,j +

N∑
i=1

N∑
j=1

T 3 i,jS i,j

+ γ (∥λ∥
2
+ ∥ω∥

2)

=

N∑
i=1

N∑
j=1

(−T 1 − T 2 + T 3)i,jS i,j + γ (∥λ∥
2
+ ∥ω∥

2)

=

N∑
i=1

N∑
j=1

(−T 1 − T 2 + T 3)i,j[α
M∑

k=1

ωk · Sf xik, xjk

+ (1 − α)
P∑

k=1

λkSHk(νi, νj)] + γ (∥λ∥
2
+ ∥ω∥

2)

=

N∑
i=1

N∑
j=1

(−T 1 − T 2 + T 3)i,j[αωS fij
T

+ (1 − α)λSHij
T
]

+ γ (∥λ∥
2
+ ∥ω∥

2)

(14)

Note that the ω and λ are uncoupled and solving such a
optimization problem is a classic quadratic programming
problem with an analytical solution:

dJ
ω

= 0

N∑
i=1

N∑
j=1

(−T 1 − T 2 + T 3)i,jαS fij + 2γω = 0

ω = −

∑N
i=1

∑N
j=1(−T 1 − T 2 + T 3)i,jαS fij

2γ

(15)

dJ
λ

= 0

N∑
i=1

N∑
j=1

(−T 1 − T 2 + T 3)i,j(1 − α)SHij + 2γ λ = 0

λ = −

∑N
i=1

∑N
j=1(−T 1 − T 2 + T 3)i,j(1 − α)SHij

2γ

(16)

The algorithm is summarized in Algorithm 2.

3.2.6. Time complexity analysis
The iteration process of CMOC-AHIN contains two steps, the

first step is updating Z given λ and ω, the second step is updating
λ and ω based on the optimal Z from last step. Notice that,
HeteSim of all meta-paths are not changed during each iteration,
thus it can be pre-calculated and serve as input. For the second
step, we inferred an analytical solution and the time complexity is
at most O(N ), where N is the number of nodes. As we discussed in
Algorithm 1, STEP 1 is also an iterative updating process. In each
iteration of step 1, CMOC-AHIN first finds the optimal Z given
λ and ω, in this step, the similarity between each node and the
center of cluster is computed with complexity of O(NK ). Next, the
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Algorithm 2 CMOC-AHIN
Input: G = {V , E, A}, Vl, K
Output: C = {C1, C2...CK }

Compute attribute and meta-path similarity elements
t = 0,△L = ∞

Init λ, ω
while t < max_iter and △J < ϵ do

STEP 1: Optimize {zr}kr=1 given λ and ω
repeat

for vn ∈ V do
for k ∈ K do

Measure overall similarity between vn and cluster
center µk by Eq. (5)

Update znk by Eq. (10)
for µk in µ do

Update the center of cluster µk by Eq. (11)
until convergence
STEP 2: Optimize λ and ω given {zr}Kr=1
Solve equation (12) and (13) obtain the optimal λ and ω
STEP 3: t++

similarity between each node in the same clusters are computed
for all the clusters with complexity of O(K (N − K )2), thus the
computational complexity for each iteration is O(NK + K (N −

K )2). The total time complexity for CMOC-AHIN is O(NK +K (N −

K )2). We omit the number of iterations I1 and I2 in the final time
complexity since they are usually smaller than 10 and far smaller
compared to the number of nodes N or the clusters K .

For the comparison methods used in our experimental section,
the time complexity for K-medoid based methods is same as our
proposed method O(NK + K (N − K )2) which also contains the
similarity measurement and clustering update. For the spectral
clustering based method, the time complexity is O(N3) which
is affected by calculating the Laplacian eigenvalues. The time
complexity for FocusCO algorithm is O(M(logK + |S|)) where |S|
is the size of the focused cluster, M is the number of edges and
K is the number of edges to find the core set. Compare with
the baseline methods, although our proposed method is not most
sufficient, the main advantage over the existing methods is that
our method is designed for heterogeneous information network
with different types of nodes.

4. Experimental evaluation

In this section, we empirically show superior performances
of CMOC-AHIN on three challenging data sets compared with
other state-of-the-arts methodologies. We also test CMOC-AHIN
with two other variations: attribute-based alone and link-based
alone similarities and empirically show that overall similarity as
proposed in Eq. (5) works. To the best of our knowledge, most of
the current existing methods focus on single type nodes and there
is very limited existing work that groups objects of different types
into the same cluster.

4.1. Data sets

We mainly focus on three datasets unified Internet ID (UID),
Aminer and DBLP.

1. UID: We first run experiments on a real-world user behav-
ior network data set UID. In UID, there are four types of
device IDs, including IMEI (International Mobile Equipment
Identity), IMSI (International Mobile Subscriber Identity),

Fig. 3. Network Schema of the dataset used in our experiment. Subfigure (a)
denotes the UID dataset, subfigure (b) denotes the Aminer and DBLP dataset.

UTDID (or app identifiers) and IDFA (Identifier for adver-
tisers, Apple’s alternative to HTTP cookies on iOS), which
are different identifiers for physical devices respectively.
For each device, one or several co-occurrence records of
these device IDs can be collected, e.g., there are at most
3 types of device IDs for Android phones and usually 2
types of device IDs for IOS devices. The network schema
is shown in Fig. 3(a). The purpose of cross multi-type
clustering in UID dataset is to identify different types of
nodes that each physical device contains. Also, the label of
some of the identifiers are already known from the super-
vision information. We run experiments on an extracted
data set which includes 5000 physical devices with 6334
IMEI nodes, 9463 IMSI nodes, 5551 UTDID nodes and 53
IDFA nodes. The links are collected from the user behavior
records, and each record may contain one or more de-
vice ids and the link types include IMEI-IMSI, IMEI-UTDID,
IMSI-UTDID and UTDID-IDFA. From these links we de-
fine meta-paths as: IMEI-IMSI-IMEI, IMSI-IMEI-IMSI, IMSI-
UTDID-IDFA. The attributes of these nodes are extracted
from the user behavior records and include IP address, mac
address, resolution of physical device, device model and
locations, which are concatenated as a feature vector for
each node.

2. Aminer DataSet: Aminer [50] is a real-world bibliographic
data set that contains five research domains, including
data mining, medical informatics, theory, visualization and
database. Each research domain contains conferences, pa-
per and authors. We extract its conference, paper, author
and abstract by randomly sampling authors who publish
more than two papers with their published paper and
corresponding conferences. In total, the extracted dataset
contains 22 conferences (C), 1709 authors (A) and 1000
papers (P). Then we build an AHIN of the bibliographic
data set for authors, papers and conferences. The network
schema is shown in Fig. 3(b). For each node in the net-
work, we use TF-IDF [51] to extract the top-k words as its
attributes. For example, the attributes of an author is the
top-k words of his/her publications and the attribute of a
conference is the top-k words of the papers that have been
published in this specific conference. The links in the net-
work are set up with the meta-relationship between them,
e.g., the authorship of a paper, and co-author relationship
between authors, etc. Thus we define several meta-paths
with semantic meanings: for example A-P-A represents the
co-author relationship between two authors, P-A-P shows
that one author writes two papers, A-P-A-P shows the
relationship between one author and one paper connected
by the author’s own paper and his/her co-authorship.
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3. DBLP dataset: DBLP is another bibliographic data set that
contains conference, paper and authors. We use a sub-
set dataset of DBLP names ’four area dataset’ [41] which
contains 20 major conferences and all the related papers,
authors and terms in data mining (DM), database (DB),
information retrieval (IR), and machine learning (ML) fields,
according to the research areas of the conferences. We
build an AHIN of the dataset where nodes include 20 con-
ferences (C), 4827 authors (A) and 2000 papers (P). We
use the terms of paper as attributes, for authors and con-
ference, we use the terms of connected paper as the at-
tributes. The label of each node is the research area it
belongs to. We also define several meta-paths with se-
mantic meanings: for example A-P-A represents the co-
authorship between two authors and A-P-C-P-A denotes
the relationship between authors that publish paper on
same conference. The network schema is same as Aminer
dataset and illustrated in Fig. 3(b).

4.2. Baselines

We compared our algorithm with several other state-of-the-
arts on the task of cross multi-type nodes clustering in AHIN,
which can be categorized into the following 4 semi-supervised
groups:

1. Attribute-only: This group of clustering algorithms are
traditional methods that only take the node attributes into
consideration, while ignoring the network structure of an
AHIN. Seeded-KMedoids [52] is a semi-supervised variants
of KMedoids that uses labeled data to generate initial seed
clusters, as well as always keeping them in the initial clus-
ters during the updating procedure. Constrained Spectral
Clustering (abbreviated as Con-SC) [53] integrates must-
link and cannot-link constraints into spectral clustering
framework. Both of these methods do not learn the weights
of each attribute, and we assign equal weights to all the
attributes when constructing the similarity matrix.

2. Link-only:This group of clustering algorithms only utilize
the link information in an AHIN, discarding the attribute
values. Link-based similarity measures on AHIN take not
only multi-typed objects but also meta path connecting
these objects into consideration. We consider two clus-
tering algorithms based on meta path similarity measure:
HeteSim-KMedoids and HeteSim-Spectral Clustering (ab-
breviated as HeteSim-SC), both of which take the meta
path similarity matrix as inputs. The similarity matrix is
constructed as follows: we use partially ground truth and
train a logistic regression model to learn the weights of
each pre-defined meta path. We then assign the other meta
path weights with the learnt model. Notice that, if two
nodes cannot reach each other through the pre-defined
meta path, we define their similarity as 0.

3. Attribute and link: This group of clustering algorithms
consider both attribute and link information. There exists
some previous working on combining the attribute infor-
mation and network structure information in HIN [6], but
the limit of symmetric paths makes it hard to be com-
pared here. FocusCO [36] is a novel user-oriented method
for mining attributed graphs in homogeneous information
network. This approach first infers user preference by a set
of user-provided exemplar nodes through metric learning.
Then the algorithm modifies the weights of each link ac-
cording to the weighted similarity of its node attributes.
Next, core sets are extracted as clusters of interest. How-
ever, it can only be applied to homogeneous networks. In

this situation, we treat our AHIN as an attributed graph,
neglecting the type of objects and links. Another compared
algorithm in this group is based on COP-Kmeans and Auto-
encoder, autoencoder has been a widely used approach
to learn meaningful low-dimensional representation. We
first learn low-dimensional representation with autoen-
coder and then fed it into the COP-Kmeans to learn the
clustering results.

4. CMOC-AHIN variants: We also test CMOC-AHIN with two
other variations: attribute-based alone (denoted as A-
CMOC-AHIN) and path-based alone similarities (denoted as
P-CMOC-AHIN) to show the advantage of combining the
attribute information and network structure information.
The parameter setting of both CMOC-AHIN variants are
same as CMOC-AHIN to make the comparison fair enough.

4.3. Evaluation metric

The evaluation metrics in our experiment are two popular
metrics in clustering: Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI). Both of which are external measures
adapted from information retrieval, which compare the data par-
tition obtained from the clustering algorithm with the true class
labels. Normalized Mutual Information (NMI) [54] can be defined
as:

NMI(X, Y ) =

∑
x,y p(x, y)log

p(x,y)
p(x)p(y)

H(X) + H(Y )
(17)

where X is the clustering result of evaluated algorithm and Y is
the clustering result of ground truth, p(x, y) is the joint probability
distribution function of X and Y , p(x) and p(y) are the marginal
probability distribution functions of X and Y respectively, H(X)
and H(Y ) are the marginal entropies. NMI is between 0 and 1,
and the higher the NMI, the better the quality of the clustering. If
NMI = 1, the clustering result perfectly agrees with the ground
truth. ARI [55] is defined as:

RI =
NA

NA + ND
ARI =

RI − RI

RImax − RI
(18)

where NA is the number of agreements between two clustering
results and ND is the number of disagreements between two
clustering results. RI denotes the expected rand index and RImax
denotes the max rand index. The agreement or disagreement
denotes whether two nodes has the same relationship, e.g., in the
same cluster or in different clusters, for two clustering results.
And again, the higher of ARI, the better of the clustering results.

4.4. Results and analyses

This section summarizes the clustering results of the 4 differed
groups of the semi-supervised clustering methods. Given the
input data, we first construct the supervision constraint (M, C) by
randomly picking a certain percentage of nodes from the ground
truth, for each pair of nodes (νi, νj), if the label of two nodes are
the same, we add the node pair to the must-link set M, else, we
add it to the C. Each of the two evaluation metric is the average of
20 runs and in each run, the supervision constraints are randomly
picked up from the ground truth.

4.4.1. Clustering results
The clustering result on all three experimental sets are shown

in Tables 2–7.
The first row of each table represents the percentage of nodes

we used to generate the supervision constraint M and C . In
each row, the best result of the evaluation metric is highlighted
with blue color. We get the result of NMI and ARI in the table
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Fig. 4. Convergence analysis on the experimental data sets. Subfigure (a) denotes the UID data set, subfigure (b) denotes the Aminer data set and subfigure (c)
denotes the DBLP dataset.

Table 2
Comparison of NMI on Aminer dataset. We use blue to highlight wins and red
to highlight lose.
Model/seeds 5% 10% 15% 20% 25%

Seeded-Kmedoids 0.432 0.608 0.634 0.653 0.679
Constrained-SC 0.247 0.238 0.263 0.363 0.433

HeteSim-Kmedoids 0.642 0.686 0.758 0.788 0.819
HeteSim-SC 0.593 0.65 0.708 0.757 0.772

FocusCO 0.108 0.108 0.108 0.108 0.108
AE-COPKmeans 0.636 0.671 0.703 0.727 0.759

A-CMOC-AHIN 0.080 0.102 0.115 0.133 0.124
P-CMOC-AHIN 0.759 0.825 0.761 0.822 0.861
CMOC-AHIN 0.846* 0.875* 0.874* 0.882* 0.906*

*Indicates that the improvement is significant with t-test at p < 0.05.

Table 3
Comparison of ARI on Aminer dataset. We use blue to highlight wins and red
to highlight lose.
Model/seeds 5% 10% 15% 20% 25%

Seeded-Kmedoids 0.415 0.617 0.644 0.666 0.640
Constrained-SC 0.110 0.116 0.147 0.259 0.290

HeteSim-Kmedoids 0.414 0.549 0.598 0.667 0.747
HeteSim-SC 0.383 0.565 0.624 0.764 0.721

FocusCO 0.028 0.028 0.028 0.028 0.028
AE-COPKmeans 0.477 0.491 0.519 0.539 0.572

A-CMOC-AHIN 0.002 0.005 0.008 0.012 0.012
P-CMOC-AHIN 0.625 0.733 0.643 0.724 0.783
CMOC-AHIN 0.762* 0.802* 0.799* 0.813* 0.854*

*Indicates that the improvement is significant with t-test at p < 0.05.

Table 4
Comparison of NMI on UID dataset. We use blue to highlight wins and red to
highlight lose.
Model/seeds 5% 10% 15% 20% 25%

Seeded-Kmedoids 0.751 0.756 0.767 0.78 0.791
Constrained-SC 0.621 0.688 0.725 0.702 0.79

HeteSim-Kmedoids 0.752 0.741 0.739 0.755 0.753
HeteSim-SC 0.878 0.879 0.876 0.873 0.877

FocusCO 0.277 0.278 0.28 0.277 0.276
AE-COPKmeans 0.819 0.830 0.841 0.855 0.869

A-CMOC-AHIN 0.883 0.884 0.885 0.887 0.888
P-CMOC-AHIN 0.751 0.751 0.753 0.754 0.756
CMOC-AHIN 0.917* 0.918* 0.918* 0.920* 0.922*

*Indicates that the improvement is significant with t-test at p < 0.05.

by randomly perform 20 independent runs on the data set and
output the mean of different runs as our final result. We make
the following observation based on the tables of results:

Table 5
Comparison of ARI on UID dataset. We use blue to highlight wins and red to
highlight lose.
Model/seeds 5% 10% 15% 20% 25%

Seeded-Kmedoids 0.039 0.040 0.050 0.061 0.066
Constrained-SC 0.005 0.020 0.030 0.013 0.063

HeteSim-Kmedoids 0.005 0.004 0.004 0.005 0.005
HeteSim-SC 0.024 0.025 0.023 0.022 0.023

FocusCO 0.0005 0.0009 0.0009 0.0009 0.0009
AE-COPKmeans 0.021 0.043 0.058 0.070 0.086

A-CMOC-AHIN 0.365 0.370 0.374 0.382 0.388
P-CMOC-AHIN 0.004 0.004 0.005 0.005 0.006
CMOC-AHIN 0.469* 0.471* 0.473* 0.480* 0.485*

*Indicates that the improvement is significant with t-test at p < 0.05.

Table 6
Comparison of NMI on DBLP datset. We use blue to highlight wins and red to
highlight lose.
Model/seeds 5% 10% 15% 20% 25%

Seeded-Kmedoids 0.045 0.069 0.081 0.103 0.138
Constrained-SC 0.033 0.047 0.063 0.081 0.101

HeteSim-Kmedoids 0.367 0.382 0.399 0.411 0.436
HeteSim-SC 0.291 0.304 0.314 0.337 0.359

FocusCO 0.371 0.373 0.372 0.370 0.373
AE-COPKmeans 0.386 0.401 0.428 0.448 0.469

A-CMOC-AHIN 0.062 0.098 0.112 0.169 0.224
P-CMOC-AHIN 0.538 0.549 0.589 0.598 0.632
CMOC-AHIN 0.559* 0.596* 0.612* 0.632* 0.652*

*Indicates that the improvement is significant with t-test at p < 0.05.

Table 7
Comparison of ARI on DBLP dataset. We use blue to highlight wins and red to
highlight lose.
Model/seeds 5% 10% 15% 20% 25%

Seeded-Kmedoids 0.059 0.078 0.094 0.117 0.148
Constrained-SC 0.041 0.049 0.067 0.090 0.106

HeteSim-Kmedoids 0.398 0.410 0.431 0.455 0.480
HeteSim-SC 0.301 0.317 0.329 0.344 0.363

FocusCO 0.395 0.395 0.397 0.399 0.399
AE-COPKmeans 0.423 0.441 0.460 0.489 0.501

A-CMOC-AHIN 0.059 0.103 0.112 0.179 0.245
P-CMOC-AHIN 0.5861 0.6089 0.6497 0.6581 0.6884
CMOC-AHIN 0.625* 0.662* 0.683* 0.698* 0.713*

*Indicates that the improvement is significant with t-test at p < 0.05.

1. Overall clustering quality comparison. From the tables of
clustering performance, we can see that our algorithm
CMOC-AHIN outperforms the compared algorithm of
attribute-only and link-only methods on both Aminer,
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DBLP data set and the UID data set. Also, compared with
the CMOC-AHIN variants methods, the quality of clustering
is also improved, all of these shows the advantage of our
algorithm using an iterative learning process to combine
the attribute information and link information.

2. Supervision Constraint Analysis. From each line of the ta-
ble, we can see that the quality of clustering gets better
with the growing number of seed nodes. This shows that
taking the supervision into consideration could help im-
prove the quality of clustering. Notice that some method
such as FocusCO is not sensitive with the seeded nodes,
since it take the supervision information by learning the
weights from these nodes and the growing number of
nodes cannot guarantee the improvement of the clustering
quality.

3. Link VS Attribute in different datasets. According to the
comparison between two CMOC-AHIN variants in different
data sets, we can see that in different data sets, the net-
work structure information and the attribute information
play different roles. In the Aminer dataset, the path based
method P-CMOC-AHIN outperforms the attribute based
method A-CMOC-AHIN , this could be explained that in
Aminer
dataset, the attributes are the term frequency extracted
from the papers which has been described in Section 4.1.
the difference of attributes between node types may be
misty. In the UID data set, the result is opposite, the at-
tribute based method A-CMOC-AHIN outperforms the path
based method P-CMOC-AHIN. This is reasonable since in
this data set, the attributes of nodes are more diverse,
the attribute based method could get superiority in such
data sets, also the path in this data set are from the user
behavior records which makes it hard to use meta-paths to
find out the nodes in one cluster while does not co-occur
in the records.

4. Homogeneous VS Heterogeneous. Notice that FocusCO per-
forms poorly on both Aminer data set and UID data set,
although FocusCO is a local graph partitioning method that
combines attribute information and link information, it is
a homogeneous network method and cannot work well
on the heterogeneous information network. When apply-
ing FocusCO on heterogeneous information network, we
have to simplify the network into a homogeneous network
which means the difference between node type and the
meta-path information are all missed. We believe that this
is the weakness of applying the homogeneous network
method on the heterogeneous information network.

5. Notice that in Table 5, P-CMOC-AHIN obtained rather poor
ARI on experimenting with UID. One possible reason is that
the UID data set is rather sparse with too many clusters but
very limited paths.

4.4.2. Meta path selection
In Table 8, we show the top-5 meta-path that with largest

λ in three experimental data set. By analyzing the semantic
meaning of the meta-path, we have a better understanding of
how CMOC-AHIN picked up these meta-paths.

In the Aminer data set, the first meta-path A − C − A shows
the relationship between two authors that publish paper in the
same conference, since ‘Author’ node has the largest number in
the network, the good clustering result on the authors could lead
a better performance on clustering. The second and fourth meta-
path shows the relativeness between author and paper, according
to ‘Conference’ node, one author may have close relation to an-
other paper in the conference where the author published paper.
The third and fifth meta-path shows the similarity between two

paper, the results show that two paper published in the same
conference may have a higher similarity. Similarity results can be
observed in the DBLP data set which is also a bibliographic net-
work. The above observations show that CMOC-AHIN can select
the meaningful meta-path from the heterogeneous information.
In the UID data set, as we have discussed in the last section, the
meta-path suffers from the fact that if two nodes did not co occur
in one user behavior record, it would be hard to use meta-path
to assign them into same cluster. In this data set, the attributes
are playing a more important role.

4.4.3. Convergence analysis
Since CMOC-AHIN is an iterative learning process, we show

the convergence of loss J in both Aminer data set and UID data
set in Fig. 4. We test 20 random runs on different data sets
and show the mean of evaluation metrics. The result shows that
in all three datasets we used, our algorithm CMOC-AHIN could
converge quickly.

4.5. Running time comparison

In this subsection, we compare the running time of our pro-
posed method CMOC-AHIN and baseline methods on three HIN
datasets. Fig. 5 illustrates the running time results. According to
the results, we observe that Spectral Clustering has the worst
time complexity since it calculates the eigenvector which is
time consuming. Compared with Kmedoids method, the proposed
CMOC-AHIN method spends little more time as CMOC-AHIN com-
bines both attribute information and network topology. Among
the compared methods, FocusCO is most efficient method while
the performance is not as good as other baseline methods. This is
explainable since it ignores the heterogeneous network structure.

5. Conclusions and future work

In this paper, we introduce a novel and practical model to
study the problem of cross multi-type clustering in heteroge-
neous information network, namely CMOC-AHIN. Given the at-
tributed network information and some semi-supervised con-
straints, CMOC-AHIN combines node attributes and meta-path
information in a constrained way. With an iterative learning
process, CMOC-AHIN learns the optimal parameters as well as
clustering results. To empirically show the superiority of the
mixed edge information and learning process, we conduct sev-
eral experiments on the real-world data. The experiment results
on the real-world data show that our algorithm outperforms
the existing algorithms that use attribute or meta-path informa-
tion for clustering in heterogeneous information network. We
also test the variants of CMOC-AHIN and the results reveal that
the consideration of both the path and attribute information is
meaningful.

This paper also suggests some potential research directions.
First, heterogeneous information network with more complex
types of attributes should be discussed especially those contains
both binary and continuous attributes. Second, the knowledge
graph can be treated as a more complex heterogeneous infor-
mation which contains more types of entities and relations. Last,
recent advances of deep clustering which utilizes deep learning
methods could also be explored on heterogeneous information
network to cluster different types of nodes.
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Fig. 5. Running time comparison on real-world datasets.

Table 8
Top-5 meta-path in three real-world datasets.
Rank DBLP Aminer UID

1 Conf-Paper-Conf Author-Conf-Author IMEI-UTDID-IMSI
2 Author-Paper Author-Paper-Conf IMSI-UTDID-IMEI
3 Author-Conf-Author Paper-Conf-Paper IMEI-IMSI-UTDID
4 Author-Paper-Conf Paper-Author-Conf-Author UTDID-IMSI-IMEI
5 Author-Paper-Conf-Paper-Author Paper-Author-Conf-Paper IMEI-IMSI-IMEI-IMSI
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