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Clustering is a fundamental machine learning task, which aim at assigning instances into groups so that
similar samples belong to the same cluster while dissimilar samples belong to different clusters. Shallow
clustering methods usually assume that data are collected and expressed as feature vectors within which
clustering is performed. However, clustering high-dimensional data, such as images, texts, videos, and
graphs, poses significant challenges for clustering tasks, such as indiscriminate representation and intricate
relationships among instances. Over the past decades, deep learning has achieved remarkable success in
effective representation learning and modeling complex relationships. Motivated by these advancements,
Deep Clustering seeks to improve clustering outcomes through deep learning techniques, garnering
considerable interest from both academia and industry. Despite many contributions to this vibrant area
of research, the lack of systematic analysis and a comprehensive taxonomy has hindered progress in this
field. In this survey, we first explore how deep learning can be integrated into deep clustering and identify
two fundamental components: the representation learning module and the clustering module. Then, we
summarize and analyze the representative design of these two modules. Furthermore, we introduce a novel
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taxonomy of deep clustering based on how these two modules interact, specifically through multistage,
generative, iterative, and simultaneous approaches. In addition, we present well-known benchmark datasets,
evaluation metrics, and open-source tools to clearly demonstrate different experimental approaches.
Finally, we examine the practical applications of deep clustering and propose challenging areas for future
research.
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1 Introduction

Clustering is a fundamental technique in machine learning, often used as a crucial pre-processing
step in various data mining tasks. The primary purpose of clustering is to assign the instances
into groups so that similar samples belong to the same cluster while dissimilar samples belong
to different clusters. The clusters of samples provide a global characterization of data instances,
which can significantly benefit further analysis of the whole dataset, such as anomaly detection
[1, 2], domain adaptation [3, 4], community detection [5, 6], and discriminative representation
learning [7-9], and so on.

Early clustering works typically assume that data is represented in the form of feature vectors
and primarily focus on discovering clustering structures within the vector spaces, which is also
known as shallow clustering. With the rapid development of the Internet and Web services,
the research community is showing increasing interest in clustering more complex data such as
text, images, videos, and graphs. However, the raw high-dimensional features of these data pose
significant challenges for shallow clustering due to the “curse of dimensionality” [10]. Meanwhile,
the past decades have also witnessed the success of deep learning in learning representation for
high-dimensional data, especially unsupervised ones. Recently, Deep Clustering, which aims to
enhance the clustering task through deep learning, has attracted significant interest from both the
research community and the industry.

To accomplish this objective, a simplistic approach might involve using deep unsupervised
representation learning to learn representations for each data instance, and subsequently in-
put these representations into shallow clustering methods to achieve the ultimate clustering
results. However, this straightforward method fails to recognize the fundamental link between
representation learning and clustering: clustering offers crucial insights for representation
learning, while discriminative representation significantly improves the clustering procedure.
Given these motivations, deep clustering approaches are dedicated to addressing these research
questions:

(1) How to learn discriminative representations with deep learning that can yield better cluster-
ing performance?

(2) How to acquire accurate clustering results given discriminative representations with deep
learning?

(3) How to efficiently conduct clustering and representation learning in a unified framework
and enhance each other?

In light of the three challenges mentioned above, numerous deep clustering methods have
emerged, incorporating diverse deep architectures and data types, and have achieved significant
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Table 1. Comparison with Related Surveys

Refe Shallow Deep

N Clustering Clustering
ofmparisons [13] 11197 [ 114 | (121 [ [15] | (161 [ [17] 1 (18] | [20] | [21] | [22] | Ours
Auto Encoder - - - - -\ VIV |V |V |V |V v
repr;zee:relfation Generative - - - - -\ V|V |- | V||V v
learning design Contrastive - - - - - - -l -] - | Vv |V v
Cluster Based | - - - - - VIV -|-1Yv]- v
Clustering with DNN VAR VAN VAR B BV VAR VAN VAN IV VAN V4 v
Interaction Multistage VAR VAN VAR EVAN ERVAR B VAR VAN IV VAN V4 v
between Iterative v v | - - - -\ V| V| - |- - v
Representat‘ion Generative - e T 2 T T RV BV B4 v
and Clustering Simultaneously | - -l -] - -\ Vv IV |V |-V |V v
Application N A VA e BV B e o B B4 v
Various types of Dataset - -l -1 -=-1'-=-1-1-=-1-1-1-1- v
Evaluation - - -V | V| V| - - - - v v
Implementation - -l -1-'-1-/-1-1-1-1V v

*Each column indicates a survey paper which is being compared, “v"” means the term of the corresponding row has
been surveyed or analyzed in this paper while ‘-’ means not. Note that surveys published later than ours are also
included.

success. However, the existing literature has not sufficiently synthesized the current research
landscape, limiting the formation of a detailed understanding that effectively integrates and
assesses the varied results in this area. To address this deficiency, this article presents a compre-
hensive survey of deep clustering, introducing a novel taxonomy of existing methods, examining
unresolved challenges, and suggesting essential directions for future research.

Related Surveys. As a classic task, clustering has experienced extensive development in
the past decades, with numerous surveys focusing on shallow clustering [11-15]. Typically,
shallow clustering methods discussed in these surveys utilize feature representations as input and
produce cluster assignments for each data instance. Subsequently, as deep learning has evolved,
several studies have begun to explore clustering techniques that incorporate deep learning
approaches.

Min et al. [16] state that the essence of deep clustering is to learn clustering-oriented representa-
tions, so the literature should be classified according to the network architecture of representation
learning. Aljalbout et al. [17] designed the taxonomy mainly based on the representation learning
architecture and the loss function, discussing the comparisons between methods only on the
MNIST and COIL20 datasets. Nutakki et al. [18] review some clustering methods with deep
learning, while the most recent advanced techniques for representation learning and clustering
were excluded. Furthermore, all these works [16-18] merely cover outdated methods and miss
more recent advances in this active research area.

Nevertheless, previous surveys fail to provide a thorough analysis of how deep learning is
integrated into deep clustering approaches, or to offer a detailed classification of the methods
involved. This deficiency has impeded the advancement of deep clustering and urgently requires
rectification. In this article, we focus on clustering techniques that utilize deep learning, partic-
ularly focusing on how deep representation learning interacts with clustering using deep neural
networks. A summary of how our survey compares to the previous ones is presented in Table 1.
Note that some references were cited after the initial pre-print date of this article.
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Contributions. In summary, this article seeks to offer a comprehensive survey of the latest
deep clustering techniques and help potential readers understand the broad landscape of deep
clustering with respect to the following aspects:

— Cornerstones of Deep Clustering. We summarize two cornerstones of deep clustering,
namely the representation learning module and the clustering module. For each module,
we highlight the representative and universal designs summarized from existing methods,
which can be easily generalized to new models.

— Systematic Taxonomy. We propose a systematic taxonomy of existing deep clustering
methods based on the ways of interactions between the representation learning module and
the clustering module providing four representative branches of methods. We also compare
and analyze the properties of each branch in different scenarios.

— Abundant Resources and References. We collect various types of benchmark datasets,
evaluation metrics, and open-source implementations of the latest publications on deep clus-
tering, which are organized together with references on Github.! We also provide an open
source and easy-to-use package that can effectively deploy and develop deep clustering meth-
ods, with the aim of further advancing this active research area.’

— Future Directions. Based on the properties of the representation learning module and the
clustering module, as well as their interactions, we discuss the limitations and challenges of
existing methods, followed by our insights and thoughts on promising research directions
that deserve future investigations.

Organization. The rest of this survey is organized as follows: Section 2 introduces the basic
definitions and notation used in this article. Section 3 summarizes the representative design of the
representation module, along with different data types. Section 4 summarizes the representative
design of the clustering module, which focuses mainly on the basic modules defined in the deep
clustering methods. Section 5 summarizes the representative ways of interactions between the
two modules, which cover most of the existing literature. Section 6 introduces the widely used
benchmark datasets and evaluation metrics. Section 7 discusses the applications of deep clustering.
Section 8 discusses limitations, challenges and suggests future research directions that deserve
further exploration. The overall organization of this survey is illustrated in Figure 1.

2 Preliminary

In this section, we first briefly introduce some definitions in deep clustering that need to be clarified,
then illustrate the notation used in this article in Table 2.

Deep Clustering and Shallow Clustering. Given a set of data instances X = {x; fi ,» the
objective of clustering is to automatically assign each instance x to groups so that instances
in the same group are similar while instances from different groups are dissimilar. The shallow
(non-deep) clustering takes the feature vectors of the instances as input and outputs the clustering
result without deep neural networks. The deep clustering aims to cluster unstructured data or
high-dimensional data with deep neural networks. It is worth noting that deep clustering is
not narrowly defined as applying deep learning techniques in representation learning. Instead,
clustering itself can be conducted by deep neural networks and benefits from the interaction with
deep representation learning.

Hard Clustering and Soft Clustering. The clustering methods can be categorized into hard
and soft clustering according to the type of output they generate. The output of hard clustering
is a discrete one-hot cluster label ¢; for each instance x;, while the output of soft clustering is a

Ihttps://github.com/zhoushengisnoob/DeepClustering
Zhttps://github.com/zhoushengisnoob/OpenDeepClustering
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Fig. 1. Overall organization of this survey. We use blue and yellow to highlight the representation of learning
module and clustering module.

Table 2. Important Notations Used in this Article

Notations Explanations Notations Explanations
N The number of data instances K The number of clusters
x Data instance x Data reconstruction
x7 Augmented instance = Transpose of a matrix (vector)
h Representation z Soft assignment
g Predicted hard label y Ground truth label
Representation (centroid) of cluster T Temperature parameter
P,Q Probability distribution X = {xi}fi 1 Data instances set
|- lr  Frobenius norm of a matrix (vector) |- The number of elements in a set

continuous cluster assignment probabilistic vector z; € RX. The primary objective of clustering
is to assign samples into distinct groups, hence the outcomes of clustering are typically presented
with discrete labels. However, the discrete assignment of an instance is usually hard to optimize,
especially for deep neural networks with backpropagation. As a result, most of the existing deep
clustering methods fall into the soft clustering category. In this approach, the clustering results
are produced by a deep neural network f, which produces logits of K dimensional activated by a
softmax function. It should be noted that the soft clustering results can be easily transformed to
hard clustering by selecting the cluster with the highest probability.

Partitioning Clustering and Overlapping Clustering. The previously described hard
clustering, which maximizes the probability vector, is intended for the partitioning clustering
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Fig. 2. Representative representation learning modules that transform raw data into lower-dimensional rep-
resentations.

scenario, where each data instance is assigned to a single cluster only. Consequently, this clus-
tering approach divides the entire dataset into K separate groups. Most current deep clustering
techniques are non-overlapping, reflecting the nature of the primarily non-overlapping datasets
they are tested on. In the context of overlapping clustering, a data instance can be part of multiple
clusters, introducing additional challenges to clustering methods, which will be explored further
in Section 8.

3 Representation Learning Module

The past few decades have seen significant advancements in deep representation learning [23-25],
particularly in unsupervised methods. All unsupervised learning approaches can function as input
generators and are seamlessly integrated into the deep clustering framework, with more details
provided in Section 4. However, these methods are generally not designed for clustering tasks
and do not incorporate essential clustering data to enhance representation learning. This section
presents the representation learning module used in deep clustering, which processes raw data
to produce a compact, low-dimensional representation. Figure 2 shows the key representation
learning modules discussed in this section.

3.1 Auto-Encoder Based Representation Learning

Auto-Encoder [26] is one of the most widely adopted unsupervised deep representation learning
methods due to its simplicity and effectiveness. The auto-encoder is a linear stack of two deep
neural networks named encoder and decoder. The encoder f, encodes the input data x in a
low-dimensional representation h = f,(x), and the decoder f; decodes the low-dimensional
representation h to the input data space X = f;(h). A good auto-encoder is expected to reconstruct
the input data without dropping any information, thus the optimization target of the auto-encoder
is usually formulated as Equation (1):

N N
Lap= ) llxi=%ill = > s = £ (e ). )

where || - ||z is the L2-norm, X; is the reconstructed data. The auto-encoder is a general structure
and can be customized for different data types. For example, deep neural networks for vectorized
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features [27], convolutional networks for images and graph neural networks for graphs [28], 3D
convolutional networks and LSTM auto-encoder for videos [29] and so on.

Analysis. The representation learning framework based on auto-encoders is appreciated for
its straightforward implementation and effective training, and has been extensively used in initial
deep clustering studies. However, this approach learns representations on an individual instance
basis, often overlooking the interconnections between different instances. Consequently, in the
embedding space, instances may not be distinctly separated, leading to suboptimal clustering
results.

3.2 Deep Generative Representation Learning

Another line of deep unsupervised representation learning lies in generative methods which as-
sume that the data x are generated from a latent representation h and then reversely deduce the
posterior of the representation p(h|x) from the data. Among these, the most typical method is
the Variational Auto-Encoder (VAE) [30] and Generative Adversarial Networks (GAN) [31].
Both methods focus on capturing the data distribution, which is used to map the input data into
the latent embedding space. VAE resorts to the variance inference technique and maximizes the
evidence lower bound (ELBO) on the data likelihood:

log p(x) 2 Eq(n|x)[log p(x|h)] — Dx1(q(h|x)llp(h)), @)

where Dg(||-) denotes the KL-divergence between two distributions, p(h) is the prior distribu-
tion of the latent representation, q(h|x; ¢) is the variational posterior of the representation to
approximate the true posterior (i.e, g(h|x;¢) ~ p(h|x)), which can be modeled with the recog-
nition networks ¢. Using the reparameterization trick [30] and the Monte Carlo approximation
[32], the posterior can be efficiently learned from the Equation (2) via backpropagation. GANs
learn representations via a competitive mechanism in which a generator network generates
samples to deceive a discriminator network. In response, this discriminator network learns to
differentiate between real and generated data, forcing the generator to progressively improve its
representations. By modeling the data distribution in an adversarial way, the GANs can learn
more discriminative representation, thereby enhancing their clustering capabilities.

Analysis. Deep generative representation learning exhibits advantages such as flexibility, in-
terpretability, and the ability to replicate data points. However, in comparison to other methods of
representation learning, they struggle to incorporate clustering information effectively during the
learning phase. The widely used strategy involves making assumptions at the cluster level about
the data distribution, such as using Gaussian mixture models. However, these assumptions often
do not suffice for handling complex data distributions. Consequently, exploring ways to embed cat-
egory information within the distribution modeling phase continues to be an essential question
for deep generative representation learning in clustering contexts.

3.3 Mutual Information Maximization Representation Learning

Mutual information (MI) [33] is a fundamental quantity to measure the dependence between
random variables X and Y, which is formulated as Equation (3):

dP
I(X;Y) = / log ipydpxy, 3)

dPx ®

where Pxy is the joint distribution, Px = fY dPxy and Py = fX dPxy are the marginal distribu-
tion, Px ® Py is the product of the marginal distributions. Traditional mutual information esti-
mations [34] are only tractable for discrete variables or known probability distributions. Recently,
MINE [35] was proposed to estimate mutual information with deep neural networks. The widely
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used mutual information estimation is the Jensen-Shannon divergence (JSD) [36] formulated
as Equation (4):

I7sp(X; H) = Epyy [ sp(=D(x, h))] — Epy <z, [sp(D(x, h))], (4)

where sp(x) = log (1 + e¥) is the softplus function. D is a discriminator function modeled by a
neural network. Another popular mutual information estimation is InfoNCE [37], which will be
introduced in Section 3.4. Taking advantage of neural estimation, mutual information has been
widely adopted in unsupervised representation learning [38, 39]. More specifically, the representa-
tion is learned by maximizing mutual information between different layers [39] or different parts
of the data instances [38], so that the consistency of the representation can be guaranteed. This
can be viewed as an early attempt at self-supervised learning which has an extensive impact on
the later work.

Analysis. The significant benefit of this branch of methods is that the variables assessed through
mutual information are not confined to identical dimensions or semantic spaces, like instances and
clusters. Similar to auto-encoder based and deep generative representation learning, the mutual
information maximization approaches are also focused on individual instances, potentially facing
the same issues in modeling the relationships among instances. However, the marginal distribution
used in mutual information estimation is influenced by all observed samples and the relationships
among instances are indirectly established.

3.4 Contrastive Representation Learning

Contrastive learning is one of the most popular unsupervised representation learning techniques
in recent years. The basic idea is to pull a positive pair of instances close while pushing a negative
pair of instances far away, which is also known as instance discrimination. The representative
target of contrastive learning is the InfoNCE loss [37] formulated as Equation (5):

exp(f(h!",h)*)/7)
N exp(f(h], hT) )

N
1
Linfoncr =~ D log (5)
i=1

where h;ﬁ and h;’z is a pair of positive samples and h;/z are the negative sample representations,
f is a similarity function, 7 is the temperature parameter [40]. The positive samples are usually
conducted by data augmentation which may vary from different data types. For example, flip,
rotate, and crop augmentation for image data [41], node dropping, edge perturbation, attribute
masking, and subgraph sampling for graph data [42, 43]. Negative samples are selected from an
augmented view of other instances in the dataset [41] or from a momentum-updated memory bank
of old negative representations [44], which can be viewed as an approximation of noise.
Analysis. Numerous theoretical studies [45-47] have been conducted on contrastive learn-
ing, demonstrating that contrastive learning tends to pull instances with the same label close
while pushing instances with different labels away in the low-dimensional embedding space.
Consequently, this type of learning can greatly improve the effectiveness of clustering by
enhancing discriminative representation. In addition, it has been proved that reducing InfoNCE
loss corresponds to an increase in the lower limit of mutual information [37]. Thus, contrastive
learning can also be used to establish explicit connections between instances and clusters.

3.5 Clustering Friendly Representation Learning

Although the aforementioned representation learning methods have somehow implicitly boosted
the performance of clustering, they are not explicitly designed for the clustering task. In this
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subsection, we will introduce some representation learning methods that explicitly support the
clustering task.

K-means [48] friendly representation is first defined in DCN [49] where samples in the low-
dimensional space are expected to scatter around their corresponding cluster centroids. This can
well support the assumption of K-means that each sample is assigned to the cluster with the min-
imum distance to the centroid. The objective LxF can be formulated as Equation (6):

N
Lir = ) Il (1) = G5, (©)
i=1
where f(-) is the deep neural network for representation learning, §; is the hard assignment vector
of data instance x; which has only one non-zero elements, C is the cluster representation matrix
where kth column of C, i.e,, ¢ denotes the centroid of the kth cluster.

Spectral clustering friendly representation learning is inspired by the eigen decomposition in
spectral clustering [50] that projects instances into a space with orthogonal bases. In deep cluster-
ing, the orthogonal basis is modeled explicitly by reducing correlations within features [51], which
can be formulated as Equation (7):

d d
Lsp= Y |~hhhn/z+log Y exp (h,{hm /r)), (7)
m=1 n
where d is the number of feature dimensions, h,, is the mth dimension feature vector, 7 is the
temperature parameter. The objective is to learn the independent features so that redundant infor-
mation is reduced.

Analysis. The clustering friendly representation learning benefits from direct optimization for
clustering, which may significantly improve the corresponding cluster performance. However,
such simplicity also limits the generalization to other clustering methods. Currently, the research
community has made more efforts to inspire clustering methods and express them from a deep
learning perspective, rather than learning specific representations for each clustering method.

3.6 Subspace Representation Learning

Subspace representation learning is the early stage of subspace clustering [52], which aims to map
the data instances to a low-dimensional subspace where instances can be separated. Basically,
current subspace representation learning methods [53-58] have relied on the self-expressiveness
assumption, where a data instance can be expressed as a linear combination of other data
instances from the same subspace, i.e., X = X0O,, where X is the data matrix and O is the matrix
of self-expression coefficients. For representation learning, the self-expression property leads to
the following objective as in Equation (8):

. A .
min 1O, + EHH - HG)CHIZv s.t. diag(®.) =0, (8)

where || - ||, is a matrix norm, A controls the weight balance. H denotes the sample representations
learned by a network. In addition, ©. can be implemented as parameters of an additional network
layer [55].

Analysis. The effectiveness of subspace representation learning is based on the premise that
data can be represented through various subspaces characterized by unique feature sets, capable of
managing datasets with diverse dimensions and intricate relationships. However, it is challenged
by computational difficulties, such as determining the best subspaces and allocating data points to
these subspaces, particularly in the context of extensive, high-dimensional datasets.
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3.7 Data Type Specific Representation Learning

The representation learning techniques mentioned above are suitable for various data types, but
in practical applications, some methods are designed specifically for certain data types. This sub-
section offers a summary of four widely studied data types and their corresponding representation
learning strategies in the context of deep clustering.

3.7.1 Image Representation Learning. Learning representations of images using CNN [59] and
ResNet [60] as a backbone has achieved great success in the past decades. In the image deep clus-
tering, they still play active roles as feature extractors or backbones in the representation learning
module. Beyond the above two methods, recent advances have been made by introducing mod-
ern representation learning techniques such as vision transformer [61] to deep clustering. As one
of the most popular directions, unsupervised representation learning for image data will play a
central role in deep clustering and affect the other data types.

3.7.2  Text Representation Learning. The early attempts of text representation learning have
utilized statistical-based methods such as TF-IDF [62], Word2Vec [63], and Skip-Gram [64]. Later,
some works focus on topic modeling [65] and semantic distances [66, 67] for text representation
learning, and more [68] on unsupervised scenarios. Recently, pre-trained language models like
BERT [69] and GPT-3 [70] are gradually dominating the area of text representation learning.
However, the fine-tuning [71] of these methods in the deep clustering task remains an open
question. Furthermore, while large language models (LLMs) [72] have shown remarkable
linguistic prowess in various NLP applications, their utilization is restricted to APIs. The use of
LLMs for sideway information for clustering has shown great potential [73].

3.7.3 Video Representation Learning. Video representation learning presents a complex chal-
lenge, integrating spatial-temporal learning, multimodal learning involving audio [74], and natural
language processing tasks such as video abstracts and subtitles, all within a single framework. The
early methods utilize the LSTM Autoencoder [29], 3D-ResNets [75], and 3D-U-Net [76] as feature
extractor. Recent methods have focused on spatial-temporal modeling [29, 77-80] and Qian et al.
[75] in particular incorporates contrastive learning for self-supervision.

3.7.4  Graph Representation Learning. The classic graph representation learning aim at learning
low-dimensional representation for nodes so that the proximity among nodes can be preserved in
the embedding space. Graph Neural Networks (GNNs) [81, 82] are widely used, including GCN
[83], GraphSAGE [84] and GAT [85], and it gives infinite possibilities of graph node representa-
tion learning combining node features and graph topology [86-89]. Furthermore, graph-level in-
formation also has great potential in tasks such as protein classification [90], which has prompted
increasing attention to graph-level representation learning [91-94].

Analysis. The data type specific representation learning mentioned above can be a naive back-
bone for feature extraction or end-to-end unsupervised representation learning, which are the
most active research directions in deep learning. With more types of data being collected and the
fast development of deep learning, we believe that deep clustering will grow along with the data
type-specific representation learning techniques.

4 Clustering Module

In this section, we present the key clustering modules used in deep clustering, which utilize
low-dimensional representations as input, and produce either cluster labels for hard clustering
or probabilities of cluster assignments for soft clustering. Although numerous shallow clustering
techniques can be applied directly to clustering tasks, integrating them with deep representation
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Fig. 3. Representative deep clustering modules that produce soft assignments for samples based on their
representations.

learning within a single framework is challenging. Furthermore, these methods often fail to
effectively engage the representation learning module to achieve mutual improvement. For
further information on shallow clustering methods, we suggest previous surveys [13, 19]. In deep
clustering, the objective is to adhere to a deep learning framework, where the clustering results
are obtained by optimizing the neural network. As depicted in Figure 3, the subsequent sections
will discuss five prevalent approaches to constructing clustering modules in deep clustering.

4.1 Relation Matching Deep Clustering

Relation matching techniques are those that enhance clustering outcomes by aligning connections
among instances (instance to instance, 12I) with respect to the clustering outcomes (instance to
cluster centers, [12C). To obtain the relationship between instance and cluster centers, the direct
approach is to measure the distance or similarity between instance and cluster centers in the low-
dimensional space. A closer relation implies a higher probability of belonging to a particular cluster.
The 12C can be directly optimized by

N
Lic =Y Ik = Msilly, st17si =1 Vi,j, )
i=1
where s; is the assignment vector, and the k th column of M, i.e., my, denotes the centroid of the
k th cluster, h; is the representation of instance in the low-dimensioanl space. By fixing x and M,
optimizing Equation (9) outputs the cluster assignment; by only fixing x, optimizing Equation (9)
is equal to the result of running K-means.
Also, the clustering outcomes can be optimized by matching relationships among instances from
different views, which can be formulated as

N N
Low =y 3 (RS RE), (10)
i

where ¢ is a measure of relation matching, e.g., cosine similarity or Euclidean distance, R® and R’
are the relations in source and target space. Here, the relationship based on I2C is typically treated
as the source space, and the target space may come from the similarity between the embedding or
raw features of instances.
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Analysis. The relation matching deep clustering explicitly connects the representation
learning and clustering by matching the relation from embedding spaces to label spaces, which
is straightforward and easy to implement. However, calculating N? pairs of instances for 121
formulations is computationally inefficient. To tackle this challenge, some methods only preserve
the k-nearest-neighbor relations [95, 96] for each instance or the relations with high confidence
[95]. Although this can somehow improve the training efficiency, the extra hyper-parameter is
hard to set in an unsupervised manner. Furthermore, among all pairs of relations, many of them
are noisy especially in the early training phases with limited capability. How to filter out the clean
relations to boost the performance while discarding the noisy relations is still an open research
question.

4.2 Pseudo Labeling Deep Clustering

Pseudo labeling, a common approach in semi-supervised learning [97], has been recently applied
to deep clustering. This method can be considered a form of relation matching, characterized by
discrete relations that depend on the consistency of the labels. According to the way of using
pseudo labels, existing methods can be largely divided into two groups: instance-wise pseudo la-
beling [95, 98, 99] and relation-wise pseudo labeling [100, 101].

The instance-wise pseudo labeling filters out a subset of instances with high confidence and
trains the network in a supervised manner with cross-entropy loss as Equation (11):

X¢ K
1 -
Lipe == 2 D i log (). (11)
i k=1

where L;p; denotes the loss of instance-wise pseudo labeling, X¢ denotes the subset of instances
with high confidence, 7j;; and z;; are the predicted hard label and soft cluster assignment. The
confidence is usually estimated by the entropy or maximum of the probabilistic distribution of
assignment.

The general idea of relation-wise pseudo labeling is to enforce instances with same pseudo
labels closer while instances with different pseudo labels away from each other in the embedding
space. Given the filtered instances, relation-wise pseudo labeling constructs the discrete relations
among instances to guide the representation learning: the must-link for pairs of instances
with same pseudo labels and cannot-link for pairs of instances with different pseudo labels as
Equation (12):

LrprL = %' Z Rik — ﬁ Z Rij, (12)
{i,k}eC {i,jteM
where M is the set of must-link relations and C is the set of cannot-link relations, R;; is the
similarity of instance x; and x; in the low-dimensional embedding space.

Analysis. Pseudo labeling introduces the advantages of semi-supervised learning to unsuper-
vised clustering tasks. However, its effectiveness largely depends on the quality of the pseudo
labels, which are prone to the influence of model performance and the adjustment of hyperparam-
eters, particularly in unsupervised settings. Existing approaches [95, 98] employ pretraining as an
initial step prior to pseudo labeling to address these issues, yet this area still requires further focus.

4.3 Self-Training Deep Clustering

The self-training strategy is introduced to the deep clustering task [102] and opens up an active
branch of methods named self-training deep clustering [9, 102-107]. More specifically, the
cluster assignment distribution is optimized by minimizing the KL-divergence with an auxiliary
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distribution as Equation (13):

N K
ik
L=Da®IQ)= 3} Y pilog (13)
ik !

where Q is the cluster assignment distribution and P is the auxiliary distribution. q;x and p;x denote
the probability that instance x; belongs to the group k. The assignment distribution Q follows the
assumption of K-means and is produced by the embedding distance between the instance and
cluster centroids as in Equation (14):

_ail
; (1+ |l = cxllf /o)
lk = 9
K Caxl
i Ut lhi =gl /)~
where h; is the representation of data instance x; and ¢ is the representation of cluster k, « is
the freedom degree of the Student’s t-distribution [108]. The auxiliary distribution P is a variant
of the assignment distribution Q with both instance-wise and cluster-wise normalization as in
Equation (15):

(14)

_ q?k / f k

G
where fi. = Z,N qik are soft cluster frequencies.

Analysis. The success of self-training deep clustering relies on the following properties: First,
the square of cluster assignment probability with cluster-wise normalization will encourage the
model to pay more attention (gradient) to the instances with higher confidence, which in turn
reduces the impact of low-confidence ones. As a result, the cluster assignment vector tends to be
one-hot. Second, the soft cluster frequencies fi can be viewed as the sum of the probability that
the instance belongs to the kth cluster. This can prevent the degenerate solution that all instances
belong to the same cluster. Despite its effectiveness, this objective is prone to class imbalance issues
and requires additional investigation.

Dik (15)

4.4 Contrastive Deep Clustering

Similar to contrastive representation learning, the target of contrastive deep clustering is to pull
the positive pairs close while pushing the negative pairs far away. The major difference lies in the
definition of positive pairs and negative pairs, which can be further divided into three groups:

4.4.1 Instance-Instance Contrast. The instance-instance contrast treats the cluster assignment
of each instance as the representation and directly reuses the contrastive representation learning
loss as Equation (16):

N T T
1 exp(f(zil,ziz)/r)

Lijc =-7= )  log —,

INI Z; Lexp(f(z],2)/7)

where Z;Tl is the cluster assignment of augmented instance x;H predicted by the clustering module.

(16)

4.4.2  Cluster-Cluster Contrast. The cluster-cluster contrast treats each cluster as an instance
in the embedding space, the target is pulling the cluster and its augmented version close while
pushing different clusters far away, which can be formulated as Equation (17):

K T T
1 exp(f(c,',c")/T)
Lcce = N Zlog X . (rk T
| | k=1 Z:j=1 exp(f(ckl’cj )/T)

(17)
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where c;crl and clzE are the representations of cluster k in different augmented views. It should be
noted that the cluster-cluster contrast satisfies the basic requirement of clustering that each cluster
should be dissimilar, which is in agreement with the clustering-friendly representation learning
described in Section 3.5.

4.4.3 Instance-Cluster Contrast. The instance-cluster contrast is similar to the K-means, which
utilizes the cluster centroid as explicit guidance. Given the representation of each instance and
cluster centroid in the same low-dimensional space, each instance is expected to be close to the
corresponding cluster centroid while far from the other cluster centroids. Such similarity and dis-
similarity can be naturally modeled by the contrastive learning as Equation (18):

$" g 2 () 1)

Og 9
IN| — le exp (f (hi,cj) /7)

where c] is the corresponding cluster centroid of x; which is usually estimated by an alternative
clustering method. This can also be understood as maximizing the mutual information between
the representation and cluster assignment with data augmentations.

Analysis. Besides the advantages inherited from mutual information maximization clustering,
the primary advantages of contrastive deep clustering are that data augmentation helps improve
the robustness of clustering with data augmentation, which has been ignored by most existing
methods. For detailed advantages of contrastive learning, we suggest the former contrastive learn-
ing surveys [109, 110].

(18)

5 Taxonomy of Deep Clustering

In this section, we expand upon the core modules of representation learning and clustering as out-
lined in previous discussions on deep clustering frameworks. Given the inputs and outputs of these
modules, various strategies are implemented in existing deep clustering methods to enhance their
interaction and collaborative efforts, thus increasing the effectiveness of deep clustering. There-
fore, we will omit the intricate details of each module’s design and instead concentrate on their
interconnections, classifying the existing approaches into four specific categories:

(1) Multi-stage deep clustering: the representation learning module is sequentially connected
with the clustering module.

(2) Iterative deep clustering: the representation learning module and the clustering module are
iteratively updated.

(3) Generative deep clustering: the clustering module is modeled as a prior of representation
module.

(4) Simultaneous deep clustering: the representation learning module and the clustering module
are updated simultaneously.

We select the most representative methods from each category within our taxonomy and pro-
vide a detailed presentation of their specific designs under our taxonomy in Table 3.

5.1 Multistage Deep Clustering

Given the modules for representation learning and clustering, it is evident that the output of repre-
sentation learning smoothly transitions into the input of the clustering module, thus directly help-
ing to produce the clustering results. Multistage deep clustering refers to the methods in which
the two modules are optimized separately and connected sequentially. With the evolving of both
representation learning and clustering modules, multistage methods continue to be an active area
in the field of deep clustering.
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Table 3. Specific Designs of Representation and Clustering Modules of Methods Following Our

Taxonomy
Representation Module Clustering Module Method
Auto-Encoder k-means SAE [111]
Auto-Encoder k-means + Relation Matching DEN [112]
5 Subspace k-means PARTY [57]
eh Contrastive k-means IDFD [51]
& I . DSC-Nets [55],
% Auto-Encoder + Subspace spectral clustering SENet [56]
s Generative + Subspace spectral clustering DASC [58]
Data Specific Relation Matching GTL [113]
Data Specific spectral clustering SCPSO [114]
Data Specific k-means ClusterLLM [73]
. . . GMVAE [115],
Generative (VAE) Relation Matching VaDE [116]
2 Generative (VAE) k-means + Pseudo Labeling DGG [117]
s ClusterGAN; [118],
8 Generative (GAN) Relation Matching GM-GAN [119],
] GANMM [120]

Generative (GAN) k-means ClusterGAN, [121]
Data Specific + Generative(GAN) Relation Matching CommunityGAN [122]
DeepCluster [99],
Pseudo Labeling Relation Matching DeepMCAT [123],
CCFC [124]
_ N . . DCN [49],
Auto-Encoder + Clustering Friendly Relation Matching AEDC [125]
o Auto-Encoder + Subspace Relation Matching NCSC [54]
2 ~ . S%2ConvSCN [53],
g Auto-Encoder + Subspace Pseudo Labeling PSSC [126]
%
= ‘ . . . JULE [7],
Contrastive Pseudo Labeling + Relation Matching GATCluster [101]
Contrastive Pseudo Labeling SPICE [98]
Contrastive Self Training DAC [100]
Contrastive + Clustering Friendly Pseudo Labeling SCAN [95]
Data Specific Pseudo Labeling XDC [74]
Pseudo Labeling Pseudo Labeling POT [127]
] o DEC [102],
Auto-Encoder Self-training DBC [106]
Auto-Encoder Relation Matching + Self-training IDEC [103]
. - DEPICT [105],
Contrastive + Auto-Encoder Self-training DEC-DA [104]
- Data Specific + Auto-Encoder Self-training SDCN [128]
4 Data Specific + Auto-Encoder Self-training scDeepCluster [129]
2 Pseudo Labeling Pseudo Labeling + Relation Matching CCNN [130]
g Clustering Friendly Pseudo Labeling PICA [131]
3 Contrastive Pseudo Labeling + Relation Matching DCCM [132]
g Contrastive Mutual Information IIC [133]
- . . CC [134]
Contrastive Contrastive DCDC [135]
Contrastive Self-training SCCL [136]
Contrastive Relation Matching DRC [137]
Contrastive + Auto-Encoder Self Training + Relation Matching IcicleGCN [138]
Contrastive + Clustering Friendly Contrastive GCC [139]

* The term (I2I) and (12C) following “Relation Matching” refer to “Instance to Instance” and “Instance to Cluster”

respectively.
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Early multistage deep clustering methods [111, 112] have trained a deep auto-encoder to learn
representations, which can be directly packed as input of the K-means method to obtain clus-
tering results. Despite their simplicity, these methods had already surpassed earlier approaches in
effectiveness and spurred the advancement of deep clustering. Later, deep subspace clustering was
proposed to learn an affinity matrix and instance representations first, and then perform clustering
by spectral clustering on the affinity matrix [55, 56, 58] or the K-means on the instance representa-
tions [57]. Thanks to the contribution of scikit-learn [140] and many other open-source machine
learning libraries, clustering algorithms have been applied to many fields and data types with a
limited cost of programming. For example, in the scenario of textual/video/graph data clustering,
relation (similarity) matching was used in [113, 141, 142], K-Means in [143], Spectral Clustering
in [76, 114, 144] and Hierarchical Agglomerative Clustering in [145], so as many other cluster-
ing algorithms being directly applied. In graph data, graph cut based node clustering like Metis
[146], Graclus [147] and Balance Normalized Cut (BNC) [148] were used in graph clustering
applications [149-151].

The most recent multistage methods have explicitly incorporated the clustering prior into the
representation learning, then conducted clustering on the target friendly representations. For ex-
ample, IDFD [51] learn representations with two aims: learning similarities between instances and
reducing correlations within features. With the above explicit purposes, a naive K-means on the
learned representations can also achieve competitive clustering results over many existing deep
clustering methods.

Summary. Multistage methods enjoy the property of fast deployment, programming friendly,
and intuitive understanding, and thus and be easily employed for applications with various data
types [152-159]. However, such a simple combination of deep representation learning and shallow
clustering has the following weaknesses:

(1) The majority of representation learning approaches are not specifically tailored for cluster-
ing tasks, lacking the necessary discriminative capability for such tasks.

(2) The clustering results reveal fundamental connections between the data instances, while
they are not used effectively to inform the learning of discriminative representation.

To conclude, such a straightforward cascade connection will cut off the information flow and
interactions between representation learning and clustering, thus the limitations of both sides will
influence the final performance together.

5.2 Iterative Deep Clustering

To address the shortcomings of the previously described multistage deep clustering, iterative deep
clustering improves the process by utilizing the advantages of robust representations to support
clustering, while simultaneously the results of clustering inform the representation learning pro-
cess. In summary, the typical iterative deep clustering framework is iteratively updated through
two main phases: (1) deriving clustering outcomes from current representations and (2) refining
the representations based on the latest clustering outcomes. As the representation module serves
only to feed the clustering module in iterative deep clustering, this subsection categorizes the
existing iterative deep clustering approaches based on the feedback from the clustering module.

5.2.1 lterative Deep Clustering with Individual Supervision. The individual supervision in itera-
tive deep clustering depends on the pseudo labels generated by the clustering module, which can
be used to train the representation learning module in a supervised manner.

In early works [49, 125], the cluster centroids and assignments are updated in a K-means way.
S2ConvSCN [53] and PSSC [126] combine subspace clustering and pseudo labeling, which obtain
pseudo labels by spectral clustering or partitioning the pseudo similarity graph. Later, many works
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[95, 98, 99] tend to utilize neural networks for both representation learning and clustering, where
these two parts are combined together as one neural network. The clustering module is usually a
multilayer perceptron (MLP) that produces soft clustering assignments. In this way, the hard
pseudo labels can guide both clustering and representation learning through gradient backpropa-
gation with proper constraints. The representative method is DeepCluster [99], which alternates
between K-means clustering and updating the backbone along with the classifier by minimizing
the gap between predicted clustering assignments and pseudo labels. In fact, DeepCluster has al-
ready been applied as a mature clustering algorithm in video clustering [74].

Later, SCAN [95] follows a pretraining-with-finetuning framework. The clustering results are
fine-tuned with self-labeling, which selects the highly confident instances by threshold the soft as-
signment probability, and updates the whole network by minimizing the cross-entropy loss on the
selected instances. SPICE [98] is another representative iterative deep clustering method, where
the classification model is first trained under the guidance of pseudo labels and then retrained by
the semi-supervised training on the set of reliably labeled instances.

5.2.2 lterative Deep Clustering with Relational Supervision. The relational supervision in itera-
tive deep clustering refers to the relationship based on the pseudo labels, which provides pairwise
guidance to the representation learning module. More specifically, the relationship is usually mod-
eled by whether two instances have same discrete pseudo labels [7, 100] and the model is trained
as a binary classification task. Another popular branch of methods [54, 101] models the relation-
ship by the similarity of cluster assignment probabilities, which trains representation learning as
a regression task.

Summary. Iterative deep clustering methods [123, 124, 127, 160-162] benefit from mutual
promotion between representation learning and clustering. However, they also suffer from the
error propagation in the iterative process. More specifically, inaccurate clustering results can lead
to chaotic representations in which performance is limited by self-labeling effectiveness. Further-
more, this will in turn affect clustering results, especially in the early stage of training. Therefore,
existing iterative clustering methods rely heavily on the pretraining of the representation module.
Despite these challenges, iterative deep clustering methods enjoy rapid improvements in both
representation learning and clustering capabilities, showing considerable potential in practical
applications.

5.3 Generative Deep Clustering

While the previously discussed methods have established a connection between the representation
learning and clustering modules through gradient propagation, this connection relies solely on
the transfer of gradients between the modules. In an effort to enhance the natural collaborative
capabilities of these modules, leveraging the broad utility of deep generative networks in both
areas, approaches based on generative deep clustering have been developed and extensively
explored.

Specifically, this group of methods makes hypotheses about the latent cluster structure and then
infers the clustering assignment by estimation of data density. The most representative model is
the Gaussian mixture model (GMM) [163], which assumes that the data points are generated
from a mixture of Gaussians. Specifically, suppose that there are K clusters, and an observed sample
x is generated from the following process:

(1) Choose a cluster: ¢ ~ Mult(r)

(2) Draw a sample: x|c ~ N (e, o21)
where 7 denotes the prior probability for clustering; Mult(rr) is the multinomial distribution with
the parameter ; y. and o, are the mean and variance parameters of the Gaussian distribution
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corresponding to the cluster c. The well-known expectation maximization algorithm can be used
to learn optimal parameters and clustering assignments.

Although GMM has gained successful applications, its shallow structure is usually insufficient
to capture the nonlinear patterns of the data, adversely affecting its performance on complex
data (e.g., images, texts, graphs, etc.). To address this problem, deep generative models have been
proposed to combine the generative model with powerful deep neural networks, which have
enough capacity to model complex and nonlinear data. This kind of method can be classified into
two types: methods based on VAE and methods based on Generative Adversarial Networks
(GAN).

5.3.1 Deep Generative Clustering Based on Variational Auto-Encoder. For clustering of high-
dimensional and complex data, one promising solution is to directly stack GMM with a deep neural
network — GMM generates a latent vector z, and the deep neural network further transforms the
latent vector z into the complex data instance x. In this way, the stacked model can enjoy the
merits of the latent cluster structure and meanwhile has sufficient capacity to model the complex
data. For example, the representative models, VaDE [116] and GMVAE [115], assume the following
generative process for each instance:

(1) Choose a cluster: ¢ ~ Mult(rx)

(2) Draw a latent vector: z|c ~ N (,(c; f), o2((c; ))I)

(3) Draw a sample: x|z ~ N (ux(z; 0), 62(z; 0)I)
where 11,(.; B), 02(.; B), ux(.; 0) and o2(.; 0) are given by neural networks with parameters 8 and 0,
which determinize the mean and variance of Gaussian distributions, respectively. Given the above
generative process, the optimal parameters and cluster assignment can be obtained by maximizing
the likelihood of the given data points as in Equation (19):

logpx) = log | )" pxplzlelp(e)dz (19)

However, directly optimizing the above likelihood is intractable as it involves integration
and complex neural networks. VAE [30] sheds light on how to tackle this problem so that the
parameters and posterior can be efficiently estimated via backpropagation. Specifically, the
generative model is trained with the following variational inference objective as Equation (20),
a.k.a. the ELBO:

2.k o
where q(z, c|x; ¢) is the variational posterior to approximate the true posterior, which can be mod-
eled with the recognition networks ¢. Monte Carlo [32] and the reparameterization trick [30] can
be used to learn the parameters.

More recently, upon VaDE and GMVAE, some improved variants have been proposed. For exam-
ple, Prasad et al. [164] introduced a data augmentation technique that constrains an input instance
(e.g., image) to share a similar clustering distribution with its augmented one; Li et al. [165] em-
ployed Monte Carlo objective and the Std Annealing track for optimizing mixture models, which
would generate better-separated embeddings than the basic VAE-based methods; Ji et al. [166] pro-
posed to replace decoder in VAE with an improved mutual-information-based objective; Wang et al.
[167] proposed to separate the latent embeddings into two parts which capture the particularity
and commonality of the clusters, respectively.

X, Z, C
-£ELBO(X) = Eq(z,clx) [logu] s

5.3.2 Deep Generative Clustering Based on Generative Adversarial Network. Recent years have
witnessed great success of the GAN in estimating complex data distribution [122, 168-171]. A
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standard GAN contains two components: a generator G that aims at synthesizing “real” samples to
fool the discriminator, and a discriminator D tries to discriminate the real data from the generated
samples. With the adversary between the two components, the generator could generate samples
that have a distribution similar to the data. Inspired by such a great ability, it would be promising
to integrate GAN into generative clustering models. Specifically, Ben-Yosef et al. [119] proposed
to stack a GMM with a GAN, where a GMM serves as a prior distribution for generating data
instances. Formally, they optimized the following objective function as Equation (21):

minmax V(D,G) = E [logD(x)]+ E [log(1 - D(G(2)))], (21)

G D x~px(x) 2~pz(2)

where px(x) denotes the training data distribution; p~(z) is a prior distribution of G and defined
as mixture of Gaussians as Equation (22):

K
p7(z) = Z e # N (per 021) . (22)

k=1
By equipping GAN with such a multi-modal probability distribution, the model could provide a
better fit to the complex data distribution especially when the data includes many different clusters.

There are also some improved variants. For example, Yu et al. [120] proposed to directly replace
the Gaussian distribution of the GMM with a GAN and developed a e-expectation- maximization
learning algorithm to forbid early convergence issues; Ntelemis et al. [172] proposed to employ
Sobel operations prior to the discriminator of the GAN; Mukherjee et al. [118] proposed to sample
the latent vector z from a mixture of one-hot encoded variables and continuous latent variables. An
inverse network with clustering-specific loss is introduced to make the model more friendly to the
clustering task. Analogously, an inverse network is introduced in [121, 173] for the feature-level
(i.e., latent vector) adversary.

Summary. Although deep generative clustering models can generate samples while complet-
ing clustering, they also have some weaknesses: (1) Training a generative model usually involves
Monte Carlo sampling, which may incur training unstable and high computational complexity;
(2) The mainstream generative models are based on VAE and GAN, and inevitably inherit the
same disadvantages of them. VAE-based models usually require prior assumptions on the data
distributions, which may not be held in real cases; although GAN-based algorithms are more
flexible and diverse, they usually suffer from mode collapse and slow convergence, especially for
the data with multiple clusters.

5.4 Simultaneous Deep Clustering

In contrast to generative deep clustering methods that strengthen the connection between rep-
resentation learning and clustering through probability distributions, a more effective technique
to leverage the advantages of deep learning is to optimize both modules simultaneously under
a single optimization goal. As a result, simultaneous deep clustering has developed rapidly
and has achieved significant success in recent times. Although most iterative deep clustering
methods also optimize both two modules with a single objective, the two modules are optimized
explicitly iteratively and cannot be updated simultaneously. In this subsection, we introduce the
representative architectures of simultaneously deep clustering.

5.4.1 Auto-Encoder with Self-Training. Auto-encoder is a powerful tool to learn data represen-
tations in an unsupervised way, and has been utilized since the first attempts of simultaneously
deep clustering [112].

The representative method is DEC [102] which combines the auto-encoder with the self-
training strategy. This simple but effective strategy has deeply influenced the follow-up works.
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The auto-encoder is pre-trained, and only the encoder is utilized as the initialization of the
representation learning module. The self-training strategy mentioned in Section 4.3 is then
introduced to optimize clustering and representation learning simultaneously.

Based on the vanilla DEC method, many variants and improvements are proposed. To preserve
the local structure of each instance, IDEC [103] further integrates the reconstruction loss into the
autoencoder. The general formulation of auto-encoder with self-training can be summarized as
Equation (23):

Lagst = Lag + Lsr, (23)

where L4 is the loss of auto-encoder and Lgr is the loss of clustering oriented self-training, e.g.,
the neighborhood constraint in DEC. To improve the capability of auto-encoder, some efforts are
made to adapt different data types. In [104-106], the linear layer of auto-encoder is replaced with
fully convolutional layers so that the image feature can be captured well. In CCNN [130], the clus-
tering convolutional neural network is proposed as a new backbone to extract the representations
that are friendly to the clustering task. In DEPICT [105], an additional noisy encoder is introduced,
and the robustness of the auto-encoder is improved by minimizing the reconstruction error of
every layer between the noisy decoder and the clean encoder.

Although the self-training strategy has achieved success, later work also makes attempts to
solve a specific problem. To increase the robustness of the clustering, self-training is applied be-
tween two branches: clean and augmented [104] (noisy [105]). Specifically, the target distribution
P is computed using the clean branch to guide the soft assignments Q of the augmented or noisy
branch. The self-training strategy can be combined with subspace clustering. CSC [107] introduces
the assumption named invariance of distribution, i.e., the target distribution P should be invariant
to different distance metrics in subspace space. Therefore, two metrics (Euclidean and Cosine dis-
tance) are used to calculate the target distributions Pr and P, with the KL divergence between
them minimized.

According to the analysis aforementioned, self-training is similar to the K-means clustering
and suffers from the unbalance problem [174] between different clusters. To solve the problem
of unbalanced data and out-of-distribution samples, StatDEC [9] improves the target distribution
by adding the normalized instance frequency of the clusters. In this way, the model can preserve
discrimination of small groups and form a local clustering boundary which is insensitive to
unbalanced clusters.

5.4.2 Mutual Information Maximization Based Clustering. As illustrated in Section 3.3 the mu-
tual information maximization has been successfully applied in both representation and clustering.
The unified form of mutual information in both modules has provided convenience for understand-
ing and implementation.

The representative mutual information maximization based clustering method is DCCM [132].
For each data instance, the mutual information between the deep and shallow layer representations
is maximized so that the consistency of the representation can be guaranteed. This consistency is
further extended to the cluster assignment space by encouraging instances with the same pseudo-
labels to share similar representations.

Many later works can be regarded as variants of this method. In VCAMI [175] and IIC [133], the
augmented mutual information (AMI) is introduced to improve robustness. Such an augmen-
tation invariant has inspired the later contrastive deep clustering methods, which will be intro-
duced in the next subsection. In InC-SWAV [176], the mutual information between the integrated
discrete representation and a discrete probability distribution is maximized, which improves the
vanilla SWAV [177] method.
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5.4.3 Contrastive Deep Clustering. Similar to mutual information maximization based deep
clustering, contrastive learning has also been successfully applied in both the representation learn-
ing module and the clustering module. The main idea of contrastive learning is pulling similar
instances closer while pushing different instances away, which is in the spirit of clustering that
instances from the same cluster should be close while instances from different clusters should be
apart.

The representative contrastive deep clustering method is CC [134]. The basic idea is to treat
each cluster as the data instance in the low-dimensional space. The instance discrimination task
in contrastive representation learning can be migrated to the clustering task by discriminating
different clusters, which is the fundamental requirement of clustering. Furthermore, the advantage
of augmentation invariant and local robustness can be preserved in the clustering task.

Taking CC as the fundamental architecture, many contrastive deep clustering can be viewed as
variants of it. PICA [131] can be viewed as the degeneration of CC without augmentation, it directly
separates different clusters by minimizing the cosine similarity between the cluster assignment
statistic vectors. In DCCM [132], the augmentation is introduced to guarantee the local robustness
of the learned representation. DRC [137] has the same contrastive learning as CC where the cluster
representation is called assignment probability. The difference lies in the regularization of the
cluster, which is inspired by group lasso [178]. In CRLC [179], contrastive learning is performed
between the cluster assignments of two augmented versions of the same instance, rather than the
cluster representations. Also, the dot product in contrastive learning is replaced by the log-dot
product, which is more suitable for probabilistic contrastive learning. SCCL [136] extends this
approach with textual data augmentation, which proves that this contrastive learning based self-
training framework is universally applicable.

The later works further adopt the contrastive clustering in the semantic space. In SCL [180], the
negative samples are limited by different pseudo labels, so that instances from different clusters can
be further distinguished. MiCE [181] follows a divide-and-conquer strategy in which the gating
function divides the whole dataset into clusters and the experts in each cluster aim at discrim-
inating the instances in the cluster. However, compared with InfoNCE which implicitly models
alignment and uniformity implicitly [45], MiCE models these two properties in a more explicit
way. Recently, TCC [182] further improved efficiency with the reparametrization trick and explic-
itly improved the discriminability of the cluster.

Some other methods attempt to overcome the problems of vanilla contrastive learning. In GCC
[139], the positive pair and negative pair are selected by the KNN graph constructed on the instance
representation. This may be related to overcoming the “false negative” problem in contrastive
learning. In NCC [183], the contrastive learning module is replaced from SimCLR to BYOL [184],
so that the overreliance on negative samples can be solved.

5.4.4  Hybrid Simultaneous Deep Clustering. The aforementioned simultaneous deep clustering
methods have remarkable characteristics and advantages, some other works are hybrids of the
above techniques. SCCL [136] and Sundareswaran et al. [185] combine contrastive representation
learning and self-training. DDC [186] and RCC [187] combine relation matching clustering and
pseudo labeling to boost the clustering performance. DCC [188] combines autoencoder-based rep-
resentation and relation matching clustering. The auto-encoder based representation learning and
spectral clustering are combined in [117] by incorporating the augmentations from the contrastive
learning.

Summary. The simultaneous deep clustering [128, 129, 135, 138, 189-198] has attracted the
most attention for its unified optimization. Intuitively, the learned representation is clustering
oriented, and the clustering is conducted on the discriminative space. However, it may arise from
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an undesired prejudice of the optimization focus between the representation learning module and
the clustering module, which can only be mitigated by manually setting the balanced parameter
for now. Also, the model is easy to sink into degenerate solutions where all instances are assigned
to a single cluster.

6 Datasets and Evaluation Metrics

In this section, we introduce benchmark datasets and evaluation metrics that are widely used in
existing deep clustering methods.

6.1 Datasets

6.1.1 Image Datasets. Image is the most commonly used data type in real-world deep cluster-
ing. The early attempts of deep clustering are applied to image datasets including COIL-20,> CMU
PIE,* Yale-B,> MNIST,® CIFAR” and STL-10.% Recently, efforts has been paid to perform clustering
on large volume vision datasets (e.g., ImageNet). Although existing methods have achieved promis-
ing performance on ImageNet-10 and ImageNet-Dogs dataset, clustering on Tiny-ImageNet (200
clusters) or full-size ImageNet is still challenging.

6.1.2 Textual Datasets. The widely used textual datasets in early applications of textual data
clustering include Reuters-21578° and 20 Newsgroups'® datasets, which have already been vector-
ized and little feature engineering is needed. Currently, raw textual datasets including IMDB,!!
stackOverflow,'? and more in nlp-datasets github repository'® is still challenging for deep textual
clustering.

6.1.3 Video Datasets. The ultimate task of video clustering varies from action classification
[76] to video anomaly detection [153]. Kinetics-400 and Kinetics-600'* are two of the most famous
video datasets. The others include UCF-101 dataset'®> and HMDB-51 dataset.!®

6.1.4  Graph Datasets. Commonly used graph datasets for node clustering can be referred from
the following papers [149, 150, 199] and Stanford Network Analysis Project.!’” And there are also
graph-level classification datasets like PROTINS [90] and MUTAG [200], which can be used to
perform and evaluate graph-level clustering.

6.2 Evaluation Metrics

Evaluation metrics aim at evaluating the validity of methods. In the field of Deep Clustering, three
standard clustering performance metrics are widely used: Accuracy(ACC), Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI).

Shttp://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.cmu.edu/afs/cs/project/PTE/MultiPie/Multi- Pie/Home.html
Shttp://vision.ucsd.edu/~leekc/ExtYaleDatabase/Yale%20Face%20Database.htm
®http://yann.lecun.com/exdb/mnist/index.html
http://www.cs.toronto.edu/~kriz/cifar.html

8https://cs.stanford.edu/~acoates/st110/
“https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection
Ohttp://qwone.com/~jason/20Newsgroups/
Uhttp://ai.stanford.edu/~amaas/data/sentiment/
12https://github.com/jacoxu/StackOverflow

Bhttps://github.com/niderhoff/nlp-datasets
4https://www.deepmind.com/open-source/kinetics
Bhttps://www.crev.ucf.edu/research/data-sets/ucf101/
18https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/#dataset
http://snap.stanford.edu/
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6.2.1 Accuracy. ACC indicates the average correct classification rate of clustering samples.
Given the ground truth labels Y = {y;|1 <i < N} and the predicted hard assignments Y =
{7:]1 < i < N}, ACC can be computed as Equation (24):

N
ACC(T. Y) = max X Z 1{y: = 9} (24)

where g is the set of all possible one-to-one mappings between the predicted labels and ground
truth labels. The optimal mapping can be efficiently obtained by the Hungarian algorithm [201].

6.2.2 Normalized Mutual Information. NMI quantifies the mutual information between the pre-
dicted labels and ground truth labels into [0, 1] as Equation (25):

I(Y;Y)

NMI(Y,Y) = —————,
(. ) 1[H®) + H(Y)]

(25)

where H(Y) is the entropy of Y and 7 (Y;Y) is the mutual information between Y and Y.

6.2.3 Adjusted Rand Index. ARI comes from the Rand Index (RI), which regards the clustering
result as a series of pair-wise decisions and measures it according to the rate of correct decisions
as Equation (26):

_TP+TN

RI
N

) (26)
where TP and TN denote the number of true positive pairs and true negative pairs, Ci] is the
number of possible sample pairs. However, the RI value of two random partitions is not a constant
approaching 0, thus ARI was introduced as Equation (27):
RI — E(RI
arr = —RERD (27)
max(RI) — E(RI)
Both ACC and NMI € [0,1] while ARI € [-1,1], in which higher values indicate better
performance.

7 Applications

Despite the success of deep clustering in mining global patterns among instances, it has also ben-
efited various downstream tasks. In this section, we discuss some typical applications of deep
clustering.

7.1 Community Detection

Community Detection [6, 202, 203] aim at partitioning the graph network into several subgraphs
mainly according to connection density, which can be treated as a node-level graph clustering
task. Early works are mainly based on modularity measurement [204, 205], maximum flows
[206], graph cut [207] and its extension, spectral methods [208]. With the development of GNNs
[209, 210], nodes are represented as individual instances in the low-dimensional space. As a
result, the border between modern community detection [5] and graph clustering [211-213]
is gradually blurring, and GNN-based graph clustering [214, 215] have already been applied to
many applications. However, unlike early community detection, which focuses on the network
topology, graph clustering usually incorporates the node attributes and other side information.
How to release the power of GNNs while preserving the topology characteristic is still under
study.
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7.2 Anomaly Detection

Anomaly detection (a.k.a. Outlier Detection, Novelty Detection) is a technique for identifying
abnormal instances or patterns among data. Early before deep clustering, density-based clustering
methods [216-218] have specifically mentioned and addressed the problem of noise during
clustering, which has enlightened a group of density-based anomaly detection methods [219, 220].
The later anomaly detection methods [153, 221-223] have utilized the clustering results and
identified anomaly instances as those far from the cluster centroids or the border of each cluster.
Currently, deep clustering has shown great potential in forming a better clustering space for
anomaly detection. Instead of performing anomaly detection after deep clustering, recent efforts
have been put into conducting them in a unified framework: identify and remove anomaly in-
stances to reduce the impact on clustering [224], and anomaly detection can be further improved
with better clustering results.

7.3 Segmentation and Object Detection

Image Segmentation is one of the most important approaches to simulating human understanding
of images that aim at dividing pixels into disjoint regions. Generally speaking, image segmentation
is performing pixel classification in a supervised manner and pixel clustering in an unsupervised
manner [225, 226]. Currently, deep clustering has been successfully applied in segmentation using
clustered regions to generate a Scene Graph [227]. Yi et al. [228] surveyed graph cut based image
segmentation, where graph cut is one of the most fundamental solutions to perform clustering
(Spectral Clustering). 3D clustering can be a solution to 3D Object Detection, like in [229], 3D
points were clustered to represent an object with geometric consistency. But such clustering based
segmentation and object detection have no guarantee for small regions and objects, where the
expected clustering result is highly unbalanced. The global positional information of a pixel may
be ignored when clustering is performed.

7.4 Medical Applications

The convolutional neural network has successfully promoted the development of medical image
processing in a supervised manner. However, the manual dataset labeling process is often labor
intensive and requires expert medical knowledge [123], which is hard to realize in real-world
scenarios. Recently, deep clustering has been introduced to automatically categorize large-scale
medical images [123]. Mittal et al. [160] introduce medical image clustering analysis for a
faster diagnosis of COVID-19. In the field of biological sciences, single-cell RNA sequencing
(scRNA-seq) [230] provides a cell gene matrix in output for the analysis of cell population and
behavior and even new cell discovery. For this purpose, ScDeepCluster [129] and ItClust [189]
develop their models based on DEC [102] to cluster scRNA-seq data and MARS [231] that combine
transfer learning and clustering to discover novel cell types. More applications can be found in
the gene data clustering area [232].

Beyond the successful applications of deep clustering previously mentioned, clustering holds
significant promise in various other fields such as financial analysis [233-235], trajectory analysis
[236, 237], and understanding social media [238-240]. Although many of these methods have not
yet adopted deep learning techniques, given the growing volumes and complexity of data, deep
clustering is expected to significantly influence these areas.

8 Future Directions

In this section, we conduct some future directions of deep clustering based on the above corner-
stone, taxonomy, and real-world applications.
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8.1 Initialization of Deep Clustering Module

The initialization of deep neural networks usually plays an important role in the efficiency and
stability of training [241]. This is more critical in deep clustering, where both the representation
learning module and the clustering module are modeled by deep neural networks. Recently, model
pre-training [242] has been a popular network initialization technique that has also been intro-
duced to deep clustering [95]. However, the pre-training based initialization is appropriate for the
representation learning module but has not been well studied for the clustering module. Although
there have been some initialization schemes on shallow clustering [243], the initialization for the
cluster module with deep neural networks is still under investigation.

8.2 Overlapping Deep Clustering

The deep clustering methods discussed in this article largely focus on partitioning clustering where
each instance belongs to a single cluster. Meanwhile, in the real-world scenario, each instance may
belong to multiple clusters, e.g., users in a social network [244] may belong to several communities,
and video/audio on social media may have several tags [245]. Among the deep clustering methods
discussed in this article, if the clustering constraints are conducted on the cluster assignment prob-
abilistic matrix, they can be directly adapted to the overlapping clustering setting. However, if the
training relies on the pseudo hard label of data instances, they may fail in the overlapping cluster-
ing setting. Although multi-label classification has been widely studied in the literature [246, 247],
how to adapt to unsupervised clustering is still an open research question.

8.3 Boosting Representation with Deep Clustering

Throughout this article, we can find that a good representation is essential for clustering. Although
clustering-friendly representation learning has been studied in the literature, they are designed
for the specific shallow clustering method. In contrast, the clustering structure denotes the high-
order pattern of the dataset, which should be preserved in the comprehensive representation [248].
The deep clustering methods discussed in this article focus on how to incorporate representation
learning to boost the clustering, meanwhile, how to in turn boost the representation learning by
the clustering remains to be studied.

8.4 Deep Clustering Explanation

As an unsupervised task, the clustering process usually lacks human priors such as label seman-
tics, number of clusters [249], which makes the clustering results difficult to explain or understand.
Some methods [250] have already combined the tags provided by the users to increase the expla-
nation of the clustering results. However, it relies on accurate human tagging, which may not
be realized in practice. With the development of causal inference in deep learning, the explana-
tion of clustering among instances will hopefully be improved. Both the research and industry
community are expecting a generalized explanation framework for clustering, especially on high-
dimensional data. To conclude, how to utilize the casual inference techniques in clustering is of
great importance and deserves more attention.

8.5 Transfer Learning with Deep Clustering

Transfer learning [251] aims to bridge the gap between training and test datasets with a distribu-
tion shift. The general idea is to transfer the knowledge from the known data to the unknown test
data. Recently, deep clustering has played an increasingly important role in unsupervised transfer
learning [3, 4, 252-254], where the target domain is unsupervised. For example, ItClust [189] and
MARS [231] have achieved success in scRNA-seq clustering (Section 7.4), AD-Cluster [255] that
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use clustering has improved domain adaptive person re-identification. In contrast, unsupervised
transfer learning methods can also benefit deep clustering. Taking UCDS [256] as an example,
the unsupervised domain adaptation is used to perform clustering among variant domains. The
distribution shift is one of the key factors that affect the performance of machine learning mod-
els, including deep clustering. The performance of cluster analysis can give further understanding
of the unsupervised target domain, but how to transfer the clustering result to knowledge and
effectively minimize the distribution shift based on clustering results can be further explored.

8.6 Clustering with Anomalies

In Section 7.2, we have discussed the applications of deep clustering in anomaly detection where
the instances are well clustered. Concerning the existence of anomaly instances in the dataset,
the clustering may also be influenced and mutually restricted, since most existing deep clustering
methods have no specific response to the outliers. The classic K-means method is known to be
sensitive to outliers, although there have been a few works on overcoming this problem [224],
they are designed for shallow clustering methods. To this end, how to improve the robustness
of deep clustering for anomaly instances and gradually improve the clustering performance by
reducing the detected anomaly instances is still an open research question.

8.7 Degenerate Solution versus Unbalanced Data

The issue of degenerate solutions [99] has emerged as a significant challenge in deep clus-
tering, characterized by the potential assignment of all instances to a single cluster. Numer-
ous deep clustering techniques have implemented additional restrictions to address this issue
[95, 99, 112, 131, 133, 134, 257], with the entropy of the cluster size distribution being the most
widely adopted strategy. Through maximization of entropy, it is anticipated that instances will be
distributed uniformly across each cluster, thereby preventing a collapse into a single cluster. Im-
portantly, the effectiveness of this approach depends on a uniform distribution of actual labels, a
condition met by standard datasets such as CIFAR10 and CIFAR100. However, in practical environ-
ments, this assumption may be too rigid as many datasets exhibit unbalance or have a long-tailed
distribution [258]. The conflicting goals of achieving uniform distribution and handling unbal-
anced data can significantly undermine the effectiveness of deep clustering. Recently, the focus on
unbalanced data clustering [259, 260] has intensified, which is expected to improve the effective-
ness of clustering in practical scenarios.

8.8 Efficient Training versus Global Modeling

To improve training efficiency and scalability, most existing deep clustering methods have uti-
lized the mini-batch training strategy, where instances are separated into batches and the model
is updated with each batch. This is suitable for the task where the instances are independent on
each other, such as classification and regression. However, as deep clustering heavily relies on the
complicated relationship among instances, such mini-batch training may lose the ability of global
modeling. Although some existing methods have used cluster representations or prototypes [248]
to store global information, it is still worth studying how to balance training efficiency and model
capability.

9 Conclusion

In this review, we provide a detailed and current summary of the deep clustering research area. We
initially outline the foundational elements of deep clustering, specifically the representation learn-
ing and clustering modules, along with their typical configurations. We categorize the existing
approaches into a taxonomy based on the interaction types between the representation learning
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and clustering modules, specifically: multi-stage deep clustering, iterative deep clustering, gener-
ative deep clustering, and simultaneous deep clustering. Subsequently, we compile the standard
datasets, evaluation metrics, and uses of deep clustering. Finally, we explore prospective future
trends in deep clustering that offer promising opportunities.
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