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Abstract. Few-shot action recognition aims to recognize few-labeled
novel action classes and attracts growing attentions due to practical sig-
nificance. Human skeletons provide explainable and data-efficient rep-
resentation for this problem by explicitly modeling spatial-temporal re-
lations among skeleton joints. However, existing skeleton-based spatial-
temporal models tend to deteriorate the positional distinguishability of
joints, which leads to fuzzy spatial matching and poor explainability. To
address these issues, we propose a novel spatial matching strategy con-
sisting of spatial disentanglement and spatial activation. The motivation
behind spatial disentanglement is that we find more spatial information
for leaf nodes (e.g., the “hand” joint ) is beneficial to increase representa-
tion diversity for skeleton matching. To achieve spatial disentanglement,
we encourage the skeletons to be represented in a full rank space with
rank maximization constraint. Finally, an attention based spatial acti-
vation mechanism is introduced to incorporate the disentanglement, by
adaptively adjusting the disentangled joints according to matching pairs.
Extensive experiments on three skeleton benchmarks demonstrate that
the proposed spatial matching strategy can be effectively inserted into
existing temporal alignment frameworks, achieving considerable perfor-
mance improvements as well as inherent explainability.
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Fig. 1: The Illustration that demonstrates the fuzzy skeleton matching using de-
generated spatial representation, and the disentangled skeleton matching by our
spatial disentanglement and activation. The brighter grids in heatmaps denote
larger similarity among intra-skeleton joints. The size of joints denotes their im-
portance in matching.

1 Introduction

Action recognition has achieved tremendous success with developed deep learn-
ing models and abundant action recordings [21,39]. However, in many scenarios
like healthcare, collecting and labeling enough medical action videos may spend
several years with the efforts of multiple medical experts. To address this data
scarcity, few-shot action recognition is proposed and attracts growing atten-
tions [2, 7, 15,16,20,28].

Given a few labeled demonstrations of novel action classes, i.e., support ac-
tions, few-shot action recognition usually aims to predict the unlabeled actions,
i.e., query actions. Existing works can be divided into video-based [2, 16, 28, 29]
and skeleton-based methods [15, 25, 33]. In the video-based methods, the high
dimensional redundancy information such as luminance and background is usu-
ally unreliable under few-shot scenarios. In contrast, skeleton sequences pro-
vide explainable and data-efficient action representation by explicitly modeling
the spatial-temporal relation of body joints. Existing methods usually perform
Spatial-Temporal Graph Convolution (ST-GCN, [42] ) to capture the spatial-
temporal relations among skeletons. However, the over-smoothing of graph con-
volution tends to make the nodes representations indistinguishable, resulting in
the partial loss of joints’ positional information after ST-GCN. The left part of
Fig. 1 illustrates the over-smoothed similarity heatmaps of intra-skeleton joints
and the fuzzy spatial matching caused by the degenerated spatial representation.
This fuzzy spatial matching further leads to fragile spatial-temporal matching
between the query and the support skeletons in few-shot action recognition.

To address the distinguishability caused by over-smoothing, typical graph
learning methods try to drop graph edges (DropEdge, [32]) or push away non-
adjacent nodes (PairNorm [45]). However, in small size skeleton graphs, these
methods may destroy the skeleton structure, or smoothing joints’ representations
as long as they are adjacent, e.g., PairNorm is prone to produce distinguishable
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representations between elbow joints and hand joints. Instead, the disentangled
joint representations naturally produce distinguishability for spatial matching
(see the right of Fig. 1). For example, the skeleton’s leaf nodes (joints) like “hand”
usually contain essential positional information. Hence disentangling these joints
from the spatial convolution process can preserve spatial structure for skeleton
matching. To achieve this disentanglement, one strategy is to encourage the
joint representations to have less linear dependence with rank maximization on
skeleton representation matrices.

Although this disentanglement encourages important joints to have indepen-
dent representations, it does not filter out unimportant joints in the matching
process. In other words, when matching a query skeleton and a support skeleton,
the query skeleton should know whether one joint is significant for the support
one and vice versa. Motivated by this, we design two independent cross-attention
modules for query and support pairs to adaptively activate their spatial infor-
mation.

Finally, this spatial matching strategy can be orthometric with popular tem-
poral matching methods like Dynamic Time Warping (DTW, [34]), which de-
termines the optimal temporal matching strategy for two skeleton sequences.
By seamlessly inserting the proposed spatial matching into temporal matching,
we propose a holistic spatial-temporal measurement for skeleton sequences. Our
ablation experiments on NTU RGB+D 120 [22] and Kinetics [17] demonstrate
its effectiveness on few-shot action classification tasks. Our method can be sum-
marized as Disentangled and Adaptive Spatial-Temporal Matching (DASTM)
for few-shot action recognition. The contributions are enumerated as follows:

– We systematically investigate skeleton-based few-shot action recognition and
find the degeneration of spatial information existing in mainstream methods
under data scarcity scenarios.

– To alleviate the degenerated spatial representations, we propose a novel spa-
tial matching strategy through adaptively disentangling and activating the
representations of skeleton joints.

– Extensive few-shot experiments on public action datasets demonstrate the
effectiveness of our holistic spatial-temporal matching.

– Our heatmap visualizations demonstrate which joints are vital in recognition
tasks, providing explainable predictions for trustworthy action recognition.

2 Related Work

2.1 Few-Shot Action Recognition

Few-shot action recognition aims to recognize novel action classes given a few
labeled action examples. Due to practical significance, this recognition paradigm
recently attracts enormous attentions [2, 4, 5, 7, 14, 16, 19, 20, 26, 28–30,38, 40, 41,
43,44,46,47].

[15] demonstrates that low dimensional skeleton data may be better for
capturing spatial-temporal information. For skeleton-based representation, [33]
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uses a temporal convolutional network [1] and computes the cosine distance
between the query and support actions. [25] construct positive and negative
pairs to learn the appropriate distance of different action classes.

2.2 Graph Representation and Matching

A human skeleton can be naturally represented as a graph whose joints and bones
are denoted by vertexes and edges respectively. Based on graph representation,
ST-GCN [42] and its variants [8,23,35] perform graph and temporal convolution
to capture the spatial and temporal features. Although the ST-GCNs have been
mainstream backbones for skeleton-based action classification, it is still challeng-
ing to match the action representations after these backbones. For example, the
joints’ positional information may be lost or inaccurate due to over-smoothed
graph convolution in ST-GCNs. This over-smoothing is an intrinsic characteris-
tic brought by message passing mechanism [45] and is further magnified without
abundant training data.

2.3 Temporal Alignment

The start time and motion speed of two actions are usually mismatched in spite
of the same action labels. This temporal mismatch has drawn elastic temporal
alignment methods such as Dynamic Time Warping (DTW, [10,34]). DTW cal-
culates an optimal match between two given sequences using dynamic program-
ming. Recently, DTW and its variants have been used to boost the alignment of
temporal features in low-shot setting [5, 44].

3 Preliminary

Skeleton-based actions. A frame of skeleton graph can be defined as G =
{X,A}, whereX ∈ Rn×3 is the feature matrix,A ∈ Rn×n is the adjacent matrix,
n and 3 is the number of node (joints) and node dimension respectively. From
the above definition, a skeleton-based action sequence is G = {G1, G2, · · · , GM},
where M is number of the input frames.

Few-shot action recognition aims to adapt a model into novel classes and
classify the unlabeled actions, i.e., query actions, given a few labeled actions,
i.e., the support actions. There usually are three parts including training set
Ttrain , validation set Tval, and test set Ttest, in which the action classes of the
three parts do not overlap. In a training task, given N classes with K labeled
support actions per class, the prototypical representation [36] of each class is
Ck = 1

K

∑
(Gs

i ,y
s
i )
fϕ(Gs

i )×I(ysi = k), where Gs
i is the support action, I is Indicator

function. Let d denote the node’s latent dimension, fϕ(·) : RM×n×3 → Rm×n×d

can be viewed as an action encoder with parameters ϕ. The prediction of a query
action Gq can be formed into the following prototype method:

pϕ(y = k | Gq) =
exp (−dis (fϕ(Gq), Ck))∑
k′ exp (−dis (fϕ(Gq), Ck′))

, (1)



DASTM for Few-Shot Action Recognition 5

where dis(x, y) is the distance of two action sequences. Compared with meta-
learning methods like MAML [13], the prototype methods do not need large
memory overhead to memorize multiple gradient steps, hence making it possible
to incorporate larger backbones like ST-GCNs.

4 Proposed Framework

In essence, designing a distance measurement for query skeleton sequences and
support skeleton sequences is the key to predict the query’s categories. However,
the mainstream methods like Spatial-Temporal Convolution ( typically used in
ST-GCN [42] and its extensions [23,35,42]) focus on learning integrated spatial-
temporal representation, without considering the relation of different actions
sequences. In our few-shot setting, directly measuring the integrated spatial-
temporal representations are suboptimal with the following issues: 1) the degen-
eration of spatial representation; 2) the misalignment of temporal sequences. In
the next part, we will discuss how the two issues arise and propose a holistic
solution with spatial matching as well as temporal alignment.

4.1 Spatial Disentanglement and Activation

Learning Disentangled Skeleton Representation. Existing ST-GCNs
get satisfying performance in capturing discriminative spatial-temporal features.
However, their graph convolution operators often repeat message passing among
skeleton nodes, which eventually leads to indistinguishable node embeddings.
The phenomenon is also known as the over-smoothing problem, which does not
seriously impact action classification once given abundant training data [45].
However, lacking sufficient data in few-shot learning, this over-smoothing is
magnified, leading to the degeneration of nodes’ positional representation. For
example, the “elbow” node of a skeleton graph may get more spatial informa-
tion of the “hand” node. If we measure the distance of two skeleton graphs, the
degenerated spatial representation will result in noisy distances.

To alleviate the over-smoothing of graph convolution, some methods were
proposed via directly dropping edges (DropEdge, [24,32]) or centering and rescal-
ing node representations (PairNorm [45]). However, these methods are subop-
timal for the particular skeleton structure. For example, the node “left hand”
is relatively near the “left elbow” on a graph, hence is easier to have similar
representations via DropEdge or PairNorm. We argue that smoothing the rep-
resentation of “hands” may lose key action features. Besides that, the forced
dropping edges will destroy the integrity or the symmetry of skeleton graphs.
Instead, our strategy is disentangling the skeleton representations to keep the key
spatial features like “hand” by reducing the independence among skeleton nodes.
In the field of matrix analysis, the rank of a matrix is a permutation invariant di-
versity measure indicating the maximum number of linearly independent vectors
in a matrix. Given a skeleton graph representations matrix Hbi ∈ Rn×d, where
b denotes the b-th sequence in a batch, i denotes the i-th skeleton graph in the
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Fig. 2: The Illustration that describes 1-shot action recognition with our frame-
work. Hq and Hs are the outputs of identical spatial-temporal encoder like
ST-GCN [42]. The parameterized modules QA and SA denote query activation
and support activation respectively. For clarity, we only demonstrate the match-
ing process of the first skeleton representations, i.e., Hq

1 and Hs
1.

sequence, n is the number of node and d is the node’s latent dimension, we can
maximize its rank to reduce the dependencies among skeletons joints. Directly
maximizing the rank of Hbi is a NP-hard problem [31]. A common solution is to
use nuclear-norm ||Hbi||∗ as a surrogate for rank(Hbi) [9, 31]:

||Hbi||∗ = (

min(n,d)∑
j

σj
i ) < rank(Hbi), (2)

where σj
i is the j-th singular value of matrix Hbi and can be calculated through

Singular Value Decomposition (SVD) [3]. Pytorch7 has released a differential
SVD tool for for convenient implementation. The constraint can be applied to a
batch of skeleton sequences, forming the spatial disentanglement objective:

Ldis = − 1

B ∗m

B∑
b

m∑
i

||Hbi||∗, (3)

where B is the number of action sequences in a batch, m is the length of a
sequence after temporal convolution.

Learning Spatial Activation. Recovering the spatial representations grounds
the spatial matching between the query graph representationHq ∈ Rn×d and the
support graph representation Hs ∈ Rn×d. A direct solution to match the query

7https://pytorch.org/
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graph and support graph is to calculate their Euclidean distance. Based on this,
we further consider the harder situation: when matching two similar actions
such as squatting down and sitting down, the spatial relation of joints plays an
important role to distinguish the two actions. To further pay attention to the
important joints, we start with transforming the query’s spatial representation
according to the representations of support skeletons. This means that the node
representations should better be adaptively changed according to different query-
support graph pairs. Specifically, when given a query graph representation Hq,
the transformed version can be produced as:

Ĥq = S

(
Wq

1H
q · [Wq

2H
s]T√

d

)
Wq

3H
q, (4)

where S(·) is the Softmax function, Wq
1,W

q
2,W

q
3 are the the transformation

matrices and d is the dimension of node representation. Similarly, Hs can be
transformed as:

Ĥs = S

(
Ws

1H
s · [Ws

2H
q]T√

d

)
Ws

3H
s, (5)

Then the distance of two graphs can be defined as:

D(Ĥq, Ĥs) = ||Ĥq − Ĥs||F , (6)

where || · ||F is the Frobenius norm. The cross-attention form Eq. (4) and Eq. (5)
is inspired by the Transformer [37], but learns different inductive bias compared
with popular cross-attention methods. Previous cross-attentions usually focus on
one of the two parties involved in the measurement process, e.g., only learning the
inductive bias for support prototype instead of query examples [11]. We suppose
that the Hs and Hq have different activation patterns because of asymmetrical
calculation in measurement, e.g., the Hs in Eq. (5) is usually a weighted average
representation corresponding to Hq. Hence learning the inductive bias each side
with Eq. (4) and Eq. (5) may stimulate different activation patterns.

4.2 Temporal Matching

Given a transformed query sequence Q = {Ĥq
1, Ĥ

q
2, · · · Ĥq

m} and a support se-

quence Ck = {Ĥs
1, Ĥ

s
2, · · · Ĥs

m}, there may be the misalignment that Ĥq
i does not

corresponding to Ĥs
i . Therefore, directly calculating the sequence distance with

the sum of graph pairs D(Ĥq
i , Ĥ

s
i ) will impact the distance measurement be-

tween two action sequences. To tackle this misalignment, we introduce Dynamic
Time Warping (DTW, [34]), which is a popular temporal alignment method with
multiple variants [12,27]. Concretely, for a query-support pair, we can get a dis-

tance matrix E ∈ Rm×m, where each element Eij is calculated with D(Ĥq
i , Ĥ

s
j).

Supposing the cumulative distance from a query frame i to a support frame j
can be calculated with the following dynamic programming form:

Γ (i, j) = E(i, j) + min{Γ (i− 1, j − 1), Γ (i− 1, j), Γ (i, j − 1)}, (7)
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Algorithm 1 Training Algorithm for Few-Shot Action Recognition

Input: The training data Ttrain

Parameter: Model parameters θ, including action encoder parameters ϕ, spatial
transformation parameters sets {W} = Wq

1,W
q
2,W

q
3,W

s
1,W

s
2,W

s
3.

Output: The learned θ and {W}.

1: while not convergence do
2: for step = 0 → T do
3: Sample a N-way-K-shot classification task with query actions {Gq

i , Y
q
i }

Nq

i=1 and
support actions {Gs

i , Y
s
i }N

s

i=1

4: Compute all support action prototypes {Ck}Nk=1 using {Gs
i , Y

s
i }N

s

i=1, where
Ck = {Hs

1,H
s
2, · · ·Hs

m}
5: Compute all query action representations {Qi}N

q

i=1, Qi = {Hq
1,H

q
2, · · · ,Hq

m}
6: for each Qi, compute its distance with each support sequence Ck by Algo-

rithm 2
7: Compute the labels for all query actions with Eq. (1)
8: For all query actions, compute Ldis with Eq. (3)
9: Compute Lmatch via Eq. (8)
10: Update θ and {W} by Lmatch.
11: end for
12: end while

hence we can utilize d(Q,Ck) = Γ (m,m) as the sequence distance. To get a
differentiable distance, the minimization function min(·, ·) can be replaced with
a differentiable version [27].

4.3 The Learning Objective

According to Eq. (1) and Eq. (3), the overall learning objective can be derived:

Lmatch = − 1

Nq

Nq∑
i

log pϕ(ŷi = yi | Gq
i ) + λLdis, (8)

where Nq is the number of query actions, ŷi and yi is the predicted label and
ground truth label for Gq

i , λ denotes the weight of Ldis. Algorithm 1 and Algo-
rithm 2 demonstrate the overall training process of our algorithm. Fig. 2 illus-
trates the graphical framework.

5 Experiments

In this section, we will evaluate our approach and baselines on two public large
scale datasets, trying to answer the following questions: (1) What’s the perfor-
mance of primitive baselines like using ST-GCN [42]+ProtoNet [36] without any
spatial-temporal alignment? (2) Is our rank maximization strategy working bet-
ter than typical methods that tackle the over-smoothness of ST-GCNs? (3) How
does the activation strategy work for each part of the skeletons?
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Algorithm 2 Matching Algorithm for Skeleton Sequences

Input: A query action representation Q = {Hq
1,H

q
2, · · · ,Hq

m}, and a support
prototype Ck = {Hs

1,H
s
2, · · ·Hs

m}
Parameter: Spatial transformation parameters Wq

1,W
q
2,W

q
3,W

s
1,W

s
2,W

s
3

Output: Γ (m,m), the distance between Q and Ck

1: Initialize distance matrix E ∈ Rm×m

2: for i = 0 → m do
3: for j = 0 → m do
4: Compute Ĥq

i with Hq
i and Hs

j using Eq. (4)

5: Compute Ĥs
j with Hs

j and Hq
i using Eq. (5)

6: Eij= D(Ĥq
i , Ĥ

s
j) with Eq. (6)

7: end for
8: end for
9: Compute accumulation distance matrix Γ with E using Eq. (7)

5.1 Datasets

We firstly introduce the used datasets including NTU RGB+D 120 [22] and
Kinetics [17].

NTU RGB+D 120 [22] is a large-scale dataset with 3D joints annotations
for human action recognition tasks, containing 113,945 skeleton sequences with
25 body joints for each skeleton. In our experiments, we use 120 action categories,
including 80, 20 and 20 categories as training, validation and test categories. For
each category, we randomly take 60 samples and 30 samples, denoted as two
subsets “NTU-S” and “NTU-T”, respectively. Please see our Appendix A for
more details.

Kinetics skeleton dataset [17] is sourced from YouTube videos. The dataset
contains 260,232 videos over 400 classes, where each skeleton graph has 18 body
joints after pose estimation, along with their 2D spatial coordinates and the
prediction confidence score from OpenPose [6] as the initial joint features. In
our experiments, we only use the first 120 actions with 100 samples per class.
The number of training/validation/test partitions is identical to NTU RGB+D
120 (please see our Appendix A for more detailed separation).

5.2 Baselines

The baselines includes the following categories for few-shot action recognition:
ProtoNet [36]; temporal alignment DTW [34]; the methods for spatial recover
, such as PairNorm [45] and DropEdge [32]; spatial alignment or graph metric
learning like NGM [15]. Note that all the above methods use ProtoNet as clas-
sifier head for few-shot action recognition. Besides that, the baselines PairNorm,
DropEdge and NGM are combined with temporal alignment DTW.
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ProtoNet [36] treats the representation of action sequences as vectors and
computes the Euclidean similarity of the vectors without any spatial matching
and temporal alignment.

DTW calculates an optimal match between two sequences using dynamic
programming, and is a popular temporal alignment method adopted by previous
video-based few-shot action recognition.

PairNorm [45] aims to tackle over-smoothing in graph neural networks
(GNNs). By centering and rescaling node’s representations, PairNorm uses a
normalization after graph convolution layer to prevent all node embeddings from
becoming too similar.

DropEdge [32] randomly drops a few edges in input graphs to make nodes
aggregation diverse from their neighbors. Both PairNorm and DropEdge are
designed to alleviate the over-smoothing problem in large noisy graphs. To the
best of our knowledge, the two strategies are the first to be applied to skeleton
graphs.

NGM [15] jointly learns a graph generator and a graph matching metric
function in an end-to-end fashion to optimize the few-shot learning objective.

DASTM* and DASTM** denote our ablation models with Rank Maxi-
mization and Spatial Activation, respectively.

5.3 Implementation Details

Data preparation. We randomly sample N classes with each class containing
K actions as the support set. Correspondingly, we have N categories including
K actions of query set, where the query set has the same classes as the support
set. Thus each episode has a total of N × (K + K) examples as a training or
test batch. For each skeleton sequence, we pre-process the skeleton sequences
following pre-processing video procedure as TSN [39]. For different datasets, we
uniformly sample 50 and 30 frames per skeleton sequence in Kinetics and NTU-
T/S. This uniform sampling provides identical sequence lengths for the support
and query actions.

Spatial-temporal backbones. To encode the action skeleton sequence, we
adopt typical ST-GCN [42], 2s-AGCN [35] and MS-G3D [23] as the back-
bones. ST-GCN proposes spatial-temporal graph convolution on skeleton se-
quences. 2s-AGCN uses joints and bones information to learn data-dependent
graph structure. MS-G3D proposes multi-scale aggregation scheme to disentan-
gle the importance of nodes in different neighborhoods and cross-spacetime edges
to capture high-level node interaction. Appendix C provides smaller backbones
and corresponding performances.

Model training and evaluation All models are trained with Adam [18]
optimizer, using an initial learning rate 0.001. The weight λ of Ldis is set with
0.1 according to the validation sets for all experiments. With randomly sampling
1,000 episodes in training and 500 episodes in test, each experiment is repeated
3 times to calculate mean accuracy with standard deviation. Furthermore, all
experiments are constructed using Pytorch and performed on Ubuntu 18.04 with
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one GeForce RTX 3090 GPU.The training codes can be found here 8. Each
training task may need about 10h.

5.4 Results

As shown in Tab. 1 and Tab. 2, we compare our method with mentioned base-
lines using 3 datasets and 3 backbones. 5-way-k-shot denotes performing 5-way
classification using k labeled support example per class.

Strong baselines are constructed for skeleton-based few-shot action
recognition. With the spatial-temporal convolution, only using ProtoNet clas-
sifier can produce 71.2% 1-shot classification accuracy on NTU-T (see ProtoNet
baseline in Tab. 1), even though this dataset only contains 30 action examples per
class. This performance demonstrates the potential of simply spatial-temporal
convolution for skeleton-based few-shot action recognition.

Generalized methods coping over-smoothing may harm the few-
shot task. We perform two comparison experiments containing DropEdge and
PairNorm (denoted with DropEdge and PairNorm in Tab. 1 and Tab. 2). For
DropEdge, we find only randomly dropping 4 edges already destroys the small
skeleton graphs and harms the improvement brought by DTW. In contrast,
PairNorm makes the adjacent nodes have similar representations with pushing
away the non-adjacent nodes. However, making the adjacent nodes have similar
representations may smooth the key joints’ features such as “hands” and “el-
bows”, which harms the matching process (see PairNorm and DTW in Tab. 1).

Table 1: The 5-way-1-shot action classification accuracies (%).
Backbones ST-GCN 2s-AGCN MS-G3D
Methods NTU-T NTU-S Kinetics NTU-T NTU-S Kinetics NTU-T NTU-S Kinetics
ProtoNet 71.2±1.5 73.3±0.3 37.4±0.4 68.1±0.5 72.8±0.3 38.4±0.2 70.1±1.0 73.6±0.2 39.5±0.3

DTW 74.0±2.1 73.5±0.4 39.2±0.2 70.8±1.4 71.5±1.2 40.9±0.4 72.4±0.2 73.9±0.4 40.6±0.2

NGM 71.8±1.2 75.7±0.4 39.1±0.3 72.2±1.0 73.2±0.6 40.9±0.2 73.5±0.3 76.9±0.4 40.8±0.3

PairNorm 72.9±0.5 72.8±0.4 39.3±0.7 70.0±0.5 70.8±0.3 40.9±0.3 71.0±0.8 70.8±0.9 40.7±0.7

DropEdge 67.3±1.9 70.7±0.7 38.9±0.9 70.1±0.4 72.6±0.2 39.9±0.3 68.7±0.4 69.5±0.7 39.4±0.3

DASTM* 74.5±1.9 73.4±0.6 39.5±0.9 72.4±0.9 72.9±0.5 40.9±0.4 72.7±0.6 74.4±1.6 40.7±0.2

DASTM** 74.4±2.9 75.9±0.3 39.8±0.1 72.9±1.5 74.6±0.3 41.0±0.1 74.1±0.3 75.5±1.7 41.0±0.1

DASTM 75.1±1.8 76.2±0.3 39.3±0.1 73.3±0.6 74.0±0.7 40.8±0.3 75.0±0.9 76.3±1.2 41.1±0.2

Table 2: The 5-way-5-shot action classification accuracies (%).
Backbones ST-GCN 2s-AGCN MS-G3D
Methods NTU-T NTU-S Kinetics NTU-T NTU-S Kinetics NTU-T NTU-S Kinetics
ProtoNet 81.1±0.2 84.3±0.3 46.8±0.4 81.9±0.1 84.2±0.1 50.5±0.2 82.3±0.2 85.3±0.1 50.0±0.3

DTW 81.0±0.6 81.5±0.5 47.9±0.3 81.2±0.9 82.5±0.8 50.8±0.3 81.3±0.3 83.2±0.4 50.0±0.2

NGM 81.4±0.5 84.2±0.4 48.6±0.4 83.2±0.3 85.9±0.4 49.8±0.3 83.1±0.4 86.7±0.2 50.7±0.3

PairNorm 81.8±0.4 81.4±0.3 48.6±0.5 80.0±0.3 80.3±0.2 50.4±0.4 81.6±0.7 82.5±0.9 50.6±0.1

DropEdge 77.9±1.5 78.6±0.7 48.2±0.2 80.5±0.3 83.1±0.6 50.2±0.3 80.9±0.4 80.2±0.6 50.1±0.2

DASTM* 81.8±0.6 82.4±0.5 48.8±0.2 81.8±0.3 83.6±0.6 51.0±0.1 81.9±0.1 84.1±0.6 51.3±0.2

DASTM** 82.9±0.8 85.3±0.7 49.2±1.0 83.5±0.4 86.3±0.7 51.3±0.6 84.2±0.5 86.4±1.6 51.1±0.5

DASTM 83.0±0.1 85.5±0.3 48.9±0.1 83.8±0.8 86.8±0.3 50.9±0.2 84.9±0.3 87.3±1.2 51.1±0.9

8https://github.com/NingMa-AI/DASTM
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Fig. 3: The intra-skeleton joints similarity heatmaps according to different spatial
preserving strategies (see more visualizations in our Appendix D). All the skele-
tons are sampled from Kinetics dataset with 18 joints per skeleton. (a). None,
no spatial preserving strategy is used. Almost all the upper limb joints (num-
ber 0-6) and lower limb joints (number 8-13) are distinguishable. (b). PairNorm
method produces similar representations for the upper limb joints (number 5-7)
and lower limb joints (8-13), due to its centering and rescaling operations. (c).
DropEdge, randomly dropping edges of skeleton graphs can not alleviate the
smoothness representations such as lower limb joints (number 8-13). (d). Our
RankMax method, the representative joints such as hands (number 4 and 7)
and feet (number 13) are disentangled from other joints, providing more specific
spatial features for skeleton matching.

The heatmaps in Fig. 3 also illustrate the joints’ smoothness with PairNorm and
DropEdge. An extreme case happens on Kinetics dataset, on which nearly all
methods (including ours) do not get significant improvements compared with
DTW. One of the reasons might be the large data noise in Kinetics, in which a
large proportion of actions even can not be efficiently distinguished via skeletons.
Given noisy skeleton distance, the optimal alignment path for DTW is fragile
and the improvements for DTW are overwhelmed by this noise. Our method still
successfully obtain gains for DTW, while there are no performance improvements
or even drops over DTW by PairNorm, Dropedge on Kinetics.

Comparison with existing skeleton-based few-shot methods. NGM
proposes the first skeleton-based few-shot recognition method with graph match-
ing. We tried to implement an enhanced version with deeper edge-weight learning
layers in ST-GCNs, adding time alignment via DTW and learning a more pow-
erful graph tensor with Transformer’s self-attention. Although these additional
technics result in a strong baseline, we find that our mutual-activation between
query and support skeletons still works better than the self-activation in NGM.

5.5 Ablation Studies

In this section, we demonstrate how each component contributes to the overall
performances.

Analysis of spatial disentanglement. In our framework, the disentan-
glement of spatial information is achieved by maximizing the rank of skeleton
representation matrix. Compared with temporal alignment baseline DTW, this
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Fig. 4: The spatial activation illustration containing query-support pairs and
corresponding inter-skeleton activation heatmaps on NTU-T dataset (best view
in color). Each pair represents a matching process between a query action and
a support action, and each heatmap is derived from the output of the Softmax
function in Eq. (4).

disentanglement strategy achieves up to 1.4% improvements on NTU-T with
2s-AGCN (see Tab. 1). The reason behind is that our rank maximizing strategy
encourages skeleton joints to have independent representation, which provides
more spatial information for skeleton matching. For example, in Fig. 3d, the
hand joints (number 4, 7) and foot joints (number 13) are the disentangled key
parts to describe one action. This result also demonstrates that the spatial in-
formation was not fully considered in previous skeleton-based few-shot action
recognition.

The explainability of spatial activation. To identify the intra-class and
inter-class spatial activation patterns, we collect the outputs of the Softmax
function in Eq. (4) and visualize them with heatmap (see Fig. 4). In the first
matching pair “writing”-“writing”, the query’s upper limb joints (number 2-6
and 8-11) are activated. In the pair “writing”- “kicking”, we can observe that the
query’s activation has much lower responses, which indicates the query action
and support action may belong to different classes. We hope the explainability
will bring more interesting works in future action recognition tasks.

Analysis of temporal alignment. To demonstrate the improvement of
our spatial matching strategy, we also perform ablation studies on temporal
alignment (see DTW in Tab. 1). Based on DTW, our spatial matching strategy
gets up to 3.5% improvement on 1-shot tasks. However, for 5-shot tasks (see
DTW in Tab. 2), DTW may be suboptimal compared with ProtoNet due to
its sensibility to skeleton noise, which may bring suboptimal matching path in
DTW. Tackling the fragility of DTW falls slightly out of the scope of this study.
One of our future works is to enhance the robustness for DTW’s path selection.
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5.6 Hyper-Parameter Analyses

The degree of spatial disentanglement, PairNorm Scale and Drop Rate are three
key hyper-parameters in our framework, PairNorm and Dropedge, respectively.
Fig. 5a illustrates the accuracy changing with different weight λ using DASTM*
consisting of temporal alignment DTW and Rank Maximization. When λ =
0.01 is small, the model gets much lower performance due to limited spatial
disentanglement. When λ is close to 1, the compulsive disentanglement of all
joints damages the original spatial relation. This failed situation also verifies
our claim in the previous section: only a part of joints that maintain critical
positional information need to be disentangled to help skeleton matching. In
practice, we find disentangling a few joints is more helpful for skeleton matching,
e.g., about 7 joints are disentangled in Fig. 3d. We suggest using a small λ like
0.1 or 0.05 to encourage the model to adaptively select a part critical joints.
Besides that, Fig. 5b and Fig. 5c demonstrate two baselines’ hyper-parameter
sensibility (please see the Appendix B for more details).
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Fig. 5: The hyper-parameter sensibility for RankMax(ours), PairNorm and
DropEdge, respectively. All tasks are 5-way-1-shot on NTU-T using ST-GCN.

6 Conclusion and Future Works

We propose a novel skeleton representation and matching solution for few-shot
action recognition. The proposed method tries to capture key joints from the dis-
entanglement view, hence bring more explainability for concrete few-shot action
recognition tasks. Compared with the well studied video-based solutions, it is
the first time exploring skeleton-based few-shot action recognition with the pow-
erful representation ability of modern ST-GCNs. We hope more skeleton-based
few-shot works can be explored in the future.
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