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Knowledge distillation, a technique recently gaining popularity for enhancing model generalization in Con-
volutional Neural Networks (CNNs), operates under the assumption that both teacher and student models
are trained on identical data distributions. However, its effect on Graph Neural Networks (GNNs) is less
than satisfactory since the graph topology and node attributes are prone to evolve, thereby leading to the
issue of distribution shift. In this paper, we tackle this challenge by simultaneously training a group of graph
neural networks in an online distillation fashion, where the group knowledge plays a role as a dynamic virtual
teacher and the structure changes in graph neural networks are effectively captured. To improve the distillation
performance, two types of knowledge are transferred among the students to enhance each other: local knowledge
reflecting information in the graph topology and node attributes, and global knowledge reflecting the prediction
over classes. We transfer the global knowledge with KL-divergence as the vanilla knowledge distillation does,
while exploiting the complicated structure of the local knowledge with an efficient adversarial cyclic learning
framework. Extensive experiments verified the effectiveness of our proposed online adversarial distillation

approach. The code is published at https://github.com/wangz3066,/0nlineDistillGCN.

1. Introduction

Recent advances in computing devices such as graphical processing
units are rendering possible to train Deep Neural Networks (DNNs)
with millions of parameters. In particular, Deep Convolutional Neural
Networks (DCNNs) have made dramatic breakthroughs in a variety of
computer vision applications including image classification (Simonyan
& Zisserman, 2015) and object detection (He et al., 2017), etc, due
to its extraordinary ability on feature extraction and expression. How-
ever, these DCNNs often contain tens or even hundreds of layers
with millions of trainable parameters. For example, Inception V3 net-
work (Szegedy et al., 2015) requires about 24M trainable parameters
while ResNetl52 (He et al.,, 2016) contains about 60M trainable pa-
rameters. Training such cumbersome models is highly time-consuming
and space-demanding, thus their deployment on resource-limited de-
vices such as mobile phones or tablets is restricted. For years, many
approaches have been proposed to transform the heavy neural network
into a lightweight one, such as network pruning (Wu et al., 2016) and
low-rank factorization (Denton et al., 2014). Knowledge Distillation
(KD) is also proposed to compress and accelerate those cumbersome
teacher models by training a lightweight student model to align with
the teacher’ predictions (Hinton et al., 2015). The predictions from
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teacher are used as a positive regularization to improve the general-
ization ability of the student network. Besides prediction alignment,
knowledge distillation could also be achieved by aligning intermediate
representations (Chen, Mei et al,, 2021; Romero et al., 2015) and
sample relations (Park et al., 2019; Passalis & Tefas, 2018) between
the teacher and student models. Due to its simple implementation and
effectiveness, knowledge distillation has gained much popularity.
Recently, knowledge distillation has attracted the attention of the
Graph Neural Networks (GNNs) community, where a tiny student
GNN model is trained by distilling knowledge from a large pre-trained
teacher GNN model (Yang et al., 2021, 2020). A successful knowledge
distillation requires that the data distribution of both the teacher and
student models are similar. Nevertheless, directly employing the vanilla
teacher—student paradigm will be plagued by the volatility of the graph
data. That is, the graph topology and node attributes are likely to
change over time. For example, in social networks, new nodes or new
edges may be added to the graph. This indicates the distributions of
training sets for the teacher and student models might vary. Conse-
quently, the student model trained with outdated knowledge from the
static teacher will probably result in sub-optimal solutions. A static
teacher model therefore is not optimal for transferring knowledge
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in a volatile environment. Although this distribution shift problem
has been studied for Convolutional Neural Networks (CNNs) (Nguyen
et al., 2021), the problem in the graph domain has not been well
addressed. The challenge of this problem lies in the constant evo-
lution of graph data. Traditional distribution alignment techniques,
such as transfer learning, would be ineffective because they assume
that the data distributions from the source and target domains are
fixed. Besides, pretraining a large teacher model requires significantly
more processing time and computation resources than training a stu-
dent model, resulting in many economic and environmental problems.
Considering the expensive cost and the frequency of the change in
graph-structured data training, retraining the heavy-weight teacher
GNN when the graph changes will be impractical. To alleviate this
problem, instead of training a single heavy-weight static teacher GNN,
we simultaneously train a group of student GNNs in an online fashion
to effectively capture dynamic changes and leverage the group knowl-
edge as an effective proxy for the pre-trained teacher model. In this
way, each student GNN will distill the knowledge from other peers to
enhance its performance. When retraining is required in case of graph
updates, much less cost will be incurred by the light-weight student
models than the heavy-weight teacher models.

More specifically, each student GNN is trained with the conven-
tional cross-entropy loss from the ground truth labels as well as two
types of knowledge from other peers, which corresponds to two char-
acteristics of graph data: Local Knowledge and Global Knowledge: (1)
Local Knowledge reflects information contained in the graph topology
and node attributes, which is instantiated as the learned node em-
bedding with aggregated attributes from neighboring nodes. To better
capture the complicated structure of the local knowledge, we employ
the adversarial cyclic learning to effectively achieve the embedding
alignment among students. (2) Global Knowledge reflects the prediction
over classes by the semi-supervised classifiers. We transfer this type
of knowledge with KL divergence as the vanilla knowledge distillation
does.

We conduct extensive experiments on benchmark datasets with
different GNN architectures to verify the generalization of our proposed
Online Adversarial knowledge Distillation (OAD) framework. Ablation
studies are also designed to demonstrate the necessity of each proposed
component.

In summary, the contributions of this paper are concluded as fol-
lows:

* A novel Online Adversarial Distillation (OAD) framework is pro-
posed to simultaneously train a group of student GNN models
in an online fashion in which they can learn from peers and
effectively capture structure updates in graph neural networks.
Student GNNs are trained with both global and local knowledge
in the GNNs group for better distillation performance. To learn
the complicated structure of the local knowledge, adversarial
cyclic learning is employed to achieve more accurate embedding
alignment among students.

Extensive  experiments including transductive/inductive
node classification and object recognition on benchmark datasets
as well as dynamic graphs demonstrate the effectiveness of our
framework.

The structure of this paper is organized as follows. In Section 2, we
review the literatures that closely related to the topic of this paper. In
Section 3, we introduce the details of the proposed Online Adversarial
knowledge Distillation (OAD) for GNNs. In Section 4, we compare the
performance of proposed OAD model with other baseline methods to
demonstrate its effectiveness. The conclusions and future works of this
paper is presented in Section 5.

2. Related works
2.1. Knowledge distillation

Knowledge distillation is a model compression technique which
aims to boost the performance of a lightweight student model lever-
aging the ’dark knowledge’ of a over-parameterized teacher model.
The first work of knowledge distillation is introduced by Hinton et al.
(2015), which regards the prediction of teacher model as knowl-
edge and transfers it to student model using Kullback-Leibler (KL)
divergence. To further enhance the performance, subsequent works
attempted to align feature maps from intermediate layers (Chen, Mei
et al., 2021; Romero et al., 2015; Sepahvand et al., 2022; Zagoruyko
& Komodakis, 2017) or align sample relations based on their repre-
sentations from the penultimate layer (Chen et al., 2022; Park et al.,
2019; Passalis & Tefas, 2018). To circumvent the pretraining step
for obtaining a large teacher model, online knowledge distillation
provides a more economic solution by simultaneously training a group
of student models and encouraging each student to distill from other
peers (Chen et al., 2020; Lan et al., 2018; Zhang et al., 2018, 2022). The
reason behind these works is that we can dynamically construct one or
several “virtual” teacher(s) with higher accuracy to guide the student
during training. The most straightforward way to obtain the “virtual”
teacher(s) is to simply average the predictions of other peers (Zhang
et al., 2018), which is later improved by adaptively learning the
weights through gate or self-attention mechanism (Chen et al., 2020;
Lan et al., 2018). Although online knowledge distillation has been
extensively studied on CNNs, to the best of our knowledge, our work
is the first attempt on GNNs.

2.2. Graph neural networks

Graph learning has many useful real-world applications such as
hyperspectral image classification (Hong et al., 2020), remote sens-
ing (Hong, Yokoya, Chanussot et al.,, 2019; Hong, Yokoya, Ge et al,,
2019). Recently, deep learning based model such as Graph Neural
Networks have dominated many graph learning tasks. Early works
of GNN are mostly spectral based, which firstly transforms graph
signal into spectral domain via graph Fourier Transformation and con-
ducts convolution on the spectral domain (Bruna et al.,, 2014; Henaff
et al., 2015). However, the computation complexity of spectral GNN
is O(N?) due to eigen decomposition of Laplacian matrix, which is
time-consuming. ChebyNet (Defferrard et al., 2016) simplifies spectral
GNN via K-order polynomial approximation of the graph Laplacian
matrix. Graph Convolutional Network (GCN) (Kipf & Welling, 2017)
further introduces the first-order approximation of ChebyNet, which
can also be viewed as the simplest spatial-based GNN. Spatial-based
GNN uses a message passing process by aggregating the messages of
neighbors recursively, thus the information from higher-order neigh-
bors will be passed to lower-order neighbors. Graph Attention Network
(GAT) introduced self-attention mechanism to allow more flexible im-
portance assignment to neighbors (Velickovic et al., 2018). GraphSAGE
generated embeddings by sampling and aggregating neighbor features,
enabling inductive learning on large-scale graphs (Hamilton et al.,
2017). Graph Isomorphism Network (GIN) (Xu et al.,, 2019) proved
that the message-passing GNN is at most as powerful as 1-Weisfeiler
Lehman Test, based on which they design the most powerful GNN that
can distinguish any non-isomorphic neighborhoods. Some other GNNs
are designed for 3D point cloud recognition tasks where the graphs
are generated with k nearest neighbors (Landrieu & Simonovsky, 2018;
Wang et al., 2019).

Although the GNN is effective in handling graph data, it still suf-
fers from the problem caused by redundant network parameters. This
problem has been addressed by some network compression techniques,
such as pruning (Chen, Sui et al.,, 2021). Some works also explored
the potential of knowledge distillation to improve the performance of
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GNNs (Yang et al.,, 2021, 2020). The student models of Yang et al.
(2021) are parameterized label propagation module instead of GNNs.
LSP (Yang et al.,, 2020) transferred local structure knowledge of a
teacher GNN to a student GNN with less parameters. The main differ-
ences between the proposed OAD and existing knowledge distillation
with GNN methods are two-fold: Firstly, existing knowledge distilla-
tion with GNN methods are mostly offline, where a teacher model
is pretrained and a student model is trained to distill the knowledge
of teacher. Since the graph-structured data changes frequently, the
data distributions of teacher and student may vary. Therefore, the
knowledge from the pretrained teacher GNN may be ineffective for
the student GNN. Our method uses an online knowledge distillation
framework for GNNs, where multiple student models are trained si-
multaneously, which ensures that the data distribution of students
and “virtual teacher” is always aligned. Secondly, existing knowledge
distillation with GNN methods such as LSP (Yang et al., 2020) mostly
align the intermediate feature maps via hand-crafted distance measure
such as L2 distance or KL divergence. However, many hand-crafted
distance measures are not defined in highly correlated intermediate
features (Tian et al., 2020), thus they may be ineffective in transfer-
ring the knowledge of intermediate layers. Instead, in our proposed
OAD framework, we employ a cyclic GAN framework for local knowl-
edge distillation, where some discriminators are employed to implicitly
supervise the distribution alignment of teacher and student model.
Therefore, the intermediate feature of students and virtual teachers are
automatically aligned under the supervision of discriminators.

2.3. Generative adversarial networks

Generative Adversarial Network (GAN) is a generative model ini-
tially proposed by Goodfellow et al. (2014). It is consisted by a gen-
erator and a discriminator, where the generator attempts to synthesis
new data samples similar to original dataset, and the discriminator is
adopted to evaluate the authenticity of data instances. Due to its strong
ability to generate high-quality samples, GANs have received significant
attention. GAN has been improved from different aspects. To better
control the mode of generated data, some works proposed to condition
GAN on the latent variables (Chen et al., 2016; Mirza & Osindero,
2014). Some works adopt more elaborate distance metrics to increase
the training stability (Gulrajani et al., 2017; Mao et al., 2017). Recently,
in the KD field, the discriminator is included to enforce the student
network to mimic the teacher network’s pattern (Liu et al., 2018; Wang
et al., 2018). Some existing works have employed GAN to generate new
graph with node features and adjacency matrices (Bojchevski et al.,
2018; De Cao & Kipf, 2018) similar to original graphs. Our works
are significantly different from aforementioned works. Specifically,
our OAD leverages GAN to enable local knowledge transfer among
different student GNNs while these works use GAN to generate new
data samples.

3. Method

In this section, we will elaborate on our proposed Online Adversarial
knowledge Distillation (OAD) framework for graph neural networks.
Generally, we will utilize the online knowledge distillation paradigm
to simultaneously train a group of student models and encourage each
student to learn from other peers mutually.

More specifically, we start with a group of untrained student models
with randomly initialized parameters. Intuitively, these students are
expected to capture different characteristics of graph data, which can
be mainly grouped into two types: (1) Local knowledge combining the
local neighborhood structure and the node features, which is naturally
represented by the learned node embeddings. (2) Global knowledge re-
ferring to the label distribution predicted by the GNN models, deciding
the corresponding categories for each node.

Both of these two knowledge types are transferred among students
while they differ in the way of distillation. As the global knowl-
edge is represented by the distribution over the labels, we follow the
vanilla knowledge distillation and use the Kullback-Leibler divergence
(KL) to measure the distance. In contrast, the intermediate layers of
GNN models are formulated by aggregating the messages from K-hop
neighbors, which encodes rich local subgraph information and is more
complicated than the label distribution. How to ditill the knowledge of
intermediate layers can be referred as a “local knowledge distillation”
process. More importantly, each student model is expected to capture
different characteristics of the graph. Strictly aligning the embedding
with L, or KL measurement will impair the diversity and degenerates
the knowledge transferred among student models. Inspired by the
success of adversarial training in learning complicated distribution, we
train several discriminators to distinguish the difference between the
learned embedding distribution, which yields more accurate results.
Additionally, we utilize the cyclic training strategy to improve the
training efficiency. Fig. 1 illustrates the proposed OAD framework,
which contains three major components: local knowledge distillation,
global knowledge distillation, and adversarial cyclic training. In the
following contents, we will first recap some fundamental concepts
about knowledge distillation and graph neural networks. Then, we
introduce the details about the proposed model.

3.1. Supervised learning

In a supervised C-class classification problem, we are given a dataset
with m labeled samples D = {x?, y'}" , where x) € R is the input
feature sampled from an unknown data distribution X and y € R€
is the one-hot ground truth label. Our goal is to learn a classifier
parameterized by ©: f(;@) : X — [0,1]. The output of mapping
function f is known as “logits” z, which is subsequently transferred
into probability distribution p = 6(z) € R® with a softmax function
o) :

_ e
Zj:l exp(z;)
The classifier is typically trained to minimize the cross entropy (CE)
between probability distribution p and ground truth labels y :
o
Lep(py) =) yilogp, @

i=1

(e}

3.2. Knowledge distillation

Knowledge distillation is generally composed by two neural net-
works with distinct architectures: A teacher network with larger param-
eters and a student network with fewer parameters. Besides standard
cross entropy loss between student predictions p; and ground truth
label y, student network is also trained to minimize the Kullback-
Leibler (KL) divergence between softened student probability o(z,/T)
and softened teacher probability o(z,/T):

Lgp = Lep(pssy) +aT* K L(o(z,/T), 0(2,/T)) ©)]

where T is a hyper-parameter known as temperature. The higher T
leads to more significant softened effect.

Besides output logits, the teacher networks’ intermediate layers also
encoded highly representative knowledge to the given dataset, which
may be potential to boost the students performance further. Many
works have been proposed to match the raw or transformed hidden
layers. For example, Fitnet (Romero et al., 2015) randomly selects
a hidden layer from both teacher network and student network and
minimize their mean square error (MSE) loss:

1
Lriner = E ||.|"(h3) —h, ||2 (4)

where r(-) is a dimension transformation operator such as Multi-Layer
Perception.
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Fig. 1. Overview of the proposed online adversarial knowledge distillation framework for GNNs. We show the case with four student GNN models. The student network is a GNN
generator. Each student model is assigned with a discriminator. The local knowledge is distilled by a cyclic generator-discriminator framework, denoted as red dot lines. The global
knowledge is distilled by the KL divergence between student logits and “virtual” teacher’s logits, denoted as green dot lines.

3.3. Graph neural networks

In this subsection, we briefly recall the definition of GNNs. The
input of a GNN is a graph denoted as ¢ = {V,£} where Vv =
{vy,v;,..., vy} is the node set and E is the edge set. The node features
are given by a matrix X = {x,,x,,....xy} € RV*P, where x;, € R? is
the node feature of v;. The adjacency matrix of G is denoted by AV*N
where AU =1if (ur.,vj) € £ and AU =0if (U,-,UJ-) ¢ £. The connected
neighborhood set of node v, is denoted as .

Graph neural networks aim at learning a mapping function f

RN%N x RNxD _, RNxD' The core operation of graph neural networks
is aggregating features from the neighborhood nodes. A typical GNN
with L layers is defined as:
Gax) =", K =y, AGG,c b, 1)) ()
where | = 1,2,...,L — 1, h;“ is the embedding of node v; in the
Ith hidden layer of the GNN encoder G, ¢(-,-) is a pairwise message
passing function, AGG function is used to aggregate messages from all
neighbors of v;, and y function updates the state of v; based on its
current state as well as the messages propagated by local neighbors.
Existing GNN methods have mainly varies on the message passing
functions ¢(-,-) as well as the aggregation function .AGG. To ver-
ify the generalization of our proposed framework for the graph neu-
ral networks, we test three widely adopted graph neural networks
named GCN (Kipf & Welling, 2017), GAT (Velickovi¢ et al., 2018) and
GraphSAGE (Hamilton et al., 2017).

3.4. Local knowledge distillation

The aforementioned definition of GNNs demonstrates that the
learned embedding h; can effectively represent the local information
around node v;. Inspired by the idea of intermediate-layer associa-
tion in knowledge distillation, a straightforward strategy to enhance
representation ability of h; is to distill the intermediate layer or its
transformation from a better generalized teacher GNN. However, we
propose that this method suffers from following two drawbacks: (1)
It requires a teacher GNN usually with much more parameters being
pretrained, which needs expensive computations. (2) More importantly,
the graph-structured data can be more frequently changed than static
data such as images. For example, in a social network, there are
millions of new following relationships generated everyday. Thus, the

dataset distributions of teacher and student network may vary given
the drastic changes of graph, and the knowledge learned by teacher
network may not be helpful for the student network. The experiments
on dynamic graph prove this point, see Section 4.4.

Instead, we propose Online Adversarial Distillation (OAD) for GNN
to address above two drawbacks. In OAD framework, a group of
lightweight student GNNs are trained simultaneously and each student
is expected to distill the knowledge from a “virtual” teacher formulated
by the remaining group members, thus a pretrained teacher network is
not needed. Since the total number of parameters in OAD framework is
less than pretrained teacher network, it is more spatially efficient than
vanilla knowledge distillation framework. Besides, as all the networks
are trained on the same graph, the problem of domain shift caused by
the dynamicity of the graph is solved.

Next, we introduce the local knowledge distillation module of OAD.
The mth student GNN is expected to distill the knowledge from the
intermediate layers of the remaining M — 1 GNNs. We adopt a GAN
framework to facility the distillation procedure. For the mth student
network, its graph convolution layers G" are utilized as a generator to
generate embedding h™. Then, to distill the knowledge of embedding
h, generated by another GNN members G% a discriminator D™
RNxD" _, RN js included. The discriminator inputs A" or h? and
outputs a scalar between 0 (fake) and 1 (real). When the input is A",
D™ is trained to output O (fake). When the input is &Y, D™ is trained
to output 1 (real). The GNN generator G™ is trained to confuse the
discriminator and obtain high score (close to real) after discrimination.

However, discriminating all pairs of M student models takes M *
(M — 1)/2 times, which is unfriendly to efficient training, especially
when the number of student model grows. To improve the training
efficiency while maintaining the performance, we follow Chung et al.
(2020) and utilize the cyclic training strategy to reduce the number
of discrimination into M. For D", it takes G™ and G"*! as input
and learns to discriminate G as fake and G™*! as real. In this way,
each student GNN generator is trained to confuse the D™ and generate
the embedding that follows the distribution of other student models.
For the entire students group, the knowledge of node embeddings are
transferredinacycle M - M-1, M -1 - M-2,...,1 - M. We use
the original GAN framework where both discriminators and generators
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are trained to minimize the following loss:
M-1
Lp =Y [log D"(G"(X)) - log D"(G"*' (X))]
m=1
+ log DM(GM (X)) — log DM (G (X)) 6)
M
Lg= Y —log D"(G"(X))
m=1
In the training phase, sequentially updating discriminator D™ and GNN
encoder G" will destroy the computation graph since G" will also join
the loss calculation of D"*!. Instead, we fix generators and update all
the discriminators firstly, then we fix discriminators and update all
the generators. This group optimization process will not increase the
training burden.

3.5. Global knowledge distillation

Given the embedding hA{' of node v; learned by the mth GNN
generator, we use the graph convolutional layer © and softmax function
to transform the representation into the logits z}", which is computed
as:

e expORI)T)

i T YK mj )
2 exp(Oh)T)

where z™* is the probability of node v; in class k predicted by mth
student model, 7 is the temperature. Note that 7 is greater than 1 and
we set 7 = 3.0 for all the experiments in this paper.

Note that network parameters of M students are initialized differ-
ently, thus their logits are different during the training process. For
the mth student GNN, the remaining M-1 different students can act as
an “ensemble” teacher, which is generally more effective than single
model. We verify this point in Section 4.5. Therefore, In the global
knowledge distillation, for the mth student GNN model, we formulate
the global knowledge of this “ensemble” teacher by averaging their
logits zf as:

M
TP ®
Jud#Em

We use the KL divergence between these two softened class distri-
bution as the global knowledge distillation loss:

N M

Ly=72Y ¥ KL@E"Z)) (9

i=1 m=1

where 72 is multiplied to keep the gradient this loss term roughly
unchanged when 7 changes (Hinton et al., 2015).

3.6. Overadll training process

The overall training loss for student GNN models is formulated as:
Ligwa = Lep +aLg +BLy 10)

where £, is the supervised cross entropy loss, « and § are the
coefficients for the corresponding distillation losses. In our experiments,
each student do not distill the knowledge from other peers at the initial
epochs of training, i.e., they only learn from the ground-truth labels.
After warmed-up phase, each student has its own perception to the
mapping structure, then the meaningful knowledge can be distilled to
others.

3.7. Complexity analysis

In this subsection, we analyze the computation complexity of the
proposed OAD framework. Let th', and Té be the computing time of

one forward propagation on graph encoder and output layers of the
ith student, respectively. Let Ti) be the computing time of one forward
propagation on the ith discriminator. The overall computing time of
one forward propagation of proposed model is:

M M M
Toap= Q. To+ 2. Ty + ),2T},
i=1 i=1 i=1
M M M

= O(ET;';H O(E TS + O(E i)
i=1 i=1 i=1

an

Thus, the computing time of the proposed OAD model increases
linearly w.r.t. the number of group members. Meanwhile, let N; and
Ng be the parameter number of graph encoder and output layers for a
single student GNN, respectively. Let N, be the parameter number of
a single discriminator. Thus the total parameter number of OAD model
is:

Soap = M(Ng + Ng + Np) (12)

when M is limited, the total number of parameters is much less than a
cumbersome GNN.

Algorithm 1 Online adversarial distillation for Graph Neural Network

Input: Graph ¢ = {V, £}. Node attribution matrix X = {x,x,,...,xy} €
RN*P_ Adjacency matrix A € R¥*¥. M student graph neural net-
works {/,,}M . M discriminators {D,,}* . Epochs of independent
learning epoch,, epochs of online knowledge distillation epoch,,
weights of loss a, §.

Output: Well-trained graph neural network ensemble.

1: for 1 =1 to epoch, do
2: Forward M student GNN models to generate predictions
(GO
3: Compute cross entropy loss £ for each GNN.
4:  Update the parameters of M students by backward propagation
of L.
: end for
6: for 1t =1 to epoch, do
7: Forward M student GNN models to generate predictions
{/(X)}M  and hidden embedding {G,,(X)} .
8: Forward M discriminators {D,,}* .
9: Compute £j.
10:  Update the parameters of M discriminators by back propagating
Lp.

11:  Compute cross entropy loss £ for each student GNN.

12:  Compute global knowledge distillation loss £ .

13: Compute local knowledge distillation loss L.

14:  Update the parameters of M student GNNs by back propagation

o

of ﬁromr -
15: end for
4, Experiment

To evaluate the performance of proposed OAD framework, we
conduct node classification tasks on citation datasets, Protein—Protein
Interaction (PPI) dataset, and object recognition task on ModelNet40
dataset. A variety of classic GNN architectures are tested to evaluate the
generalization of the OAD framework, including GCN (Kipf & Welling,
2017), GAT (Velickovic et al., 2018) and GraphSAGE (Hamilton et al.,
2017). Besides, we compare the performance of OAD and vanilla KD
method on dynamic graphs. The result indicates that proposed OAD
method is more robust to the drastic changes of graphs than vanilla KD
method. We also conduct an ablation study to evaluate the effectiveness
of each module and the group mutual learning strategy in the OAD
framework. Furthermore, we analyze the impact of group size used
in online knowledge distillation to the performance of model. Finally,
we visualize the feature space generated by different models, which
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demonstrates that proposed OAD framework can generate much more
effective representations. The proposed OAD model is implemented
using Pytorch-1.9.1 Library. All the experiments are conducted on a
Linux Ubuntu 18.04 Server with one GeForce RTX 2080 Ti GPU of
11.0 GB memory.

4.1. Transductive node classification on citation datasets

We firstly evaluate our model by transductive node classification
task on three citation datasets: Cora, Pubmed and Citeceer. In these
datasets, nodes represent the publications and edges represent citations
between them. The Cora dataset contains 2708 nodes, 5429 edges,
1433 features and seven possible classes. The Pubmed dataset has
19717 nodes, 44 338 edges, 500 features and three possible classes. The
Citeceer dataset contains 3327 nodes, 4732 edges, 3703 edges and six
possible classes. Following the same experimental settings of existing
methods (Yang et al., 2016), 20 nodes per class are selected for training,
500 nodes are for validation and 1000 nodes are for testing. The nodes
in all of these datasets have only one label, so we use Top-1 Accuracy
as the evaluation metric. In the transductive training setting, the model
can access all nodes on the whole graph.

We compare the performance of vanilla GNNs and the correspond-
ing OAD variants, denoted as “a specific model + OAD”. Each student
GNN with the OAD framework has the same network architecture as
its corresponding vanilla GNN. The results of OAD are the average
performance of the student models in the group. The results of “A
specific model + KD” are obtained as follows: we firstly pre-train a
strong enough teacher model as save its parameters. Then, we use this
teacher model the supervise the training of a small-size student model,
along with the supervision of ground truth label.

We also include the performance of a GNN ensemble with the
same group size and network architecture as OAD framework. All the
hyperparameters settings of “Ensemble” are same as “single GNN”
except different group size. Note that at inference phase, an ensemble
model averages all the students’ predictions while the output of proposed
OAD method is the prediction of single student GNN.

Table 1 summarizes the network architectures and their parameter
numbers in citation experiment. We set the group size in this experi-
ment as 4. As can be seen from Table 1, the total parameters of student
networks and extern discriminators are less than one teacher network. We
adopt two-layer GNNs in all the experiments. For GCN and GraphSAGE,
the dimension of hidden layer is 16. For GAT, following the settings
in original paper (Velickovi¢ et al., 2018), the hidden dimension is 8
and the attention heads are set as [8,1] for Cora and Citeceer, and
[8,8] for Pubmed, respectively. The aggregation type of GraphSAGE is
“mean”. For all the experiments, we fix learning rate, weight decay and
optimizer as 0.005, 0.0005 and Adam, respectively. The OAD model is
warmed up for 100 epoch, and further mutual learned for 100 epoch.
For other baselines, the total traning epoch is 200. For OAD, we adopt
GCNs as skeleton of discriminators. The input of discriminator is the
last hidden layers (the layer before last convolution layer) of GNNs. The
discriminators used in GCN experiments are a single-layer GCN, while
the discriminators used in GAT and GraphSAGE experiments are two-
layer GCNs with hidden dimensions of 16. We set the loss coefficient
a =1 and § = 1 for all the network-dataset combinations. Note that we
evaluate the performance of all the student models and report the best
case for our model.

We compare the classification accuracy of different methods. The
accuracy is defined as the proportion of number of correctly predicted
samples to the number of all samples. Table 2 illustrates the experi-
mental results of the transductive node classification task on citation
datasets. The values of the best performance are marked in bold. The
baseline methods include the single GNN and vanilla KD method. We
observe that all the GNNs with the proposed OAD framework gain
improvement over vanilla KD method and single GNNs. Specifically,
on the Citeceer dataset, our model can bring 0.74% and 2.05% per-
formance improvement for GCN and GraphSAGE, respectively. This
demonstrates the effectiveness and the generalization of the proposed
OAD framework.

Table 1
Network architecture used in citation networks.
Dataset  Network Layers Features Attention Parameters
heads

GCN-Teacher 2 128,7 / 0.18M
GCN-Student 2 16,7 7 0.02M
GCN-Discriminator 1 1 / 0.017K
GAT-Teacher 2 128,7 8,1 1.47M

Cora GAT-Student 2 8,7 8,1 0.09M
GAT-Discriminator 2 16,1 / 1.06K
GraphSAGE-Teacher 2 128,7 / 0.37M
GraphSAGE-Student 2 16,1 / 0.05M
GraphSAGE-Discriminator 2 16,1 / 0.29K
GCN-Teacher 2 128,6 7 0.47M
GCN-Student 2 16,6 7 0.06M
GCN-Discriminator 1 1 / 0.017K
GAT-Teacher 2 128,6 8,1 3.80M

Citeceer GAT-Student 2 8,6 8,1 0.24M
GAT-Discriminator 2 16,1 / 1.06K
GraphSAGE-Teacher 2 128,6 / 0.95M
GraphSAGE-Student 2 16,6 / 0.12M
GraphSAGE-Discriminator 2 16,1 / 0.29K
GCN-Teacher 2 128,3 / 0.06M
GCN-Student 2 16,3 7 0.008M
GCN-Discriminator 1 1 / 0.017K
GAT-Teacher 2 128,3 8,8 0.54M

Pubmed GAT-Student 2 8,3 8,8 0.03M
GAT-Discriminator 2 16,1 / 1.06K
GraphSAGE-Teacher 2 128,3 / 0.13M
GraphSAGE-Student 2 16,3 / 0.02M
GraphSAGE-Discriminator 2 16,1 / 0.29K

Table 2

Top-1 accuracy (%) of different methods on three citation datasets. The results are
obtained under the statistical significance level a < 0.05. The results of teacher and
student ensemble are also included. The best results are in bold.

Model Cora Pubmed Citeceer
GCN 80.0 78.9 65.7
GCN+KD 80.4 79.0 66,5
GCN+OAD 80.9 79.3 67.5
Improve % 0.62% 0.38% 1.50%
GCN Ensemble 80.3 79.0 66.0
GCN Teacher 815 79.2 68.2
GAT 81.9 77.0 68.9
GAT+0AD 82.2 78.5 69.6
GAT+KD 81.2 78.0 68.6
Improve % 1.23% 0.77% 1.01%
GAT Ensemble 821 77.5 69.9
GAT Teacher 82.2 77.9 69.9
GraphSAGE 80.3 76.5 68.0
GraphSAGE+OAD 81.6 77.4 69.7
GraphSAGE+KD 81.0 76.9 68.3
Improve % 0.74% 0.65% 2.05%
GraphSAGE Ensemble 81.2 77.1 69.4
GraphSAGE Teacher 817 78.3 69.9

4.2. Inductive node classification on PPI dataset

In this section, we evaluate the proposed OAD framework by in-
ductive node classification task on Protein-to-Protein Interaction (PPI)
dataset (Zitnik & Leskovec, 2017). PPI dataset contains 24 graphs
corresponding to different human issues. The average number of nodes
per graph is 2372. Each node has 50 features that encode information
about the positional gene set and immunological characters. The total
number of edges is 818 716, constructed by prepossessing data provided
by Hamilton et al. (2017). The dimension of the label for each node
is 121. We follow the same data splitting protocol as Velickovi¢ et al.
(2018), in which the number of graphs for training, validation and
testing are 20, 2 and 2, respectively. Note that the testing graphs are
completely undetectable during training. For PPI dataset, each node
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Table 3

Network architectures used on PPI dataset.
Network Layers  Features Attention Parameters

heads

GAT-Teacher 3 256,256,121 4,4,6 3.64M
GAT-Student 5 64,64,64,64,121  2,2,2,2,2 0.17M
GAT-Discriminator 2 64,1 7 0.008M
GraphSAGE-Teacher 3 256,256,121 / 0.22M
GraphSAGE-Student 5 64,64,64,64,121 / 0.047M
GraphSAGE-Discriminator 2 64,1 7 0.004M

may belong to multiple categories and we evaluate the overall F1 score
of the entire graph.

Table 3 summarizes the students’ and teacher’s network structures
used in the experiment. The group size is set as 4. As can be seen from
Table 3, the total parameters of student networks and extern discriminators
are less than one teacher network. For our model, students in the group
warmup with cross entropy loss for 50 epochs, then they learn mutually
for 50 epochs. For the single GNN and LSP (Yang et al., 2020), the
total number of training epoch is 100. For all the comparisons, the
learning rate, weight decay and optimizer are set as 0.005, 0 and
Adam, respectively. The aggregation type of GraphSAGE is “mean”.
For our model, we adopt two-layer GCNs as discriminators in feature
level distillation with 64 hidden neurons. The input of discriminator
is the last hidden layers (the layer before last convolution layer) of
GNNs. The loss coefficients is set as @« = 1,§ = 0.1 for both GAT
and GraphSAGE. All the results are generated by our implementations
except LSP (Yang et al.,, 2020) which we run the codes released by
authors. We also include the performance of the teacher model and an
ensemble model. The group size of the ensemble model is same as OAD.
Other hyperparameters settings of ensemble are the same as single GNN
except group size. Note that we evaluate the performance of all the
student models and report the best case for our model. We repeat every
experiment 4 times with different random seeds to initialize and report
the average and variance.

Our baselines include some offline knowledge distillation methods:
KD (Hinton et al., 2015), FitNet (Romero et al., 2015), AT (Zagoruyko
& Komodakis, 2017) and LSP (Yang et al., 2020). For these methods,
we firstly train a common large enough teacher model as described
in Table 3. Then, these KD methods will distill the knowledge of
this teacher. The baselines also include an classic online knowledge
distillation method - DML (Zhang et al., 2018). The evaluation of DML
is same as OAD by averaging the performance of all group members.
We adopt GAT (Velickovi¢ et al.,, 2018) and GraphSAGE (Hamilton
et al., 2017) as the skeleton models. The student architecture of all the
baseline methods are same.

We compare the F1 Score of different methods. The F1 score is
defined as:

Fl_Score = 2xPxR (13)
P+R

where P is precision and R is the recall. Table 4 summarizes the results
on the PPI dataset. The values of the best performance are marked in
bold. We observe that training with a pretrained teacher model will
negatively influence the performance of GNN, while our proposed OAD
can boost its performance. Specifically, compared to single GNN model,
proposed OAD method has 0.85% and 2.27% improvement for GAT
and GraphSAGE, respectively. Moreover, OAD exceeds other vanilla
knowledge distillation variants by more than 2% for both GAT and
GraphSAGE, indicating “virtual” teacher paradigm is more effective for
GNN. Compared to DML, proposed OAD method capture both local and
global knowledge of GNN and improves by 0.35% and 1.27% for GAT
and GraphSAGE, respectively.

Table 4

F1 scores of different methods on PPI dataset. The results are obtained under the
statistical significance level a < 0.05. The results of teacher and student ensemble are
also included. The best results are in bold.

Method GAT GraphSAGE
Student 90.13 = 0.30 76.03 = 0.61
Fitnet 87.63 £ 0.37 67.75 = 0.96
AT 85.60 + 1.20 74.45 £ 1.18
LSP 89.60 + 0.62 74.83 £ 0.66
KD 90.35 £ 0.33 76.28 £+ 0.66
DML 90.63 £ 0.50 77.03 £ 0.33
OAD 90.98 + 0.46 78.30 + 0.36
Teacher 97.0 86.3
Ensemble 94.8 80.1

4.3. Object recognition on ModelNet40 dataset

ModelNet40 dataset is adopted for the object recognition task,
consisting of 12311 meshed CAD models from 40 categories (9843
for training and 2468 for testing). Each CAD model belongs to one
category, thus we use Top-1 and balanced accuracy as the evaluation
metric. Each model is constructed by a series of points with (x,y,z)
coordinates. Following the experimental settings of Qi et al. (2017),
we uniformly sample 1024 points for each model and then discard
the original one. We use DGCNN as the skeleton model and construct
the graph in the feature space by KNN algorithm as the previous
work (Wang et al.,, 2019). It is worth noting that the graph varies in
different layers and different training stages. For a fair comparison, we
use the same student architecture as that of LSP (Yang et al., 2020).

We adopt the same teacher and student architectures as Yang et al.
(2020), which are summarized in Table 5. We set the group size of
our OAD model as 4. As can be seen from Table 5, the total parameters
of student networks and extern discriminators are less than one teacher
network. For online knowledge distillation, the epoch of warmup learn-
ing and mutual learning are set as 100 and 150, respectively. For
fair comparison, the single DGCNN is trained for 250 epochs. For all
settings, we use SGD with momentum rate of 0.90 as optimizer. The
learning rate, weight decay, dropout rate are 0.1 and 0.0001 and 0.5,
respectively. The discriminators for proposed model are two-layer MLPs
with batch normalization, which take the last hidden layer (the layer
before output layer) of DGCNN as input. We set « = 1, = 0.05 as
loss weights. We cite the results of Fitnet, AT and LSP in the original
paper (Yang et al., 2020). We also include the performance of the
teacher model and an ensemble model. The group size of the ensemble
model is same as OAD. Other hyperparameters settings of ensemble are
the same as single GNN except group size. Note that we evaluate the
performance of all the student models and report the best case for our
model. We repeat every experiment 4 times with different random seeds
to initialize and report the average.

We compare the recognition accuracy of different methods. Ta-
ble 6 summarizes the results of object recognition on the ModelNet40
dataset. The values of the best performance are marked in bold. We
can observe that the performance of our proposed model exceeds all
the comparison methods. Besides, OAD can obtain a similar Top-1
accuracy score and a higher balanced accuracy score than the teacher
model. This indicates that stacking several lightweight models with a
significantly less number of parameters can perform almost as well as
the teacher model. Another interesting observation is that most baseline
methods perform worse than the student model, which is explainable as
the graphs varies during training. This further indicates the advantage
of the OAD framework in adapting the changes of the graph.

4.4. Dynamic graph

In this section, we compare the performance of a single GNN,
conventional knowledge distillation and our proposed OAD model on
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Fig. 2. F1 score improvement w.r.t. a single GNN after adding random noise on the node attributions of PPI dataset. The blue lines denote “OAD_Improve” and the orange lines
denote “KD _Improve”. The left subplot shows the experiment on GAT. The right subplot shows the experiment on GraphSAGE.
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Fig. 3. F1 score improvement w.r.L. a single GNN after removing certain proportions of edges of the graphs of PPI dataset. The blue lines denote “OAD_Improve” and the orange
lines denote “KD_Improve”. The left subplot shows the experiment on GAT. The right subplot shows the experiment on GraphSAGE.

Table 5

Network architectures used on ModelNet40 dataset.
Network Layers Feature maps MLPs K Parameters
Teacher 5 64,64,128,256,1024 512,256 20 1.81M
Student 4 32,32,64,128 256 10 0.1M
Discriminator 2 32,1 / / 4.25K

Table 6

Testing accuracy of different methods on ModelNet40 dataset. The results are obtained
under the statistical significance level a < 0.05. The results of teacher and student
ensemble are also included. The best results are in bold.

Method Top-1 accuracy Balanced accuracy
Student 92.3 88.8
Fitnet 91.1 87.9
AT 91.6 87.9
LSP 91.9 88.6
OAD 92.7 89.3
Teacher 92.9 89.3
Ensemble 93.2 90.0

dynamic graphs. The changes of a graph may be caused by node
attributes variation or graph structure evolution. Corresponding to
above two circumstances, we conduct two simulation experiments on
PPI dataset. Firstly, we add random noises on each node’s attribution
(This experiment is denoted as “Dynamic-A"). The noise has zero means
and frequencies ranging from 0.2 to 1.2. Then, we randomly remove
certain proportions of edges on the graph (This experiment is denoted
as “Dynamic-B”). The removed proportion ranges from 0.05 to 0.3.
Consider that GNNs may fail to train after its edges being removed, we
add self loops on the isolated nodes. We adopt GAT and GraphSAGE as
the skeleton networks. Their architectures are summarized in Table 3.
For knowledge distillation, we pretrain a much larger teacher GNN on
original graph and then transfer its knowledge about logits distribution

to a student GNN trained on dynamic graphs. For OAD and the single
GNN, the training process is completely on dynamic graphs. Other
experimental details are the same as Section 4.2. We compute the
improvement of KD compared to the single student GNN (denoted
as “KD_Improve”) and improvement of OAD compared to the single
student GNN (denoted as “OAD_Improve”) as follows:

KD _ Improve = F1_Score(KD)— F1_Score(single)
OAD Improve = F1_Score(OAD) — F1_Score(single)

a4

where F1_Score(single), F1_Score(KD), F1_Score(OAD) are F1 scores
of single GNN, KD and OAD, respectively. The results of “Dynamic-A”
and “Dynamic-B” are presented in Figs. 2 and 3, respectively. From
Fig. 2, we observe that as the graph changes more drastically, the value
of “KD Improve” drops. When the frequency of random noise exceeds
0.6, the knowledge transferred from the static teacher is even harmful
to the student. On the other hand, our proposed OAD model exceeds
student GNN on all dynamic graphs, especially when the dynamic graph
is greatly different from the original graph. Note that there are no
explicit relationships between “F1 score improvement” and noise rate.
The value of “F1 Score Improve” fluctuates with the increase of noise
rate, as OAD model and student GNN may have different parameter
initializations on different noise rate and edge removal proportion
settings. From Fig. 3, we observe that for both GAT and GraphSAGE,
the values of “KD Improve” are marginally around 0, indicating the
knowledge obtained from the old graph is not effective on the new
graph. Meanwhile, OAD maintains the superiority on the dynamic
graphs. The reason behind this phenomenon may be that all students
are trained on the graph of same dynamic frequency simultaneously
in our model, they can capture different characteristics of the dynamic
graph and knowledge consistency is retained.
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features; features learned by student DGCNN; features learned by DGCNN with OAD framework and features learned by teacher DGCNN.
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Fig. 5. The training F1 scores of Ensemble, OAD and a vanilla GNN on PPI dataset.

4.5. Benefit of mutual learning

In this section, we further analyze the benefit of group-based mutual
learning. In Fig. 5, we compare the validation micro F1 scores of “en-
semble”, OAD and a vanilla GNN on the PPI dataset during the training
phase. The experimental setup is the same as Section 4.2. We plot the
validation F1 scores from epoch 0 to epoch 100. Our OAD model is
warmed up from epoch 0 to 50 without group knowledge transfer.
From 50 to 100 epoch, additional discriminators are introduced for
mutual learning. It can be seen that the F1 scores of “ensemble” are
consistently higher than the GNN trained with OAD, which indicates
that the generated group knowledge may act like a “virtual” teacher to
help improve the performance of the GNN model. We observe that the
performance drops slightly at around epoch 50, because the parameters
of newly attached discriminators are randomly initialized. After several
epochs, as the discriminators learn the difference of GNN students’
features, they can aid the training process.

4.6. Ablation study

To further evaluate the effectiveness of each component in our
OAD framework, we perform an ablation study on the PPI dataset and
ModelNet40 dataset. The results are presented in Tables 7 and 8. We
analyze the contributions of each component as follows:

(1) w/o Ly refers to removing the global knowledge distillation
module (£ z) of the OAD framework. On the PPI dataset, the ablation of

Table 7

Ablation studies on PPI dataset.
Method GAT GraphSAGE
wio Ly 90.58 + 0.35 77.10 £ 0.56
w/o L 90.80 + 0.34 77.08 = 0.54
OAD 90.98 + 0.46 78.30 £ 0.36

this module decreases the micro-F1 scores of GAT and GraphSAGE by
0.4% and 1.2%, respectively. As for the ModelNet40 dataset, DGCNN
obtains 0.3% lower top-1 accuracy and 0.2% lower balanced accu-
racy without this module. This demonstrates that global knowledge
distillation can bring benefits to the proposed framework.

(2) w/o L refers to removing the local knowledge distillation
module (L) of the OAD framework. As a result, all the external
discriminators are removed and knowledge transfer on node embedding
space is prohibited. This setting decreases the performance of GAT by
0.18% and GraphSAGE by 1.22%, respectively. On the ModelNet40
dataset, after removing local knowledge distillation module, Top-1
accuracy and balanced accuracy of DGCNN drops by 0.3%. Thus,
including the local knowledge distillation module can improve the
performance of the OAD framework.

4.7. Comparisons of processing time

Compared to vanilla KD approaches, a pretrained teacher GNN
model is not required by OAD method. Thus, OAD can reduce the
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Table 8
Ablation studies on ModelNet40 dataset.
Method Top-1 accuracy Balanced accuracy
w/o Ly 92.4 89.0
w/o Ly 92.2 88.7
OAD 92.7 89.3
Table 9
Processing time of different methods on PPI dataset (seconds).
GAT GraphSAGE
Teacher 679.8 610.4
Student 154.5 126.1
OAD (M =12) 3209 285.2
OAD (M =4) 526.1 468.0
OAD (M =6) 894.4 825.5
OAD (M =8) 1153.2 1061.8
Table 10
F1 score of GraphSAGE on PPI dataset w.r.t. various temperatures.
T 1.0 2.0 3.0 4.0 5.0 6.0
OAD 78.30 78.63 78.30 78.87 78.83 78.67
KD 76.67 76.50 76.28 76.03 75.97 76.43
Table 11
F1 score of GraphSAGE on PPI dataset w.r.t. various loss weights.
a 0.5 1.0 1.5 2.0 2.5 3.0
OAD 78.37 78.30 78.70 78.20 78.57 78.47
i 0.05 0.10 0.15 0.20 0.25 0.30
OAD 78.57 78.30 78.70 78.20 78.57 78.47

computation load and save the processing time. To verify this point,
we compare the training time of KD and OAD on PPI dataset using
the same experiment settings as Section 4.2. The time of data loading
and evaluating models is excluded. The results are shown in Table 9.
Note that the training time of KD methods is the sum of teacher’s
training time and student’s training time. It is shown in Table 9 that the
processing time of OAD is approximately 2/3 of the processing time of
KD.

4.8. Sensitivity analysis

Group size. We evaluate the impact of group size (number of student
GNN models) on the performance of our proposed OAD framework.
Fig. 6 illustrates the performance concerning the group size ranging
from 1 to 10. We observe that the F1 scores of GAT and GraphSAGE will
generally increase as the student group is enlarged. We also observe
that when the group size exceeds a specific threshold, the benefit
becomes gradually marginal until convergence due to the capacity
saturation.

Temperature. We then evaluate the influence of temperature T to
our OAD method. We conduct the experiments on PPI dataset using
GraphSAGE as the student model. The hyperparameters setting is same
as Section 4.2 except temperature used in global knowledge distillation.
The results are shown in Table 10. We observe that the F1 scores of
OAD are substantially higher than vanilla KD method in all temperature
settings. Thus, we conclude that proposed OAD method is not sensitive
to the temperature chosen.

Loss coefficients. We finally evaluate the influence of loss coefficients
a and f. We testify the F1 score of GraphSAGE model on PPI dataset.
The hyperparameters setting is same as Section 4.2 except a« and f
settings. Note that & = 1 is fixed when varying § and g = 0.1 is fixed
when varying a. The results are shown in Table 11 We observe that
the performance of OAD slightly fluctuates with different loss weights.
Thus OAD is robust to loss weight selection.

4.9. Visualization

In this section, we visualize the features learned by different student
GNN models. We extract the last layer of the student GNN models as
features and visualize the distance between a randomly selected anchor
point (colored in red) and other points on the model. Fig. 4 illustrates
the Euclidean distance of points in the input space, from top to bottom
are feature spaces of single student DGCNN model, DGCNN with OAD
framework and the teacher DGCNN model. From left to right are five
different samples in ModelNet40 dataset. We use the feature space of
teacher DGCNN model as the reference. We can observe that the feature
structure of the proposed model is similar to the feature structure of the
teacher. This demonstrates the capability of the representations learned
by the OAD framework.

5. Conclusions and future works

Knowledge distillation has become a promising technique to im-
prove the performance of CNNs, under the assumption that teacher
and student models are trained on the identical data distribution.
However, since the topological structure and node attributes of graph
data are likely to evolve, this fundamental assumptions of knowledge
distillation may not hold for Graph Neural Networks (GNNs), leading to
the sub-optimal solution. In this paper, we propose online knowledge
distillation for graph neural networks to tackle this challenge. More
specifically, we train a group of student GNN models simultaneously
and with the guidance of a virtual dynamic teacher, the performance of
each member is improved by distilling both the local and global knowl-
edge. Adversarial cyclic learning is utilized to effectively and efficiently
exploit the complicated information contained in the graph topology
and node attributes. Extensive experiments on citation dataset, PPI
dataset and ModelNet40 dataset demonstrate the effectiveness of the
proposed OAD framework.
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Future works. There are some possible future directions of this work.
Firstly, Graph Transformer models have shown great potential on graph
learning. Compared with GNN, Graph Transformers are heavier mod-
els, thus applying knowledge distillation on Graph Transformer is
more meaningful than GNN. Therefore, we will study how to dis-
till the knowledge of Graph Transformer. Secondly, although online
knowledge distillation may alleviate the problem of distribution shift
on graph data, its processing speed is slower as the group size in-
creases. How to maintain the performance of OAD while making it
more efficient should be studied in the future work.
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