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Abstract
Analytics on large-scale graphs have posed signifi-
cant challenges to computational efficiency and re-
source requirements. Recently, Graph condensa-
tion (GC) has emerged as a solution to address chal-
lenges arising from the escalating volume of graph
data. The motivation of GC is to reduce the scale
of large graphs to smaller ones while preserving
essential information for downstream tasks. For
a better understanding of GC and to distinguish it
from other related topics, we present a formal def-
inition of GC and establish a taxonomy that sys-
tematically categorizes existing methods into three
types based on its objective, and classify the for-
mulations to generate the condensed graphs into
two categories as modifying the original graphs or
synthetic completely new ones. Moreover, our sur-
vey includes a comprehensive analysis of datasets
and evaluation metrics in this field. Finally, we
conclude by addressing challenges and limitations,
outlining future directions, and offering concise
guidelines to inspire future research in this field.

1 Introduction
Graph data, representing relationships and interactions be-
tween entities, are ubiquitous in various domains including
social networks, biological systems, and recommendation
systems. Information and patterns in those scenarios have
been modeled as nodes and edges, and there has been signifi-
cant progress in the development of techniques for large-scale
graph data mining and pattern recognition.

However, analyzing and processing large-scale graphs pose
significant challenges to computational efficiency and re-
source requirements [Duan et al., 2022]. Recently, the dataset
distillation [Yu et al., 2023] has attracted increasing attention
and achieved success mainly in vision datasets. Conventional
dataset distillation relies on the idea that within categories
defined by class labels, instances of the same class share sim-
ilar key features, e.g. shape patterns in vision datasets. This
implies the existence of ’prototypes’ or ’clustering centers’,
and thus a significant amount of redundant information exists
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among instances belonging to the same category. Similarly in
graph datasets, e.g., in node classification tasks, the features
and topology of nodes within the same class are similar, and
there may be numerous repetitive and similar subgraph struc-
tures in the graph. Thus a natural question arises: How can
we effectively formulate small-scale graphs from large-scale
graphs to facilitate various graph data mining tasks?

Graph Condensation (GC), has been emerged for distill-
ing large-scale graphs into smaller yet informative new ones.
By eliminating redundant information, GC makes the graph
more manageable within the constraints of limited computa-
tion resources, thereby providing better support for graph data
mining tasks and applications such as Continual learning [Liu
et al., 2023b] and Network Architecture Search (NAS) [Gao
et al., 2021], etc. Moreover, take node classification as an ex-
ample, the reason a node can be well classified is that GNNs
have learned to capture the unique pattern of nodes to distin-
guish them from other nodes in different classes. Analogous
to the attention heat map in the field of image classification
(e.g. in [Lapuschkin et al., 2019]), the visualization of pat-
terns that GNNs learned can be accomplished by GC.

While the concept aligns with vision dataset distillation,
the specific challenges posed by the uniqueness of graph data
motivate us to: (1) Address the lack of universal definitions
and (2) Explore and synthesize the existing knowledge in this
domain to a comprehensive survey.
Related topics. The fundamental purpose of GC is to re-
duce the graph volume, however, there have been a few rel-
evant topics that share a similar purpose: Graph Sampling
were designed to select subgraphs from original graphs, in-
cluding Core-set [Baker et al., 2020] and subgraph mining
[Nguyen et al., 2022] methods, etc. Nevertheless, sampling
or pruning graph nodes or edges may cause massive informa-
tion loss, resulting in performance collapse. See this paper
[Rozemberczki et al., 2020] for a Python library on Graph
Sampling; Graph Reduction [Loukas, 2019] intended to
simplify the original graph to facilitate downstream tasks, yet
mainly focus on simplifying the topology; Graph Coarsen
[Chen et al., 2022] has been defined as an intermediate step
of Graph Pooling [Grattarola et al., 2022] in a recent survey
[Liu et al., 2022a]. Moreover, there are earlier surveys on a
close subject, e.g., Graph Summarization[Liu et al., 2018;
Čebirić et al., 2019], and graph has been engaged as optional
data modality under the definition of Dataset Distillation
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Figure 1: Overview of GC. GNNs stand for any graph machine learning model with different architectures like GCN, GAT, ..., etc.

previously mentioned, as concurrent surveys did on the same
topic [Gao et al., 2024; Hashemi et al., 2024].

Scope of this paper. To enhance the understanding of GC,
we first propose a refined definition in section 2.2, which clar-
ifies the unique aspects of GC and highlights its divergence
from vanilla dataset distillation. Under our definition, some
methods of related topics are included in our discussion due
to a shared motivation, i.e., facilitating graph data analytics
by reducing the volume of graph data. Thus, the proposed
taxonomy of GC is designed to encompass diverse techniques
with various applications, and our discussion extends to the
consideration of various potential issues within GC. Last but
not least, we present various application scenarios and outline
future directions. Our contributions are as follows:

• We present a formal definition of GC and systematically
categorize existing methods into three types: graph-guided,
model-guided, and hybrid. Through a detailed analysis, we
classify the formulations of condensed graphs into modifi-
cation and synthetic categories.

• We provide a summary of essential datasets, and conduct a
thorough analysis of evaluation metrics and applications.

• We delve into the limitations and challenges of GC meth-
ods from a broader perspective, presenting future direc-
tions, and thus
inspires future work in GC.

2 Preliminary
2.1 Notations and Definition
For any matrix, the symbol ⊤,−,+ represents the operations
of transpose, inverse, and pseudoinverse, respectively. Con-
sider S = {G1, · · · ,Gη} denote a dataset of η graph(s), where
η ∈ N, G = {V, E ,A,X}, V and E denotes the set of vertices
(nodes) and edges, A ∈ RN×N is the adjacency matrix, and
X ∈ RN×d represents the feature matrix. LG is the corre-
sponding Laplacian matrix of G. Y ∈ {1, · · · , C}M denotes

the set of labels of the nodes or edges if η = 1, or the label of
graphs if η > 1, [Y] ∈ NM×1 be its vector form. The down-
stream tasks are specifically defined by M = N for node
classification, M = N2 for link prediction, and M = η for
graph classification. GNN(; θS) : S → Y denotes the GNN
parameterized with θS was trained on dataset {S,Y}.

2.2 Problem Defination
Denote Sc = {Gc1, · · · ,Gcµ} a smaller dataset of µ graph(s),
µ ≤ η, and Gc = {V ′, E ′,A′,X′} where the first dimension
of V ′,A′, and X′ are N ′ (N ′ ≪ N), Y ′ ∈ {1, · · · , C}M ′

be
the labels of Gc. The conventional definition of GC [Gao et
al., 2024] is to directly borrow the definition of the dataset
distillation problem, considering graphs as input and output:

Sc = argmin
Sc

Lcond (GNN({Sc,Y ′}, {S,Y}; θ)) (1)

where Lcond is the optimization objective of condensation.
In contrast, we define Graph Condensation (GC() : S →

Sc), a class of methods aimed to scaling large-scale graphs to
smaller yet informative NEW ones. We call:

Gc as the Condensed graph only if V ′ ⊈ V.
Sc as the Condensed graphs only if S ′

c ⊈ S. (2)

In this paper, we will focus on condensing a single graph,
while methods for multiple will be briefly introduced. To en-
sure the condensed graphs are informative, their formulations
are parameterized through an optimization process:

Gc = f(G;W),W = argmin
W

O(ϕ(Gc,Y ′), ϕ(G,Y)) (3)

• Condensation Objective O describes the loss of graph
information, which is quantified by function ϕ;

• W is optimized by minimizing the objective O.

• The Formulation function f() describes how we formu-
late the condense graphs, which is parameterized by W;



The three steps for formulating condensed graphs corre-
spond to the three steps in the GC workflow as illustrated in
fig. 1. Under our definition, specifying what information to
preserve, denoted as ϕ, is crucial as the primary motivation
is to reduce the scale of graph data while preserving suffi-
cient information. The details of the optimization objectives
be seen in section 3, and the formulations will be presented
in section 4. We categorize current methods by the taxonomy
of objectives and present the formulations of each in table 1.

3 Condensation Objective
We categorize the condensing objectives into three types: pre-
serving certain properties of the graph (graph guided), re-
taining the GNNs’ capabilities for downstream tasks (model
guided), or simultaneously accomplishing both (hybrid).

3.1 Graph Property Guided Methods
These kinds of objectives can be formulated as: Get simi-
lar & smaller graph Gc from original graph G, and the key is
defining what are graph properties and how to evaluate the
similarity between two graphs based on these properties. In
this case, ϕ be graph property extractor, and O be the corre-
sponding similarity/distance function. We further categorize
these objectives into two categories: Spectral and Spacial,
by the domain of extracted information. Specifically:

Spectral Property Guided Methods. The Spectral GNNs
[Chen et al., 2023] are defined by operators in the Spectral
domain. Similarly, we define the Spectral properties of a
graph by requiring the graph Laplacian for calculations, i.e.,
ϕ(G) = ϕ(LG). In this case, the objective becomes min-
imizing the Distance of two graphs in the Spectral domain
(DSpe), i.e., O = DSpe(ϕ(LGc

), ϕ(LG)).
The direct use of Laplacian eigenvalue and eigenvectors

can be seen in this domain, as well as the Laplacian En-
ergy Distribution (LED) used in [Yang et al., 2023], which
was derived from graph Laplacian. However, the differ-
ence in graph scale before and after condensation may need
cross-dimension metrics, such as having a distinct number of
eigenvalues and eigenvectors. Specifically, [Loukas, 2019;
Huang et al., 2021] calculate the differences of smallest
k eigenvalues and corresponding eigenvectors between two
graphs’ Laplacian; [Liu et al., 2023a] take k eigenvectors
with the smallest eigenvalues to map node features, and min-
imize the distances of class centers in the spectral space.
This is because the smaller the eigenvalue is, the more in-
formative it and its corresponding eigenvector are on graph
laplacian[Das, 2004]. [Jin et al., 2020] Further propose graph
lifting to rescale the small graph to a large one, and thus com-
paring all eigenvalues. Another issue is the efficiency con-
cern, and all methods mentioned above have their Laplacian
approximation design, which will not be discussed here.

Despite direct optimization of spectral properties, [Jin
et al., 2020; Deng et al., 2020] identify similar nodes
to Aggregate in spectral embedding space, which can be
seen as indirectly minimizing the spectral similarity of two
graphs. Notably, minimizing Graph similarity metrics based
on spectral-GNNs, e.g. in [Liu et al., 2023b], is also con-
sidered as spectral property guided objectives with ϕ(G) =

GNN(G), and similarly, the use of spatial-GNNs for sim-
ilarity metrics applies to the subsequent definition of Spa-
cial ones. The GNNs we discussed here were not trained on
downstream tasks and only served as information extractors.

Spacial Property Guided Methods. The spatial domain
of a graph is the original topology and node features, i.e.,
ϕ(G) = ϕ({A,X}). Objective becomes minimizing the
Distance of two graphs in the Spacial domain (DSpa), i.e.,
O = DSpa(ϕ({A′,X′}), ϕ({A,X})). Specifically:

Graph Statistic properties (ϕ(G) = Statistics(A)) like
graph density, average degree and degree variance employed
in [Xu et al., 2023a], and feature homophily (ϕ(G) =
Statistics({A,X})) in [Kumar et al., 2023]. More-
over, Structural Equivalence Matching (SEM) and Normal-
ized Heavy Edge Matching (NHEM) used in [Liang et al.,
2021] can identify Topologically Redundant nodes. Select-
ing nodes by Ranking them through score functions can be
effective in well-designed scenarios [Wei et al., 2023], while
simple selection without aggregation will not be further dis-
cussed for not fitting our definition.

A special class of Reconstruction like objectives is also
considered this category of objectives because a successful
reconstruction can be seen as a successful preservation of
graph information. In this case, O = Lreconstruct(Gc,G).
For example, metrics on reconstructed node features are used
in [Ma and Chen, 2021; Kumar et al., 2023], and metrics on
reconstructing the whole graph in [Gao et al., 2023].

3.2 Model Capability Guided Methods
Since the ultimate objective is to achieve comparable perfor-
mance via training models (include but not limited to GNNs)
on smaller graphs Sc, the models trained on the original
graphs S can be useful. By expecting GNNs to achieve
comparable results as those trained on the original dataset
S through training on the condensed ones Sc, we write:

min
Gc

L (Model(S;θGc
),Y)

s.t θGc = argmin
θ

L (Model (Gc;θ) ,Y ′) ,
(4)

where L is the task-specific loss (performance) function.
In this case, ϕ({G,Y}) = ϕ(Model(;θG)), and O =

D(ϕ(Model(;θGc)), ϕ(Model(;θG))), D is a distance func-
tion. We categorize all objectives that utilize such trained
model as input as model-guided objectives. Specifically:

Gradient. Starting from [Jin et al., 2021], training trajec-
tory matching, i.e., aligning the Gradient of models’ parame-
ters, has become one of the mainstream objectives in this cat-
egory as [Jin et al., 2022; Li et al., 2023; Yang et al., 2023;
Zheng et al., 2023; Gao et al., 2023; Gao and Wu, 2023]
did. Despite the specific model and tasks, these meth-
ods treat condensed graphs as optimization parameters to
simulate steps of the models’ training between the origi-
nal graph and the condensed graph, and [Li et al., 2023;
Mao et al., 2023] further introduce adversarial training for
optimization. By doing so, the models trained on the con-
densed graph align well with the original models, maximizing
the preservation of models’ performances on specific tasks.



Loss Value. Instead of applying GNNs as a black-box
model, [Xu et al., 2023b; Wang et al., 2023] aim to obtain the
exact solution of the classification model from data. Specif-
ically, kernel ridge regression was selected as the classifier
model, and the Loss value evaluating the performance of the
condensed model on original data was optimized.

Embedding and Logits. The outputs of an instance
through trained network typically integrate crucial informa-
tion for downstream tasks, and is thus considered informative.
Specifically, matching models’ output Embeddings of train-
ing instances is used in [Liu et al., 2022b; Liu et al., 2023b;
Dickens et al., 2023], and Predicted Logits based uncertainty
metric was used in [Liu et al., 2023a; Xu et al., 2023a].

3.3 Hybrid Methods
It is worth mentioning that the aforementioned two types
of objectives are not mutually conflicting. Therefore, the
third category named hybrid methods combines both the
graph properties and model capabilities as guidance dur-
ing condensation simultaneously. There are methods such
as [Yang et al., 2023; Gao et al., 2023; Liu et al., 2023a;
Xu et al., 2023a] that optimize the condensed graph from
both graph-guided and model-guided objectives. Specifically,
[Yang et al., 2023] simultaneously match the train trajectory
between two models and the Laplacian Energy Distribution
between two graphs, [Gao et al., 2023] optimize the training
trajectory loss and reconstruction loss together, [Liu et al.,
2022b] perform eigenbasis and training trajectory matching
in the same time and [Xu et al., 2023a] take the model pre-
dicted uncertainty and empirically verified useful graph prop-
erties to rank graph training instances for selection.

3.4 Comparison of Objectives
Three types of objectives, namely graph-guided, model-
guided, and hybrid, each with its advantages and drawbacks:
To produce ’similar’ condensed graphs, graph-guided objec-
tives focus on preserving the properties of the original graph.
This is suitable for applications that require retaining the pat-
terns from original graphs. However, they are not guided by
downstream tasks and hence may not be the optimal solu-
tion. On the other hand, the model-guided objectives aim
to maintain the performance of the model by optimizing the
condensed graph. These methods are driven by motivation-
oriented optimization and thus perform exceptionally well in
predefined scenarios. However, it may result in overfitting,
reducing the adaptability of condensed graphs to other mod-
els or tasks. Hybrid methods combine the advantages of both
graph-guided and model-guided approaches, intending to re-
tain model performance while preserving graph properties for
scenarios that value both graph property and model perfor-
mance. However, balancing between the two objectives as
well as optimizing them can be challenging.

In conclusion, the choice of the appropriate objective de-
pends on the specific requirements of the application. Graph-
guided is more suitable for tasks emphasizing graph struc-
ture, model-guided applies to scenarios emphasizing model
performance, and the hybrid method seeks a balance between

the two. Considering the goals of the task and the characteris-
tics of the graph, selecting the most suitable method requires
careful consideration in practical applications.

4 Formulation of Condensed Graphs
Here comes the question: how do we formulate each com-
ponent of the condensed graph Gc? Since the condensed
graphs {Gc,Y ′} = {{A′,X′},Y ′}, therefore, f(G) pertains
to formulating these three components. We write: A′ =
fA(G;W), X′ = fX(G;W), and Y ′ = fY(G;W) to for-
mulate each. As we conclude, there are two main classes: the
Modification and the Synthetic formulation. Specifically:

4.1 Modification formulation
Modification approaches encompass actions such as node ag-
gregation and deletion, etc., where the condensed graph is the
product of modifying the original graph. This category of for-
mulations can be uniformly formalized as aggregating nodes
from G to Gc. Assuming each node v′i ∈ V ′ is aggregated
from k nodes in G, k ∈ N, then the most common scheme,
e.g., [Loukas, 2019; Deng et al., 2020; Jin et al., 2020;
Huang et al., 2021; Ma and Chen, 2021; Kumar et al., 2023;
Dickens et al., 2023; Gao et al., 2023] did, was:

fA(G;P) = PTAP , fX(G;P) = P+X,

fY(G;P) = argmaxP+[Y]
(5)

P ∈ RN×N ′
is defined as a projection matrix, indicating that

nodes V(i) in G were aggregated to a new node v′i in Gc:

Pi,j =

{
1 if v′j ∈ V(i)

0 otherwise
(6)

In a general definition, each row of P may contain an un-
certain number of nonzero entries, ranging from none (the
node is considered dropped, e.g., [Luo et al., 2021]) to one
(the node is aggregated once) and even multiple (communi-
ties have overlapping issues). No paper has yet delved into the
discussion of community overlapping in this field, however,
this scenario can also be included within our formulation.

4.2 Synthetic formulation
Synthetic approaches, on the other hand, take the condensed
graphs as parameters and directly optimize them by minimiz-
ing specific objective functions. We further divide this formu-
lation into three strategies: Predefined, Joint Optimization,
and Sequential Optimization. Specifically:
Predefined. This kind of strategy is undoubtedly the most
straightforward yet most tricky one. Two popular strategies
are used in the literature: predefine A′ = I (I is the identity
matrix) in [Zheng et al., 2023; Liu et al., 2023b] and prede-
fine Y ′ = Sample(Y). The former can be interpreted as the
goal of graph condensation being solely to learn the prototype
embeddings for each class, at which point the topology infor-
mation has already been integrated and is no longer necessary.
The latter can be explained as achieving the same label dis-
tribution between the graph before and after condensation by
employing a uniform sampling of labels. The tricky initializa-
tion of parameters to optimize is also included as Predefined
strategies, which will not be discussed further here.



Joint Optimization. Methods in this category, e.g., [Jin et
al., 2022; Xu et al., 2023b; Liu et al., 2023a], are the most
simple yet the most challenging ones, where the condensed
graph (topology A′ and node features X′) is considered as
parameters for the optimization objective, and the node labels
Y ′ were often predefined by sampling the original labels Y .
In conclusion, the formulations are given by:

fA(;A′) = A′ , fX(;X′) = X′ , fY(Y; ) ⊆ Y (7)

In this scenario, W = {A′,X′} are parameters to be op-
timized. So far in the literature, they invariably need to pre-
define the labels for the condensed graph, e.g., uniform sam-
pling to keep label distribution unchanged. Therefore, this
kind of strategy can be perceived as generating dual features
for each class: node features and their topological connection.
Sequential Optimization. The existence of this strategy
is typically regarded as a compromise in the challenge of
joint optimization: if the complete condensed graph, encom-
passing both matrix A′ and vector X′, is regarded as op-
timization parameters, the dimensionality of the parameter
space escalates significantly, introducing challenges to the
convergence of optimization objective. Therefore, optimiz-
ing part of the condensed graph first, and constructing the
rest parts to complete the condensation can be an efficient
solution. Specifically, [Jin et al., 2021; Liu et al., 2022b;
Wang et al., 2023; Gao and Wu, 2023; Yang et al., 2023]
first generate the node embedding via objective optimiza-
tion, and construct the topology by MLPs according to the
generated node features ([Gao and Wu, 2023; Yang et al.,
2023] further introduce original topology A to help generate
the condensed graph topology A′); and [Huang et al., 2021;
Dickens et al., 2023] modify the condensed graph first, and
determine the node label by the majority of aggregated origi-
nal nodes. The formulation is given by:

fA(X′;ω) = g(X′;ω) , fX(;X′) = X′ , fY(Y; ) ⊆ Y
(8)

g() can be MLPs, etc., and in this case, W = {X′, ω}.
Among the existing literature, as the optimization of X′

also needs predefined labels, this formulation can be seen as
generating prototypes for each class first, and subsequently
predicting their relationships (i.e., topology); or aggregate
hypernodes first, and determining their labels; or construct
topology first, optimizing the node feature and labels as [Pan
et al., 2023] did, hence possessing greater interpretability.

4.3 Comparison of formulations
Each of the formulations mentioned has its distinct method
(or not being invented yet but can be done) for generating A′,
X′, Y ′ separately, despite that the Sequential Optimization
Formulation must rely on the intermediate results of the other
formulations. As we conclude, the Modification formula-
tions exhibit the strongest computational efficiency and in-
terpretability, but their applicability is limited, as each graph
awaiting condensation requires the recalibration of the pro-
jection matrix. The Synthetic by joint optimization formu-
lation is the simplest, defining the objective and optimizing
directly, yet it is also the most challenging, the parameter
search space may be so big that convergence is difficult. To

Table 1: Taxonomy of surveyed methods

Method O f

G
ra

ph
G

ui
de

d

GC 1 Spectral Properties Modification
ReduceG 2 Spectral Properties Modification

SCAL 3 Spectral Properties Modification
GraphZoom 4 KNN Aggregation Modification

SC 5 KNN Aggregation Modification
FGC 6 Graph Statistics Modification
CaT 7 Graph Similarity Synthetic
OTC 8 Ranking + Reconstruct M+S

M
od

el
G

ui
de

d

ConvMatch 9 Embedding Similarity Modification
GCDM 10 Embedding Similarity Synthetic
KiDD 11 Loss Matching Synthetic

FedGKD 12 Loss Matching Synthetic
GC-SNTK 13 Loss Matching Synthetic

SFGC 14 Gradient Matching Synthetic
DosCond 15 Gradient Matching Synthetic
GCond 16 Gradient Matching Synthetic
GroC 17 Gradient Matching Synthetic

HCDC 18 Gradient Matching Synthetic
MSGC 19 Gradient Matching Synthetic

H
yb

ri
d Mcond 20 Reconstruct + Gradient M+S

SGDD 21 Spectral + Gradient Synthetic
GCEM 22 Spectral + Logits Synthetic

Ps. ’M’, ’S’ stands for Modification and Synthetic respectively.
Refs: 1[Loukas, 2019], 2[Bravo Hermsdorff and Gunderson, 2019],
3[Huang et al., 2021], 4[Deng et al., 2020], 5[Jin et al., 2020],
6[Kumar et al., 2023], 7[Liu et al., 2023b], 8[Huang et al., 2021],
9[Dickens et al., 2023], 10[Liu et al., 2022b], 11[Xu et al., 2023b],
12[Pan et al., 2023],13[Wang et al., 2023], 14[Zheng et al., 2023],
15[Jin et al., 2022], 16[Jin et al., 2021], 17[Li et al., 2023],
18[Ding et al., 2022],19[Gao and Wu, 2023],20[Gao et al., 2023],
21[Yang et al., 2023],22[Liu et al., 2023a]

address this issue, the Synthetic by Sequential Optimiza-
tion is a 2-step scheme, incorporating the advantages of both
easy-to-implement and objective-oriented. The Synthetic by
Predefined formulation yields intuitive results and can be ef-
fective in carefully designed scenarios. The table 1 presents
the objective-based category of methods included in this sur-
vey, and strategies on how to formulate the condensed graphs.

4.4 Strategies: S → Sc

After introducing the condensation of a single graph, we will
now explore the strategies for condensing multiple graphs.
Currently, there are only a few methods addressing this appli-
cation, so we will only provide a concise overview:

One-by-One strategy: If the number of graphs remains
unchanged, i.e., every single graph is condensed indepen-
dently, e.g., [Jin et al., 2020], we categorize this scheme as
the one-by-one strategy. Any method that can condense a
single graph can be modified to condense multiple graphs by
adopting this strategy. Joint Optimization strategy: Simi-
lar to the single-graph joint optimization, this strategy com-
bines multiple condensed graphs as parameters of the op-



timization objective, e.g., [Jin et al., 2022]. By naming
the number of graphs in a graph dataset to be 1, this cate-
gory of methods would essentially degenerate into a single-
graph optimization strategy. Selecting strategy: The core
of this strategy is to rank each single graph by score func-
tions, and select the top-ranked ones, e.g., [Wang et al., 2021;
Xu et al., 2023a]. Given that these methods have limited rel-
evance to our survey, we will not delve further.

5 Dataset and Evaluation
5.1 Dataset Statistics
We systematically organize and summarize the datasets em-
ployed in the discussed methods, categorizing them into two
primary types: datasets featuring a single large graph and
those comprising multiple graphs. The former is typically
utilized for tasks such as node classification and edge predic-
tion, while the latter is employed in graph classification. We
present key attributes of the datasets, encompassing details
such as the number of nodes, number of edges, features and
classes, and the graph type (e.g., social network or molecular
network) for datasets with a single large graph. Additionally,
for datasets containing multiple subgraphs, we provide orga-
nization based on the number of subgraphs, average number
of nodes, average number of edges, number of labels, and the
type of graph. The detailed statistic of the the datasets can be
found in our online resources 1.

5.2 Evaluation Metrics
GC aims to create a significantly smaller graph dataset while
preserving sufficient information, thus it is crucial to evaluate
how much this information is retained. The evaluation of GC
methods is challenging compared to the straightforward per-
formance evaluation of traditional GNNs, mainly due to their
involvement in multiple aspects. From a holistic perspective,
we summarize the evaluation of the entire GC process into
two aspects: effectiveness and efficiency. Effectiveness eval-
uates how well the GC retains the original information, while
efficiency includes both the condensation process and down-
stream task efficiency. Details can be found below:

Metrics Over Effectiveness
From the perspective of input and output, GC methods take
the original graphs as input and the condensed graphs as out-
put. To verify that the condensed graphs are informative, the
effectiveness of GC is evaluated through the following dif-
ferent aspects: (1) The similarity between the original and
condensed graphs is assessed in domains such as spectral and
spacial characteristics. (2) The performance of condensed
graphs in downstream tasks, while closely mirrors evalua-
tions in traditional GNNs, a comparable performance can
be considered as a success preservation of valuable informa-
tion for downstream tasks. (3) Properties of the condensed
graphs alone, e.g., applicability which involves integrating
GC as a component within an existing system, with evalu-
ation metrics aligning with target systems like Graph Embed-
ding and Graph Continual Learning; The capabilities such as
fairness, generalizability, etc. Specifically:

1https://github.com/liangliang6v6/GraphCondensation

Similarity with Original Graphs. Evaluation of how well
condensed graphs replicate the spectral and spacial charac-
teristics of the original graphs involves metrics such as Pro-
portion of Low-Frequency Nodes, Mean of High-Frequency
Areas, and various spectral domain metrics. The dissimi-
larity between recovered graph partitions and ground-truth
structures is quantified using Normalized Mutual Informa-
tion (NMI). Error metrics, such as Relative Eigenerror, Re-
construction Error, Dirichlet Energy, and Hyperbolic Error,
also provide insights into the similarity evaluation.

Performance of Mining on Condensed Graphs. The eval-
uation of GC methods entails a diverse set of metrics tailored
to specific downstream tasks. In node and graph classifica-
tion, widely adopted measures include Accuracy (ACC), with
the Mean Classification ACC and Standard Deviation provid-
ing a more robust assessment. Furthermore, widely adopted
performance evaluation metrics, such as the area under the
ROC curve (AUROC), area under the precision-recall curve
(AUPRC), and F1-score, find extensive application across di-
verse downstream tasks. For link prediction task, common
metrics include Hits@50 and Mean Reciprocal Rank (MRR).

Independent Graphs Property Evaluation. The utiliza-
tion of GC methods in various systems entails the consider-
ation of diverse evaluation metrics. For bias measurement in
GC [Feng et al., 2023; Mao et al., 2023], fairness metrics, in-
cluding Demographic Parity (also known as Statistical Parity)
and Equal Opportunity, are employed. Considering the fair-
ness and downstream task performance trade-off, they utilize
the Pareto frontier Ishizaka and Nemery. The GC methods in-
volved with models’ guidance introduce the concept of gener-
alizability, signifying that the condensed dataset can achieve
comparable performance across GNNs. Addtionally, guided
GNNs may differ from downstream GNNs, demonstrating
cross-architecture generalizability.

Metrics Over Efficiency
The fundamental motivation of GC is to facilitate graph min-
ing tasks on large-scale original graphs with efficiency. Con-
sequently, it is imperative to evaluate the computational re-
sources saved by GC in the mining of condensed graphs.
Meanwhile, although GC is an one-time effort, the process
of GC itself should not take too much resources.

Within the condensation algorithm, most methods, e.g. [Jin
et al., 2021; Jin et al., 2022], analyze the computational
complexity, primarily emphasizing time complexity and, to
a lesser extent, space complexity. With respect to various
datasets and condensation ratios (often expressed as a per-
centage), these approach entails directly measuring the time
required for generating the condensed dataset, commonly re-
ferred to as condensation time. For a more in-depth analysis
of this term, certain methods further subdivide the time, e.g.,
GCEM[Liu et al., 2023a] proposes additional metrics: time
spent on pre-processing stage; KiDD[Xu et al., 2023b] mea-
sures the time dedicated to forward and reverse gradient prop-
agation based on varying batch sizes, etc. In addition, consid-
ering that the large size of original graph data can cause the
Out of Memory (OOM) problems, some methods also mea-
sure the memory usage in this process.



The efficiency of training a new GNN in downstream tasks
using condensed graphs is undoubtedly superior to that of
original graphs, where the time and space saved by GC are
empirically proportional to the condensation ratios. How-
ever, there are still some research [Dickens et al., 2023;
Wang et al., 2023; Gao et al., 2023] specifically focused on
evaluating downstream task training time and memory usage.
Notably, not all methods explicitly address the efficiency of
GC, but the absence of it does not imply its impossibility to
conduct such [Jin et al., 2020; Huang et al., 2021]. Consid-
ering both efficiency and effectiveness, we will introduces a
tradeoff consideration in the following chapters.

6 Limitations and Challenges

Performance Gap Issue. As we analyze, there is an ob-
vious performance gap: the scale of the synthetically con-
densed graph is considerably smaller than that of the modify-
ing strategies. For example, the commonly used condensing
ratio of synthetic methods is around 1.3%, while the common
condense ratio of modifying the original graph is 30, 50, 70%.
Different strategies have their respective advantages, but there
might be a significant performance gap when evaluated on the
same metric. That is to say, the choice of appropriate methods
is diverse and depends on the practical needs of application
scenarios, which is currently hard to have a unifying strategy.

Efficiency Concern for Applications. If the ultimate goal
of GC is to train GNNs effectively on scaled datasets, it may
be required to ensure that the time and resources invested
in GC do not surpass the time saved by training on smaller
graphs. However, since the GC process is a one-time effort,
as long as the downstream task continues for a sufficient du-
ration or is repeated frequently, this requirement can still be
fulfilled. Thus, the downstream task scenarios must be in-
cluded as part of the efficiency evaluation scheme.

Comprehensive Effectiveness Metrics. Existing methods
predominantly evaluate GC effectiveness based on the perfor-
mance of condensed graphs in downstream tasks. However,
conventional performance metrics, like classification ACC,
may fall short in addressing critical issues such as fairness
[Mao et al., 2023], robustness against adversarial attacks [Li
et al., 2023] etc. While few efforts, e.g. [Feng et al., 2023],
have propose constraints focusing on group fairness, future
exploration could broaden the scope to include other univer-
sal constraint or evaluation metrics for GC.

Unexplored Methodological Capabilities The scopes of
investigations on generalizability were exploring perfor-
mances with (1) Various GNN architectures; (2) Model con-
vergence; (3) Extreme condensation ratios and (4) multiple
downstream tasks. The main idea is to use the model per-
formance on the condensed graph as a metric to assess the
quality of the graph condensation. In this context, the perfor-
mance metric is considered independent of the semantics of
the condensed graph, and thus we consider GC methods using
this strategy of evaluation to have a lower interpretability.

7 Future Directions
While substantial progress has been achieved in GC, we con-
clude that numerous future explorations persist:
Interpretability of the Condensed Graphs. Unlike the
natural interpretability of dataset distillation in the field of
computer vision [Zhao et al., 2020], the output of condensed
graphs requires further exploration of interpretability in the
real world. The key identification of GC in our definition is
the fact that the nodes or edges in the condensed graph may
be newly generated. While these new elements may pro-
vide sufficient information for graph mining, their semantic
meanings in the real world may be difficult to obtain directly.
Therefore, we believe that enhancing the interpretability of
elements in the condensed graph is an important research
problem for expanding the application scenarios of GC.
Condensing More Complex Graphs. Although GC has
been successfully developed in various graphs, most of ex-
isting methods have primarily focused on undirected, homo-
geneous, static graphs. However, graphs in real-world scenar-
ios are usually more complicated [Kazemi et al., 2020], such
as dynamic graphs(e.g., traffic flow graphs), heterogeneous
graphs (e.g., user-item graphs), etc. Condensation on these
complex graphs requires preserving richer information from
the original graph, which in turn poses greater challenges.
Due to the complexity and diversity of real-world graph data,
more graph types should be considered as well.
Exploring the Correlation between Objectives. Under
our taxonomy, each single objective of GC can be categorized
into two groups: graph-guided and model-guided, by specific
information to preserve. These two types of objectives are not
inherently conflicting, yet their mutual relation has not been
conclusively investigated. For instance, it remains uncertain
whether there exists theoretical assurance that the preserva-
tion of certain graph properties is sufficient for the retention
of GNN performance, or the other way around.
More Graph Formulation. While there are already numer-
ous methods for condensed graph formulation, we believe
there are still many potential and viable approaches waiting
to be explored. For example, non-uniform sampling of labels
during GC might be a viable solution to address label imbal-
ance issues [Zhao et al., 2021]; node features can be prede-
fined as mutually orthogonal one-hot vectors, similar to what
was done in [Ma et al., 2021], just to generate the topology
and thus facilitate relationship learning, etc.
Tradeoff Framework. Within the exploration of applica-
tions, we inevitably confront a crucial yet delicate question:
How to determine the scale of the condensed graph to meet
the predefined purpose of GC? Although some existing meth-
ods have recognized the tradeoff between effectiveness and
efficiency (as evidenced by their ratio-performance figure),
we argues that both effectiveness and efficiency should be
comprehensively included in a tradeoff framework. This is
crucial to specify the utility of GC and expand its application
scope to more practical scenarios. By considering both as-
pects, we can better understand the benefits and limitations
of GC techniques and make informed decisions about their
applicability in real-world settings.
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