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Abstract

Unsupervised Anomaly Detection (UAD) plays
a crucial role in identifying abnormal patterns
within data without labeled examples, holding
significant practical implications across various
domains. Although the individual contributions of
representation learning and clustering to anomaly
detection are well-established, their interdepen-
dencies remain under-explored due to the absence
of a unified theoretical framework. Consequently,
their collective potential to enhance anomaly de-
tection performance remains largely untapped. To
bridge this gap, in this paper, we propose a novel
probabilistic mixture model for anomaly detec-
tion to establish a theoretical connection among
representation learning, clustering, and anomaly
detection. By maximizing a novel anomaly-aware
data likelihood, representation learning and clus-
tering can effectively reduce the adverse impact
of anomalous data and collaboratively benefit
anomaly detection. Meanwhile, a theoretically
substantiated anomaly score is naturally derived
from this framework. Lastly, drawing inspiration
from gravitational analysis in physics, we have
devised an improved anomaly score that more
effectively harnesses the combined power of rep-
resentation learning and clustering. Extensive ex-
periments, involving 17 baseline methods across
30 diverse datasets, validate the effectiveness and
generalization capability of the proposed method,
surpassing state-of-the-art methods.

1. Introduction

Unsupervised Anomaly Detection (UAD) refers to the task
dedicated to identifying abnormal patterns or instances
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Figure 1: Interdependent relationships among representation
learning, clustering, and anomaly detection.
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within data in the absence of labeled examples (Chandola
et al., 2009). It has long received extensive attention in
the past decades for its wide-ranging applications in numer-
ous practical scenarios, including financial auditing (Baku-
menko & Elragal, 2022), healthcare monitoring (Salem
et al., 2014) and e-commerce sector (Kou et al., 2004). Due
to the lack of explicit label guidance, the key to UAD is
to uncover the dominant patterns that widely exist in the
dataset so that samples do not conform to these patterns
can be recognized as anomalies. To achieve this, early
works (Chalapathy & Chawla, 2019) have heavily relied
on powerful unsupervised representation learning methods
to extract the normal patterns from high-dimensional and
complex data such as images, text, and graphs. More recent
works (Song et al., 2021; Aytekin et al., 2018) have utilized
clustering, a widely observed natural pattern in real-world
data, to provide critical global information for anomaly de-
tection and achieved tremendous success.

While the individual contributions of representation learning
and clustering to anomaly detection are well-established,
their interrelationships remain largely unexplored. Intu-
itively, discriminative representation learning can leverage
accurate clustering results to differentiate samples from dis-
tinct clusters in the embedding space (i.e., ®). Similarly, it
can utilize accurate anomaly detection to avoid preserving
abnormal patterns (i.e., @). For accurate clustering, it can
gain advantages from representation learning by operating
in the discriminative embedding space (i.e., ®). Meanwhile,
it can potentially benefit from accurate anomaly detection
by excluding anomalies when formulating clusters (i.e., @).
Anomaly detection can greatly benefit from both discrimi-
native representation learning and accurate clustering (i.e.,
® & ®). However, these benefits hinge on the successful
identification of anomalies and the reduction of their detri-
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mental impact on the aforementioned tasks. As depicted in
Figure 1, the integration of these three elements exhibits a
significant reciprocal nature. In summary, representation
learning, clustering, and anomaly detection are interdepen-
dent and intricately intertwined. Therefore, it is crucial for
anomaly detection to fully leverage and mutually enhance
the relationships among these three components.

Despite the intuitive significance of the interactions among
representation learning, clustering, and anomaly detection,
existing methods have only made limited attempts to ex-
ploit them and fall short of expectations. On one hand,
some methods (Zong et al., 2018) have acknowledged the
interplay among these three factors, but their focus remains
primarily on the interactions between two factors at a time,
making only targeted improvements. For instance, some
strategies include explicitly removing outlier samples during
the clustering process (Chawla & Gionis, 2013) or designing
robust representation learning methods (Cho et al., 2021)
to mitigate the influence of anomalies. On the other hand,
recent methods (Song et al., 2021) have begun to explore
the simultaneous optimization of these three factors within
a single framework. However, these attempts are still in the
stage of merely superimposing the objectives of the three
factors without a unified theoretical framework. This lack
of a guiding framework prevents the adequate modeling of
the interdependencies among these factors, thereby limiting
their collective contribution to a unified anomaly detection
objective. Consequently, we aim to address the following
question: Is it possible to employ a unified theoretical frame-
work to jointly model these three interdependent objectives,
thereby leveraging their respective strengths to enhance
anomaly detection?

In this paper, we try to answer this question and propose a
novel model named UniCAD for anomaly detection. The
proposed UniCAD integrates representation learning, clus-
tering, and anomaly detection into a unified framework,
achieved through the theoretical guidance of maximizing
the anomaly-aware data likelihood. Specifically, we explic-
itly model the relationships between samples and multiple
clusters in the representation space using the probabilistic
mixture models for the likelihood estimation. Moreover,
we creatively introduce a learnable indicator function into
the objective of maximum likelihood to explicitly attenu-
ate the influence of anomalies on representation learning
and clustering. Under this framework, we can theoretically
derive an anomaly score that indicates the abnormality of
samples, rather than heuristically designing it based on clus-
tering results as existing works do. Furthermore, building
upon this theoretically supported anomaly score and inspired
by the theory of universal gravitation, we propose a more
comprehensive anomaly metric that considers the complex
relationships between samples and multiple clusters. This
allows us to better utilize the learned representations and

clustering results from this framework for anomaly detec-
tion. We conduct extensive experiments with 15 baselines
on 30 datasets from different data domains to evaluate the
effectiveness of the proposed method. The results verify
the effectiveness and generalization capability in detecting
anomalies in real-world applications.

To sum up, we underline our contributions as follows:

* We propose a unified theoretical framework to jointly
optimize representation learning, clustering, and anomaly
detection, allowing their mutual enhancement and aid in
anomaly detection.

* Based on the proposed framework, we derive a theoret-
ically grounded anomaly score and further introduce a
more comprehensive score with the vector summation,
which fully releases the power of the framework for effec-
tive anomaly detection.

* Extensive experiments have been conducted on 30
datasets to validate the superior unsupervised anomaly
detection performance of our approach, which surpassed
the state-of-the-art through comparative evaluations with
17 baseline methods.

2. Related Work

Various UAD methods have been proposed based on differ-
ent assumptions, making them suitable for detecting vari-
ous types of anomaly patterns, including subspace-based
models (Kriegel et al., 2009), statistical models (Gold-
stein & Dengel, 2012), linear models (Wold et al., 1987;
Manevitz & Yousef, 2001), density-based models (Bre-
unig et al., 2000; Peterson, 2009), ensemble-based mod-
els (Pevny, 2016; Liu et al., 2008), probability-based mod-
els (Reynolds et al., 2009; Zong et al., 2018; Li et al., 2022;
2020), representation-based models (Ruff et al., 2018; Xu
et al., 2023; Goyal et al., 2020; Qiu et al., 2021), and cluster-
based models (He et al., 2003; Chawla & Gionis, 2013).
Considering the field of anomaly detection has progressed
by integrating clustering information to enhance detection
accuracy (Li et al., 2021; Zhou et al., 2022), we primarily
focus on and analyze anomaly patterns related to clustering,
incorporating a global clustering perspective to assess the
degree of anomaly. Notable methods in this context include
CBLOF (He et al., 2003), which evaluates anomalies based
on the size of the nearest cluster and the distance to the
nearest large cluster. Similarly, DCFOD (Song et al., 2021)
introduces innovation by applying the self-training architec-
ture of the deep clustering (Xie et al., 2016) to outlier detec-
tion. Meanwhile, DAGMM (Zong et al., 2018) combines
deep autoencoders with Gaussian mixture models, utilizing
sample energy as a metric to quantify the anomaly degree.
In contrast, our approach introduces a unified theoretical
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framework that integrates representation learning, cluster-
ing, and anomaly detection, overcoming the limitations of
heuristic designs and the overlooked anomaly influence in
existing methods.

3. Methodology

In this section, we first define the problem we studied and
the notations used in this paper. Then we elaborate on
the proposed method UniCAD. More specifically, we first
introduce a novel learning objective that optimizes represen-
tation learning, clustering, and anomaly detection within a
unified theoretical framework by maximizing the data like-
lihood. A novel anomaly score with theoretical support is
also naturally derived from this framework. Then, inspired
by the concept of universal gravitation, we further propose
an enhanced anomaly scoring approach that leverages the
intricate relationship between samples and clustering to de-
tect anomalies effectively. Finally, we present an efficient
iterative optimization strategy to optimize this model and
provide a complexity analysis for the proposed model in
Appendix D 4.

Definition 1 (Unsupervised Anomaly Detection). Given
a dataset X € RN*P comprising N instances with D-
dimensional features, unsupervised anomaly detection aims
to learn an anomaly score o; for each instance x; in an
unsupervised manner so that the abnormal ones have higher
scores than the normal ones.

3.1. Maximizing Anomaly-aware Likelihood

Previous research has demonstrated the importance of
discriminative representation and accurate clustering in
anomaly detection (Song et al., 2021). However, the pres-
ence of anomalous samples can significantly disrupt the
effectiveness of both representation learning and cluster-
ing (Duan et al., 2009). While some existing studies have at-
tempted to integrate these three separate learning objectives,
the lack of a unified theoretical framework has hindered
their mutual enhancement, leading to suboptimal results.

To tackle this issue, in this paper, we propose a unified
and coherent approach that considers representation learn-
ing, clustering, and anomaly detection by maximizing the
likelihood of the observed data. Specifically, we denote
the parameters of representation learning as O, the clus-
tering parameter as @, and the dynamic indicator function
for anomaly detection as J(-). These parameters are opti-
mized simultaneously by maximizing the likelihood of the

observed data X:
max log p(X|0, @)

N
= max Z 0(x;) log p(x;|0, @)

i=1 ey
N K

= maxZé(xi)log Zp(xi,ci = k|©, D),
i=1 k=1

where c; represents the latent cluster variable associated
with x;, and ¢; = k denotes the probabilistic event that
x; belongs to the k-th cluster. The §(x;) is an indicator
function that determines whether a sample x; is an anomaly
of value 0 or a normal sample of value 1.

3.1.1. JOINT REPRESENTATION LEARNING AND
CLUSTERING WITH p(x;|©, @)

Based on the aforementioned advantages of MMs, we esti-
mate the likelihood p(x;|©, ®) with mixture models defined
as:

p(x;|0, ®) p(xi,¢; = k|©, D)

plei = k) - p(xile; = k, O, py, Xi,)

Il
1> T 1

Wk P(Xz|Cz = kvg,ukvzk)v
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where ® = {wy, g, Xx }. The mixture model is parame-

terized by the prototypes i, covariance matrices >, and
. . K

mixture weights wy, from all clusters. Y w1 wr = 1, and

k=1,2,--- K.

In practice, the samples are usually attributed to high-
dimensional features and it is challenging to detect anoma-
lies from the raw feature space (Ruff et al., 2021). There-
fore, modern anomaly detection methods (Ruff et al., 2018;
Zong et al., 2018) often map raw data samples X =
{x;} € RV*P into a low-dimensional representation space
Z = {z;} € RN*? with a representation learning func-
tion z; = fo(x;) and detect anomalies within this latent
representation space.

Following this widely adopted practice, we model the distri-
bution of samples in the latent representation space with a
multivariate Student’s-¢ distribution giving its cluster ¢; = k.
The Student’s-¢ distribution is robust against outliers due
to its heavy tails. Bayesian robustness theory leverages
such distributions to dismiss outlier data, favoring reliable
sources, making the Student’s-t process preferable over
Gaussian processes for data with atypical information (An-
drade, 2023). Thus the probability distribution of generating
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x; with latent representation z; given its cluster ¢; = k can
be expressed as:

p(xi|ci = kjaC—)aIJ‘kyEk)

N G ! AR
=—F—F— |1 -D (2] )
L'(5)vn ( + v (2, pix) )

where z; = fo(x;) denotes the representation obtained
from the data mapped through the neural network pa-
rameterized by ©. I' denotes the gamma function while
v is the degree of freedom. i is the scale parameter.

Dy (zi, pr) = \/(zl - uk)TE,j(zi — ) represents the
Mahalanobis distance (McLachlan, 1999). In the unsu-
pervised setting, as cross-validating v on a validation set
or learning it is unnecessary, v is set as 1 for all experi-
ments (Xie et al., 2016; Van Der Maaten, 2009). The overall
marginal likelihood of the observed data x; can be simpli-
fied as:

a1 |Ek|71/2

AR Ll N 4
L+ Dns(2i, pi)? @

K
p(x:[0,®) = Zwk :
k=1

3.1.2. ANOMALY INDICATOR §(x;) AND SCORE 0;

As we have discussed, the indicator function d(x;) not only
benefits both representation and clustering but also directly
serves as the output of anomaly detection. Ideally, with
the percentage of outliers denoted as [/, an optimal solution
for §(x;) that maximizes the objective function J(O, )
entails setting all 0(x;) = 0 for x; among the [ percent
of outliers with lowest generation possibility p(x;|©, @),
and otherwise d(x;) = 1 is set for the remaining normal
samples. Therefore, the indicator function is determined as:

if p(x;|©, ®) is among the [ lowest, )

otherwise.

As this method involves sorting the samples based on the
generation probability as being anomalous, the values of
p(x;]©, ®) can serve as a form of anomaly score, a classic
approach within the mixture model framework (Reynolds
et al., 2009; Zong et al., 2018). This suggests that the likeli-
hood of a sample being anomalous is inversely related to its
generative probability since a lower generative probability
indicates a higher chance of the sample being an outlier.
Thus the anomaly score of sample x; can be defined as:

1 1

= = — — . (6)
. K 1 172
p(X1|@, (I)) Zk:l Wk - 714*[)1\‘/12(:1‘,#19)2

04

3.2. Gravity-inspired Anomaly Scoring

In practical applications, it is proved that anomaly scores
derived from generation probabilities often yield suboptimal
performance (Han et al., 2022). This observation prompts a
reconsideration of how to fully leverage the complex rela-
tionships among samples or even across multiple clusters
for anomaly detection. In this section, we first provide a
brief introduction to the concept of Newton’s Law of Univer-
sal Gravitation (Newton, 1833) and then demonstrate how
the anomaly score is intriguingly similar to this cross-field
principle. Finally, we discuss the advantages of introducing
the vector sum operation into the anomaly score inspired by
the analogy.

3.2.1. ANALOG ANOMALY SCORING AND FORCE
ANALYSIS

To begin with, Newton’s Law of Universal Gravitation (New-
ton, 1833) stands as a fundamental framework for describing
the interactions among entities in the physical world. Ac-
cording to this law, every object in the universe experiences
an attractive force from another object. In classical mechan-
ics, force analysis involves calculating the vector sum of all
forces acting on an object, known as the resultant force,
which is crucial in determining an object’s acceleration or
change in motion:

K G -m;m
- = —— SMmymE
F; o = E Fig, withFyy = ——5— T, (7)
rA
k=1 ik

where F, represents the k-th force acting on the object :.
This force is proportional to the product of their masses,
(m; and my,), and inversely proportional to the square of the
distance r;; between them. G represents the gravitational
constant, and T;; is the unit direction vector.

Similarly, if denoting: f‘zk = p(xi,¢ = k|©, D) = wy -
-1, -1/ . .
%, the score of Equation (6) bears analogies to

the summation of the magnitudes of forces as:

1 _ G
> ket Fix Tik
where G = 7L, i, = wr|Ze| "2, m; = 1, and

Tik = \/1+ Du(z4, pg)?. Here, 7 is taken as the mea-
sure of distance within the representation space, modified
slightly by an additional term for smoothness. The constant
G serves a role akin to the gravitational constant in this
analogy, whereas my, resembles the concept of mass for the
cluster. The notation m; suggests a standardization where
the mass of each data point is considered uniform and not
differentiated.



Towards a Unified Framework of Clustering-based Anomaly Detection

R H R H
Ha VAR Hq
Fyg + Fyy > v \ Fyr+Fpp Fpg+ Fyy > v Foit Py
C - > -======= >
Hz & H3 \
* Ha * K2

(a) Scalar Sum (b) Vector Sum

Figure 2: Analysis of gravitational force.

3.2.2. ANOMALY SCORING WITH VECTOR SUM

Comparing Equation (7) with Equation (8), what still differs
is that, unlike a simple sum of the scalar value, the resul-
tant force ﬁi7[0tal employs the vector sum and incorporates
both the magnitude and direction T;; of each force. This
distinction is crucial because forces in different directions
can neutralize each other with a large angle between them
or enhance each other’s effects with a small angle. Inspired
by this difference, we consider modeling the relationship
between samples and clusters as a vector, and aggregat-
ing them through vector summation. The vector-formed
anomaly score o is defined as:

1
.
0; = = o ©)]
1> k=1 Fik - Tire||

where 1';;; represents the unit direction vector in the repre-
sentation space from the sample z; to the cluster prototype
wr , and || - || represents the Ly norm.

3.2.3. ADVANTAGES OF VECTOR SUM

The application of the vector sum principle extends beyond
physical mechanics and finds relevance in various domains.
In relational embedding (Bordes et al., 2013), for example,
relationships can be represented as vectors. Aggregating
these vectors allows for capturing complexities like transi-
tivity, symmetry, and antisymmetry.

Similarly, in our context, the vector sum can help capture
more complex relationships along clusters. In Figure 2, a
sample v is attracted to two groups of cluster prototypes,
{p1, p2} and {ps, pa}, with equal mass and distances.
While both groups exert equal forces, we argue that their
influences differ: a sample near two clusters with a large
difference is more likely to be an anomaly than one near
similar clusters. For instance, a user liking both money-
saving tips and luxury items is more anomalous than one
liking two similar luxury items. The vector sum shows
that the total force from {1, o} is smaller, leading to a
higher anomaly score, thus demonstrating its effectiveness
in identifying subtle distinctions among clusters.

Algorithm 1 Model Training for UniCAD

Require: Data points X, cluster number K, outlier ratio [,
tolerance )\, iterations ¢

Ensure: Network parameters ©, mixture parameters
{wr, e, X}
Initialize © and { g, wi, Sk }
fori =1totdo

1:

2:

3 if © = 1 then

5. else

6: Re-order points in X such thato; > --- > o,
7 Li<—{x1,...,xLN,lJ}

8 X; « X\ L; {Remove top-/ anomalies}

9

. endif
10:  Update © via Equation (15)
11:  while |J(©,®) — J°'4(O,®)| > X do
12: Jo(O,®) «+ J(O,d)

13: Calculate T via Equation (10)
14: Update {wg, px, Xx} via Equations (12), (13),
(14)

15:  end while

16:  Calculate o; via Equation (9)
17: end for

18: return O, {wy, pk, Lk}

3.3. Iterative Optimization

Given the challenge posed by the interdependence of the
parameters of the network © and those of the mixture model
{wpk, pr, Xk } in joint optimization, we propose an iterative
optimization procedure. The pseudocode for training the
model is presented in Algorithm 1.

3.3.1. UPDATE O

To update the parameters of the mixture model & =
{wk, pi, T }, we use the Expectation-Maximization (EM)
algorithm to maximize equation (1) (Peel & McLachlan,
2000). The detailed derivation is included in Appendix B.

E-step. During the E-step of iteration (¢ + 1), our goal is
to compute the posterior probabilities of each data point be-
longing to the k-th cluster within the mixture model. Given
the observed sample x; and the current estimates of the pa-
rameters ©(*) and ®(*) the expected value of the likelihood
function of latent variable cy, or the posterior possibilities,
can be expressed as:

(t+1) _ p(xi,ci = k|©, 1) B ]_Egz)

ik - K . - ~ .
Zj:1p(xi7ci :]|®>(I)(t)) Zngl FS)
(10)

The scale factor(Peel & McLachlan, 2000) serving as an
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intermediate result for subsequent updates in the M-step is :

u(D 2
zk:
1+ Dy (2", )

(1)

M-step. In the M-step of iteration (¢+1), given the gradients
8‘][5,0 2) =, 8]8(&@) 0, and %qu)) = 0, we derive
the analytlcal solutions for the mixture model parameters
Wk, Kk, and Xp. Assume the anomalous ratio is [ € [0, 1],
the number of the normal samples is n = int({ * N). The

updating process for {w(tﬂ), u,(fﬂ), ESH)

} is as follows:

* The mixture weights wy, are updated by averaging the
posterior probabilities over all data points with the num-
ber of samples , reflecting the relative presence of each
component in the mixture:

n

=> i,

=1

w}gtﬂ) (12)

* The prototypes i are updated to be the weighted aver-
age of the data points, where weights are the posterior
probabilities:

t+1 t+1)_ (t+1
Nl(c = Z (Ti(k zk )

i=1

(t41) t+1
) 13 ().
13)
* The covariance matrices X, are updated by considering

the dispersion of the data around the newly computed
prototypes:

bt 1 1 1 1
s+ - Lin A G (R Tl U M
K t+1
(14)

3.3.2. UPDATE ©

We focus on anomaly-aware representation learning and
use stochastic gradient descent to optimize the network
parameters ©, by minimizing the following joint loss:

L=-J(0,8)+g(O), (15)
where J(O,®) = logp(X|O©,®). An additional con-
straint term ¢(©) is introduced to prevent shortcut solu-
tion (Geirhos et al., 2020). In practice, an autoencoder
architecture is implemented, utilizing a reconstruction loss
g(©) = ||z — 2||? as the constraint.

These updates are iteratively performed until convergence,
resulting in optimized model parameters that best fit the
given data according to the mixture model framework.

4. Experiments
4.1. Datasets & Baselines

We evaluated UniCAD on an extensive collection of datasets,
comprising 30 tabular datasets that span 16 diverse fields.
We specifically focused on naturally occurring anomaly
patterns, rather than synthetically generated or injected
anomalies, as this aligns more closely with real-world sce-
narios. The detailed descriptions are provided in Table 4
of Appendix D.1. Following the setup in ADBench (Han
et al., 2022), we adopt an inductive setting to predict newly
emerging data, a highly beneficial approach for practi-
cal applications. The code for reproducing our experi-
ments is publicly available at https://github.com/
BabelTower/UniCAD.

To assess the effectiveness of UniCAD, we compared it with
17 advanced unsupervised anomaly detection methods, in-
cluding: (1) traditional methods: SOD (Kriegel et al., 2009)
and HBOS (Goldstein & Dengel, 2012); (2) linear methods:
PCA (Wold et al., 1987) and OCSVM (Manevitz & Yousef,
2001); (3) density-based methods: LOF (Breunig et al.,
2000) and KNN (Peterson, 2009); (4) ensemble-based meth-
ods: LODA (Pevny, 2016) and IForest (Liu et al., 2008); (5)
probability-based methods: DAGMM (Zong et al., 2018),
ECOD (Li et al., 2022), and COPOD (Li et al., 2020);
(6) cluster-based methods: DBSCAN (Ester et al., 1996),
CBLOF (He et al., 2003), DCOD (Song et al., 2021) and
KMeans-- (Chawla & Gionis, 2013); and (7) representation-
based methods: DeepSVDD (Ruff et al., 2018) and DIF (Xu
et al., 2023). These baselines encompass the majority of the
latest methods, providing a comprehensive overview of the
state-of-the-art. For a detailed description, please refer to
Appendix D.2.

" 4.2. Experiment Settings

In the unsupervised setting, we employ the default hyperpa-
rameters from the original papers for all comparison meth-
ods. Similarly, the UniCAD also utilizes a fixed set of
parameters to ensure a fair comparison. For all datasets,
we employ a two-layer MLP with a hidden dimension of
d = 128 and ReLU activation function as both encoder
and decoder. We utilize the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 1e~* for 100 epochs. For
the EM process, we set the maximum iteration number to
100 and a tolerance of 1e~3 for stopping training when the
objectives converge. The number of components in the mix-
ture model is set as k£ = 10, and the proportion of the outlier
is set as | = 1%. We evaluate the methods using Area
Under the Receiver Operating Characteristic (AUC-ROC)
and Area Under the Precision-Recall Curve (AUC-PR) met-
rics (Han et al., 2022), reporting the average ranking (Avg.
Rank) across all datasets. All experiments are run 3 times
with different seeds, and the mean results are reported.
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Table 1: AUCROC of 10 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset, the algorithm with the
highest AUCROC is marked in red, the second highest in blue, and the third highest in green.

Dataset S(z,ﬁq LOF IForest GR‘:M ECOD S(IZ)EN CBLOF DCOD KMeans-- DIF UQ'/COI;D U:IVI/CO?D
annthyroid | 5723 7020 8201 5653 7866 5008 6228  55.01 6499 6676 | 7527 7272
backdoor | 85.04 8579 7215 5598 8608 7655 8191 7957 80.11 9287 | 87.28 89.24
breastw 8030 4061 9832 N/A 9917 8520 9686  99.02 9705 7745 | 98.15 98.56
campaign | 6570 59.04 7171 5603 76.10 5060 6434  63.16 6351 6753 | 73.52 73.64
celeba 7070 3895 7041 4474 7648 5036 7399 9141 5676 6529 | 8138 82.00
census 5490 4746 5952  59.65 67.63 5850  60.17  72.84 6333  59.66 | 67.90 67.84
glass 3536 6920 77.13 7609 6583 5455 7830  78.07 7730 8457 | 7952 82.17
Hepatitis 6775 3806 69.75 5480 7522 6812 7305 4838 64.64 7424 | 7553 80.62
http 9959 2746 9996  N/A 9810 4997  99.60  99.53 9955 9949 | 99.53 99.52
lonosphere | 7592 90.59  84.50 7341 7315 S8LI12 9079  57.78 9136 8974 | 92.04 90.37
landsat 36.15 5390 47.64 4392 3610 5017  63.69  33.40 5531 5484 | 49.60 5737
Lymphography | 99.54 89.86 99.81 7211 9952 7416 9981  81.19  100.00  83.67 | 99.29 99.73
mnist 8295 67.13 8098 6723 7461 5000 7996 6523 8245  88.16 | 86.00 86.64
musk 80.58 41.18 99.99 7685 9540 5000  100.00  42.19 7216 9822 | 99.92 100.00
pendigits | 93.75 4799 9476 6422 9301 5533 9693  94.33 9437 9379 | 95.12 95.52
Pima 6692 6571 7287 5593  63.05 5139 7149  72.16 7044 6728 | 75.16 74.87
satellite 50.02 5588 7043 6233 5809 5552 7132 5597 6771 7452 | 72.46 77.65
satimage2 | 9735 4736  99.16 9629 9628 7574  99.84  86.01 99.88  99.63 | 99.87 99.88
shuttle 9740 5711 9956 9792  99.13 5040  93.07  97.20 69.97  97.00 | 99.15 98.75
skin 4945 4647 6821  N/A 4908 5000  68.03 6434 6547 6636 | 7226 69.69
Stamps 8386 5126 9121 8889 87.87 5208  69.89 9341 7978 8795 | 9137 94.18
thyroid 8792 8686 9830 7975 97.94 5357 9474 7855 9226 9626 | 97.66 97.48
vertebral 3799 4929 3666 5320 4066 4974 4101  38.13 3814 4720 | 33.11 4737
vowels 6159 93.12 7394 6058 6224 5750 9212 51.56 9345  81.02 | 8838 92.09
Waveform | 5629 7332 7147 4935 6236 6641 7127  63.47 7435 7533 | 7181 74.29
WBC 99.03 5417 99.01  N/A 9911 8743 9688  94.92 9745 8127 | 97.68 98.93
Wilt 3128 5065 4194 3729 3630 4996 3450 4471 3491 3946 | 4895 52.56
wine 73.07 3774 8037 6170 7722 4033 27.14  82.18 2736 4169 | 82.72 95.25
WPBC 4535 4141 4663 4780 4665 5222 4532 49.67 4501 44.69 | 48.02 49.90

Avg.Rank | 7.8 89 5.1 8.7 6.4 9.3 57 7.4 6.0 58 | 37 2.6

4.3. Performance and Analysis

Performance Comparison. Table 1 presents a comparison
of UniCAD with 10 unsupervised baseline methods across
30 tabular datasets using the AUC-ROC metric. The experi-
mental results, which encompass 17 baselines, are included
in Tables 5 and 6 of Appendix D.3. Our proposed Uni-
CAD achieves the top average ranking, exhibiting the best
or near-best performance on a larger number of datasets
and confirming advanced capabilities. It is noteworthy that
there is no one-size-fits-all unsupervised anomaly detection
method suitable for every type of dataset, as demonstrated
by the observation that other methods have also achieved
some of the best results on certain datasets. However, our
model showcased a remarkable ability to generalize across
most datasets featuring natural anomalies, as evidenced by
statistical average ranking. As for clustering-based methods
such as KMeans--, DCOD, and CBLOF, they mostly rank
in the top tier among all baseline methods, supporting the
advantage of combining deep clustering with anomaly detec-
tion. However, our method significantly outperformed these
methods by mitigating their limitations and further provid-

ing a unified framework for joint representation learning,
clustering, and anomaly detection.

Effectiveness of Vector Sum in Anomaly Scoring. As
demonstrated in Table 1, we compare the anomaly score
0; derived directly from the generation possibility with its
vector summation form o} . According to our statistical
findings, we observe that vector scores o) consistently out-
perform scalar scores o,. This indicates that the introduction
of the vector summation, analogous to the concept of re-
sultant force, makes a substantial difference in anomaly
detection scenarios involving multiple clusters. The perfor-
mance gains of the vector sum scores strongly demonstrate
the effectiveness of the UniCAD in capturing the subtle
differences in the distinctions among multiple clusters and
underscore the utility of this factor in the context of anomaly
detection based on clustering.

Runtime Comparison. We present a analysis of the run-
time performance of various methods, including our pro-
posed approach, as detailed in Table 2. Our experiments,
conducted on the backdoor dataset, reveal that while non-
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Figure 3: (a) demonstrates the performance variations during the optimization process on the satimage-2 dataset. (b) & (c)

Analysis of cluster count k, anomaly ratio [.

Table 2: Runtime Comparison. The runtime is reported in
seconds (s).

Phase \ IForest KMeans-- DAGMM DCOD UniCAD
Fit 0.256 103.697 795.004 4548.634  246.113
Infer 0.018 0.059 4.190 16.190 0.079

Table 3: Ablation Study on 30 Datasets (AUC-ROC)

Metri Gauss. w/o w/o Full
etric Dist. Objective Indicator Model
Avg. Rank 6.2 6.6 5.0 4.2

deep learning methods exhibit lower runtime, they often
simplify the problem space excessively, failing to capture
the complex non-linear relationships present in the data.
In contrast, our method, when compared to existing deep
learning techniques, demonstrates a significant reduction
in computational time. This indicates that our approach
not only manages to efficiently model complex patterns but
also achieves an optimal balance between computational
efficiency and modeling capability.

4.4. Ablation Studies

In this section, we examine the contributions of different
components in UniCAD. Tables 3 reports the results. We
make three major observations. Firstly, the anomaly de-
tection performance experiences a significant drop when
replacing the Student’s t distribution with a Gaussian distri-
bution for the Mixture Model, highlighting the robustness
of the Student’s t distribution in unsupervised anomaly de-
tection. Secondly, omitting the likelihood maximization
loss (w/o J(O, ®)) also results in a considerable decrease
in overall performance. This observation underscores the

importance of deriving both the optimization objectives and
anomaly scores from the likelihood generation probability
through a theoretical framework, which allows for unified
joint optimization of anomaly detection and clustering in the
representation space. Furthermore, the indicator function
d(x;) also contributes to a performance increase. These
results further confirm the effectiveness of our UniCAD in
mitigating the negative influence of anomalies in the clus-
tering process, as the existence of outliers may significantly
degrade the performance of clustering. In summary, all
these ablation studies clearly demonstrate the effectiveness
of our theoretical framework in simultaneously considering
representation learning, clustering, and anomaly detection.

4.5. Hyperparameters Analysis

This section analyzes how hyperparameters affect our
model’s performance during the iterative training process.
As shown in Figure 3a, we tracked iteration counts from 0
to 10 for the satimage-2 dataset, keeping other parameters
constant. The AUC-ROC and AUC-PR curves demonstrated
stable performance with only minor fluctuations initially,
highlighting the convergence of the iterative EM optimiza-
tion. We also conducted a sensitivity analysis on key hyper-
parameters for the donors dataset, focusing on the number
of clusters k£ and the outlier set proportion /. The results,
shown in Figure 3, reveal that the optimal [ is generally
lower than the actual anomaly proportion. Furthermore, a
pattern was observed with the number of clusters k, where
the model performance initially improved with an increase
in k, followed by a subsequent decline. This suggests the
existence of an optimal range for the number of clusters,
which should be carefully selected based on the specific
application context.
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5. Conclusion

This paper presents UniCAD, a novel model for Unsuper-
vised Anomaly Detection (UAD) that seamlessly integrates
representation learning, clustering, and anomaly detection
within a unified theoretical framework. Specifically, Uni-
CAD introduces an anomaly-aware data likelihood based on
the mixture model with the Student-t distribution to guide
the joint optimization process, effectively mitigating the im-
pact of anomalies on representation learning and clustering.
This framework enables a theoretically grounded anomaly
score inspired by universal gravitation, which considers
complex relationships between samples and multiple clus-
ters. Extensive experiments on 30 datasets across various
domains demonstrate the effectiveness and generalization
capability of UniCAD, surpassing 15 baseline methods and
establishing it as a state-of-the-art solution in unsupervised
anomaly detection.
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A. Iterative Training Algorithm
B. Derivation of EM Algorithm

This appendix provides the detailed derivation of the Expectation-Maximization (EM) algorithm for optimizing the
parameters of a mixture model based on Student’s t-distribution. The focus is on deriving analytical solutions for the
maximization of the parameters ® = {py, X, wy } of the mixture components. The EM algorithm alternates between two
steps:

In the E-step, we calculate the posterior probabilities T;x, representing the probability of data point ¢ belonging to cluster k,
given the current parameters. The posterior probabilities for a Student’s t-distribution mixture model are formulated as:
Wi - P(Zi| ks, X
Tik = =g (= L (16)
> j=1wi - p(zilpg, 25)

where 7(z; |, Xk ) denotes the Student’s t-distribution for data point ¢ with respect to cluster &, and K is the number of
mixture components.

The Student’s t-distribution is depicted as a hierarchical conditional probability, resembling a Gaussian distribution with an
accuracy scale factor u, where its latent variable follows a gamma distribution. Adopting a degree of freedom v = 1, the
value of u;y, is given by:

v+1 2

v+ Da(zis ) 1+ Dar(zi, pre)

U = a7

In the M-step, we update the parameters ® = {wy, p, and X } using the derivatives obtained in the previous steps. In our
model, the likelihood function for a Student’s-t Distribution Mixture Model (SMM) is represented as:

L(w, p, %) ZN:i B (18)
w, WU, = Wg * — ,
i=1 k=1 L+ (2 — ) TS 1(Zz‘ )

where wy, are the mixture weights, >, the covariance matrices, pj, the means, and z; the data points.

The derivative with respect to wy, must consider the constraint that the sum of the mixture weights equals 1, i.e., Y, wi = 1.
Hence, we introduce a Lagrange multiplier A to address this constraint and construct the Lagrangian L':

K
L (w, 18,5, ) = L(w, 15, %) + A (1 - Zw) : (19)
k=1

The derivative with respect to wy, is:
oL 0L
&uk o &uk

A, (20)

Substituting the definition of L(w, u, ), we obtain:

oL -y p(zi|pr, Xie) _Zﬂ @
— - = ,
Ow S 3 wi - plailpg, B5) G W

To solve for wy, we first multiply both sides of the equation by wy, and apply the constraint condition:
Tik _
> (Zwk —A> =0, 22
k )
Upon further organization, we find that the Lagrange multiplier A actually equals the total number of data points N (since
> Tik = Ny, where N, is the expected total number of data points belonging to the kth component, and the sum of all IV},

equals the total number of data points V).

11
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Figure 4: Score comparison with other methods.

Finally, we can solve for wy:
. Tik:

> 23
N 23)

WE =

This result indicates that the weight wj, of each mixture component equals the proportion of the posterior probabilities of the
data points it contains relative to all data points.

To update p, and Xy, we consider the conditional expectation of the data log-likelihood function:

1 1
Q(pr, Xk) Zﬂk < log(m *510g|0k|+§10guik
(24)
1 _
— 5 Wik(zi — pi) 'S (2 — uk))
Maximizing Q (g, Xy ) with respect to gy leads to:
0Q 1
P ZTzkuzk (2% — 2%, ) (25)
Setting 3 8Q = 0 results in the updated mean u(tH)
n n
a0 =30 (R u g /3 () 26)
i=1 i=1
Considering the derivative of Q (%, X)) with respect to 2;1:
1
= 5 > Tk (Sk — wik(zi — pur) X (25 — )7 27)
i=1
Setting 29 (t+1),
etting 7= = = 0 yields the updated covariance matrix 3J;
n t+1 t+1 t+1 t+1
s(t+1) _ 2io1 i(k )uz('k )( l"’l(c ))( Zi — l"’l(c ))T (28)
k = K __(t+1)
Zj:l Tij

C. Anomaly Score with Vector Sum
C.1. Toy Example

In the appendix, as illustrated in Figure 4, we investigated a toy example. We discussed a specific pattern of anomalies termed
group anomalies, where a small number of anomalous samples cluster together. It is crucial to note that we do not claim this

12
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anomaly pattern is common in real-world data; our goal is merely to point out a specific anomaly pattern that is challenging
for traditional cluster-based anomaly detection methods to detect. Specifically, we utilize three Gaussian distributions with
high variance (each generating 300 data samples) and one with lower variance (generating 30 data samples). Because the
samples from the smaller Gaussian follow a different generative mechanism and represent a minority in the dataset, we
consider them anomalies.

We set the cluster number for KMeans-- and GMM at four, indicating that the Gaussian distribution comprising anomalous
samples was also recognized as a cluster. KMeans-- employs a cluster-based approach, using the distance to the nearest
cluster center as the anomaly score, while GMM uses a probability-based approach, considering the samples’ likelihood in
the mixture model as the anomaly score. However, both approaches are ineffective in this scenario. Rather than identifying
the small cluster as anomalous, they tend to misidentify samples on the peripheries of larger clusters as anomalies.

By contrast, our scoring method views the entire small cluster as more likely anomalous, followed by outlier samples on the
margins of the larger clusters. This visualization provides a perspective that distinguishes our method from previous efforts.

D. Experimental Supplementary

D.1. Benchmark Datasets Details

Due to space constraints in the main text, we utilized 30 public datasets from ADBench (Han et al., 2022), covering all
different types of data. The details of the 30 datasets are presented in Table 4.

D.2. Baselines Details

A comprehensive overview of the unsupervised anomaly detection methods is presented below.

D.2.1. TRADITIONAL MODELS
* Subspace Outlier Detection (SOD) (Kriegel et al., 2009): Identifies outliers in varying subspaces of a high-dimensional

feature space, targeting anomalies that emerge in lower-dimensional projections.

* Histogram-based Outlier Detection (HBOS) (Goldstein & Dengel, 2012): Assumes feature independence and calculates
outlyingness via histograms, offering scalability and efficiency.

D.2.2. LINEAR MODELS
* Principal Component Analysis (PCA) (Wold et al., 1987): Utilizes singular value decomposition for dimensionality

reduction, with anomalies indicated by reconstruction errors.

* One-class SVM (OCSVM) (Manevitz & Yousef, 2001): Defines a decision boundary to separate normal samples from
outliers, maximizing the margin from the data origin.

D.2.3. DENSITY-BASED MODELS
* Local Outlier Factor (LOF) (Breunig et al., 2000) : Measures local density deviation, marking samples as outliers if

they lie in less dense regions compared to their neighbors.

* K-Nearest Neighbors (KNN) (Peterson, 2009): Anomaly scores are assigned based on the distance to the k-th nearest
neighbor, embodying a simple yet effective approach.

D.2.4. ENSEMBLE-BASED MODELS

 Lightweight On-line Detector of Anomalies (LODA) (Pevny, 2016) : An ensemble method suitable for real-time
processing and adaptable to concept drift through random projections and histograms.

* Isolation Forest (IForest) (Liu et al., 2008): Isolates anomalies by randomly selecting features and split values, leveraging
the ease of isolating anomalies to identify them efficiently.

13
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Table 4: Statistics of tabular benchmark datasets.

Data # Samples  # Features # Anomaly % Anomaly Category
annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 2.44 Network
breastw 683 9 239 34.99 Healthcare
campaign 41188 62 4640 11.27 Finance
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.20 Sociology
glass 214 7 9 4.21 Forensic
Hepaitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web
Tonosphere 351 33 126 3590 Oryctognosy
landsat 6435 36 1333 20.71  Astronautics
Lymphography 148 18 6 4.05 Healthcare
magic.gamma 19020 10 6688 35.16 Physical
mnist 7603 100 700 9.21 Image
musk 3062 166 97 3.17 Chemistry
pendigits 6870 16 156 227 Image
Pima 768 8 268 34.90 Healthcare
satellite 6435 36 2036 31.64  Astronautics
satimage-2 5803 36 71 1.22  Astronautics
shuttle 49097 9 3511 7.15  Astronautics
skin 245057 3 50859 20.75 Image
Stamps 340 9 31 9.12 Document
thyroid 3772 6 93 2.47 Healthcare
vertebral 240 6 30 12.50 Biology
vowels 1456 12 50 343 Linguistics
Waveform 3443 21 100 2.90 Physics
WBC 223 9 10 4. 48 Healthcare
Wilt 4819 5 257 5.33 Botany
wine 129 13 10 7.75 Chemistry
WPBC 198 33 47 23.74 Healthcare
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D.2.5. PROBABILITY-BASED MODELS

* Deep Autoencoding Gaussian Mixture Model (DAGMM) (Zong et al., 2018): Combines a deep autoencoder with a
GMM for anomaly scoring, utilizing both low-dimensional representation and reconstruction error.

* Empirical-Cumulative-distribution-based Outlier Detection (ECOD) (Li et al., 2022): Uses ECDFs to estimate
feature densities independently, targeting outliers in distribution tails.

* Copula Based Outlier Detector (COPOD) (Li et al., 2020): A hyperparameter-free method leveraging empirical copula
models for interpretable and efficient outlier detection.

D.2.6. CLUSTER-BASED MODELS

* DBSCAN (Ester et al., 1996): A density-based clustering algorithm that identifies clusters based on the density of data
points, effectively separating high-density clusters from low-density noise, and is widely used for anomaly detection in
spatial data.

* Clustering Based Local Outlier Factor (CBLOF) (He et al., 2003): Calculates anomaly scores based on cluster
distances, using global data distribution.

* KMeans-- (Song et al., 2021): Extends k-means to include outlier detection in the clustering process, offering an
integrated approach to anomaly detection.

* Deep Clustering-based Fair Outlier Detection (DCFOD) (Chawla & Gionis, 2013): Enhances outlier detection with a
focus on fairness, combining deep clustering and adversarial training for representation learning.

D.2.7. REPRESENTATION-BASED MODELS

* Deep Support Vector Data Description (DeepSVDD) (Ruff et al., 2018): Minimizes the volume of a hypersphere
enclosing network data representations, isolating anomalies outside this sphere.

* Deep Isolation Forest for Anomaly Detection (DIF) (Xu et al., 2023): Utilizes deep learning to enhance traditional
isolation forest techniques, offering improved anomaly detection in complex datasets with minimal parameter tuning.

Each method’s unique mechanism and application context provide a rich landscape of techniques for unsupervised anomaly
detection, illustrating the field’s diverse methodologies and the breadth of approaches to tackling anomaly detection
challenges.

D.3. Supplementary Experimental Results

In the appendix, we detail the statistical analysis conducted to compare the performance of various anomaly detectors. We
obtained this diagram by conducting a Friedman test (p-value: 4.657e-19), indicating significant differences among different
detectors. We utilized average ranks and the Nemenyi test to generate the critical difference diagram, as shown in Figure 5.
It is noteworthy that the vector version exhibits significantly superior performance compared to the scalar version across
more methods. The detailed outcomes for the AUCROC and AUCPR metrics, spanning 30 datasets and against 17 baseline
approaches, are showcased in Table 5 and Table 6.

D.3.1. DEGREES OF FREEDOM IN T-DISTRIBUTION

In fixed degrees of freedom scenarios, specifically when set to 1, the benefits of utilizing the t-distribution become less
pronounced. Drawing from existing literature (Xie et al., 2016; Van Der Maaten, 2009), the flexibility to learn the degrees of
freedom or to perform cross-validation on the validation set is particularly pertinent in unsupervised contexts. For the sake
of simplicity and to minimize computational demands, we opted to maintain the degrees of freedom at 1, which provided
robust performance while reducing complexity.
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Table 5: AUCROC of 17 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset, the algorithm with the
highest AUCROC is marked in red, the second highest in blue, and the third highest in green.

Dataset | SOD HBOS PCA S(",g,[ LOF KNN LODA IForest G];?M ECOD COPOD ngl\}N CBLOF DCOD KMeans-- Sl"f;‘]’) DIF ‘(JS“C';::)) I(J“,‘e‘cct‘:r];’
annthyroid | 7738 60.15 6624 5723 7020 7169 4102 8201 5653 78.66 7680 5008 6228 5501 6499 7609 6676 | 7527 7272
backdoor | 6877 7156 80.16 8504 8579 8058 6638 7215 5598 8608 8097 7655 8191 7957  89.11 7883 9287 | 8728  89.24
breastw | 93.97 9894 9513 80.30 40.61 97.01 9849 9832 N/A 9917 9968 8520 9686  99.02 9705 6336 7745 | 9815  98.56
campaign | 60.16 78.55 7278 6570 59.04 7227 5167 7171 5603 7610  77.69  50.60 6434 6316 6351 5442 67.53 | 7352 73.64
celeba 4844 7618 7938 7070 3895 59.63 60.17 7041 4474 7648 7568 5036 7399  Ol4l 5676 4517 6529 | 8138  82.00
census 6212 6489 6874 5490 4746 6688 37.014 5952 5965 67.63  69.07 5850  60.17 7284 6333 5416 59.66 | 6790  67.84
glass 7336 7723 6629 3536 6920 8229 7303 7713 7609 6583 7243 5455 7830 7807 7730 5571 8457 | 7952 8217
Hepatitis | 67.83 79.85 7595 6775 3806 5276 6487 6975 5480 7522 8205  68.12 7305 4838  64.64 5745 7424 | 7553  80.62
http 7804 9953 9972 9959 2746 337 1248 9996 N/A 9810 9929 4997 9960 9953 9955 6038 9949 | 9953  99.52
Tonosphere | 8637 6249  79.19 7592 90.50 8826 7842 8450 7341 7315 7934  8LI2 9079 5778 9136 5394 8974 | 9204  90.37
landsat | 59.54 5514 3576 3615 5390 5795 3817  47.64 4392 3610 4155 5017 6360 3340 5531 6248 5484 | 4960  57.37
Lymphography | 7122 99.49  99.82 99.54 89.86 5591 8555 99.81 7211 9952 9948 7416 9981  8L19  100.00 7191 8367 | 9929  99.73
mnist 6010 6042 8529 8295 6713 80.58 7227 8098 6723 7461 7774 5000 7996 6523 8245 5098 88.16 | 8600  86.64
musk 7400 10000 10000 8058 4118 69.89 9511 9999 7685 9540 9420 5000 10000 4219 7216 6602 9822 | 9992  100.00
pendigits | 6629 93.04 9373 9375 47.99 7295 8910 9476 6422 9301  90.68 5533 9693 9433 9437 2732 9379 | 9512  95.52
Pima 6125 7107 7077 6692 6571 7343 6593 7287 5593 6305  69.10 5139 7149 7216 7044 4949 6728 | 7516  74.87
satellite | 63.96 7480 5962 59.02 5588 65.18 6198 7043 6233 5809 6320 5552 7132 5597 6771 5740 7452 | 7246  77.65
satimage-2 | 83.08 97.65 97.62 97.35 4736 9260 9756  99.16 9629 9628 9721 7574 9984 8601 9988 5568 99.63 | 99.87  99.88
shuttle 6951 9863 9862 9740 5711 69.64 6095 9956 9792 9913 9935 5040 9307 9720 6997  S181 97.00 | 99.15 9875
skin 6035 60.15 4526 4945 4647 7146 4575 6821 N/A 4908 4755 5000 6803 6434 6547 4569 6636 | 7226  69.69
Stamps | 7326 9073 9147 8386 5126 68.61 87.18 9121 $8.89 87.87 9340 5208  69.89 9341 7978 5948 87.95 | 9137 o418
thyroid | 92.81 9562 9634 87.92 86.86 9593 7430 9830 7975 97.94 9430 5357 9474 7855 9226 5214 9626 | 97.66  97.48
vertebral | 40.32 2856  37.06 37.99 4929 3379 3057 3666 5320 40.66 2564 4974 4101 3813  38.14 3781 4720 | 3311 4737
vowels 9265 7221 6529 6159 9312 9726 7036 7394 60.58 6224 5315 5750 9212 5156 9345  49.87 81.02 | 8838  92.09
Waveform | 68.57 68.77 6548 5629 7332 7378 60.13 7147 4935 6236 7503 6641 7127 6347 7435 5394 7533 | 7181 7429
WBC 9460 9872 9820 99.03 5417 90.56 9691 9901  N/A 9911 9911 8743 9688 9492 9745 6246 8127 | 97.68 9893
Wilt 5325 3249 2039 3128 50.65 4842 2642 4194 3729 3630 3340 4996 3450 4471 3491 4590 39.46 | 4895 5256
wine 46.11 9136 8437 7307 3774 4498 0.2 8037 6170 7722 8865 4033 2714 8218 2736 6426 4169 | 8272 9525
WPBC | 5128 5124 4601 4535 4141 4659 4931  46.63  47.80 4665 4934 5222 4532 4967 4501 4401 4469 | 4802  49.90
Avg.Rank | 1100 826 898 1159 1359 10.00 1324 709 1324 919 829 1421 807 1090 871 1548 838 | 541 3.59
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Figure 5: Critical difference diagrams for AUC-ROC and AUC-PR.

D.3.2. ABLATION STUDY ON HYPERPARAMETER SETTINGS

An ablation study was conducted to evaluate the impact of hyperparameters k£ and [. A grid search was performed over
various values of these hyperparameters across 30 datasets, benchmarking against 17 baseline methods. The comprehensive
results, showcasing average ranks based on AUC-ROC, are summarized in the following table:

The findings indicate that the method exhibits robustness across specific parameter ranges. To ensure fair comparisons, a
consistent parameter set (k = 10,1 = 1%) was applied, demonstrating strong performance across the majority of datasets.

Additionally, guidelines for selecting hyperparameters were examined. While techniques such as the elbow method and
silhouette coefficient were considered for determining the optimal number of clusters, they proved to be time-consuming and
exhibited weak correlation with anomaly detection performance. An ensemble learning approach, which involved random
searches of k values and aggregation of anomaly scores, showed promise in enhancing performance and model robustness
for certain datasets. Future research will further explore this area.

D.4. Complexity Analysis

The complexity of each iteration in UniCAD involves three parts: constructing the outlier set, updating the network
parameters ©, and optimizing the mixture model using the EM algorithm. Constructing the outlier set requires a sorting
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Table 6: AUCPR of 17 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset, the algorithm with the
highest AUCPR is marked in red, the second highest in blue, and the third highest in green.

Dataset SOD HBOS PCA s(\)/CM LOF KNN LODA IForest G[;/I:M ECOD COPOD SEEN CBLOF DCOD KMeans-- S]if;']’) DIF [(js"c'ﬁ:rl)’ ((J"/:cctﬁg
annthyroid | 18.84 1699 1612 1037 1571 1674 706 3047 964 2535 1658  7.60 1374 1001 1541 2175 1893 | 2637 25.03
backdoor | 37.07 496 3129 879 2614 4437 1384 475 547 1072 769  21.04  7.03 6.77 1547 5570 4146 | 3177 36.36
breastw 8488 9771 9511 8270 2855 9219 9704 9604 N/A 9854 9940 7842 9194 9683 9225 4860 5065 | 9447 9590
campaign | 19.14 3801 2790 2925 1459 2718 1411 3226 1454 3665 3858 1143 2088  19.61 1886 1675 2652 | 27.66 27.12
celeba 236 1382 1589 1073 173 314 404 896 195 1396 1369 232 1122 1748 3.19 273 544 | 1512 14.66
census 854 868 1002 682 548 904 503 778 903 946 992 752 752 1092 8.13 842 742 | 970 975
glass 1873 1182 1005 802 2001 2026 1337 1099 2458 1535 978 688 1157  9.66 14.66 846 1886 | 1329 15.33
Hepatitis | 2473 3773 3665 2944 13.67 2195 3090 2625 2293 3280 4150 2231 3654 1953 25.14 3004 3493 | 3608 4337
http 832 4479 5643 4686 382 070 067 9083 NA 1661 3519 037 4753 4403 4509 1339 4172 | 4353 4352
lonosphere | 85.88 4178 7392 7454 88.07 9041 7304 8041 6497 6469  69.89  63.04 8977  47.63 9136 4324 8745 | 89.55 87.61
landsat 2638 2203 1618 1621 2469 2465 1886 1981 2448 1624 1748 2080 3105 1557 2240 3692 2435 | 20.84 2327
Lymphography | 22.00 91.83  97.02 9359 23.08 38.69 4454 9731 1952 90.87 8868  7.66 9731 1234 10000 3458 3284 | 9169  96.66
mnist 19.15 1251 3993 3320 2090 3553 2586 27.71 2375 1745 2135 921 3060 2359 3712 2018 4455 | 4119 4194
musk 759 10000 99.89 10.61 282 965 4760  99.61 3276 5013 3479 316 10000  2.87 3755 878 7070 | 97.65 99.96
pendigits | 446 2927 2365 2352 378 650 1871 2605 467 3065 2122 294 3287 2221 32.67 153 2375 | 2486 21.68
Pima 4824 5661 5403 5000 47.18 5514 4409 5582 4155 5045 5519 3665 5299 5024 5350 3502 4634 | 5466 5423
satellite 4723 6725 59.64 S57.61 37.68 5001 6194 6592 5833 5222 5658 3756 6143 4331 5468 4177 6892 | 71.68 75.13
satimage-2 | 26.11 78.04 8569 8271 430 39.14 8052 9345 2207 6449 7655 1208  97.09  8.12 97.13 258 7290 | 9733 97.31
shuttle 2027 9640 9235 8529 1376 2038 4875 9762 9320 9045 9656  7.68 7989 8182 3266 1241 67.23 | 9205 9236
skin 2461 2370 1740 1903 1825 2872 1844 2608 N/A 1837 1799 2089 2834 2629 2558  19.06 2536 | 28.87 2872
Stamps 2028 3524 4109 3139 2129 2353 3460 3949 4373 3321 4300 1103 2446 4736 3563 1207 3468 | 42.39 50.94
thyroid 2356 5098 4434 2123 2081 3498 1468  63.11 1606 5106  19.64 944 2988 1056  31.69 270 5036 | 60.99 60.06
vertebral 1179 923 1049 1094 1424 1057 968 1046 1524 1184 889 1311 1143 1158 1054 1062 1431 | 978 12.96
vowels 3888 1341 892 824 3442 6341 1382 1512 1222 1056 414 1327 3514 358 49.10 458 1497 | 2652 32.42
Waveform | 9.66 586 579 437 1133 1304 471 624 311 476 690 533 1793 426 1974 441 1128 | 649 783
WBC 5400 7356 8229 89.87 557 6655 7867 9049 N/A 8619 8619 3025 6731 3343 7188 899 1332 | 68.69 83.14
Wilt 553 384 313 362 505 473 336 423 400 393 360 533 374 462 376 465 405 | 4580 5.19
wine 795 4308 3087 21.56 777 843 4882 2596 1751 2354 4571 811 598 2444 627 1878 838 | 2140 4959
WPBC 2562 2304 2301 2293 2029 2149 2539 2242 2249 2124 2281 2386 2108 2286 2058 2500 2073 | 2271 24.90
Avg.Rank | 10.83 819 831 IL14 1324 936 1179 729 1196 936 953 1491 853 1197 9.03 1341 910 | 631 474

Table 7: Learning vs. Fixed Degrees of Freedom

Metric Learnv | Fixv =1
AUC-ROC Avg. Rank 4.4 3.34
AUC-PR Avg. Rank 5.05 4.47

Table 8: Results of Hyperparameter Grid Search

Nk | 10 | 20 | 30 | 40

0.01 | 3.34 | 431 | 4.69 | 4.71
0.05 | 444 | 423 | 4.65 | 4.88
0.10 | 427 | 446 | 448 | 4.88

operation, for which we use Numpy’s built-in quantile calculation with a time complexity of O(N log N). Considering
the number of network parameters along with the computation of the loss function, the computational complexity for
optimizing © is approximately O(T'N Dd + T'N K d). The EM algorithm for the Student’s t mixture model includes two
main steps: the E-step, where the complexity for computing the probability (or responsibility) of each data point belonging
to each component is approximately O(N K d), and the M-step, where the full computational complexity of updating the
parameters (mean, covariance matrix) of each component is O(N K d?). In practice, we use diagonal covariance matrices,
which reduces the update complexity to roughly O(N Kd). If the EM algorithm requires 7" round to converge, its time
complexity is approximately O(T'N K d). Therefore, the time complexity for ¢-iterations is O(tN (log N + Td(D + K))).
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