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Abstract
Unsupervised Anomaly Detection (UAD) plays
a crucial role in identifying abnormal patterns
within data without labeled examples, holding
significant practical implications across various
domains. Although the individual contributions of
representation learning and clustering to anomaly
detection are well-established, their interdepen-
dencies remain under-explored due to the absence
of a unified theoretical framework. Consequently,
their collective potential to enhance anomaly de-
tection performance remains largely untapped. To
bridge this gap, in this paper, we propose a novel
probabilistic mixture model for anomaly detec-
tion to establish a theoretical connection among
representation learning, clustering, and anomaly
detection. By maximizing a novel anomaly-aware
data likelihood, representation learning and clus-
tering can effectively reduce the adverse impact
of anomalous data and collaboratively benefit
anomaly detection. Meanwhile, a theoretically
substantiated anomaly score is naturally derived
from this framework. Lastly, drawing inspiration
from gravitational analysis in physics, we have
devised an improved anomaly score that more
effectively harnesses the combined power of rep-
resentation learning and clustering. Extensive ex-
periments, involving 17 baseline methods across
30 diverse datasets, validate the effectiveness and
generalization capability of the proposed method,
surpassing state-of-the-art methods.

1. Introduction
Unsupervised Anomaly Detection (UAD) refers to the task
dedicated to identifying abnormal patterns or instances
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Figure 1: Interdependent relationships among representation
learning, clustering, and anomaly detection.

within data in the absence of labeled examples (Chandola
et al., 2009). It has long received extensive attention in
the past decades for its wide-ranging applications in numer-
ous practical scenarios, including financial auditing (Baku-
menko & Elragal, 2022), healthcare monitoring (Salem
et al., 2014) and e-commerce sector (Kou et al., 2004). Due
to the lack of explicit label guidance, the key to UAD is
to uncover the dominant patterns that widely exist in the
dataset so that samples do not conform to these patterns
can be recognized as anomalies. To achieve this, early
works (Chalapathy & Chawla, 2019) have heavily relied
on powerful unsupervised representation learning methods
to extract the normal patterns from high-dimensional and
complex data such as images, text, and graphs. More recent
works (Song et al., 2021; Aytekin et al., 2018) have utilized
clustering, a widely observed natural pattern in real-world
data, to provide critical global information for anomaly de-
tection and achieved tremendous success.

While the individual contributions of representation learning
and clustering to anomaly detection are well-established,
their interrelationships remain largely unexplored. Intu-
itively, discriminative representation learning can leverage
accurate clustering results to differentiate samples from dis-
tinct clusters in the embedding space (i.e., ➀). Similarly, it
can utilize accurate anomaly detection to avoid preserving
abnormal patterns (i.e., ➁). For accurate clustering, it can
gain advantages from representation learning by operating
in the discriminative embedding space (i.e., ➂). Meanwhile,
it can potentially benefit from accurate anomaly detection
by excluding anomalies when formulating clusters (i.e., ➃).
Anomaly detection can greatly benefit from both discrimi-
native representation learning and accurate clustering (i.e.,
➄ & ➅). However, these benefits hinge on the successful
identification of anomalies and the reduction of their detri-
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mental impact on the aforementioned tasks. As depicted in
Figure 1, the integration of these three elements exhibits a
significant reciprocal nature. In summary, representation
learning, clustering, and anomaly detection are interdepen-
dent and intricately intertwined. Therefore, it is crucial for
anomaly detection to fully leverage and mutually enhance
the relationships among these three components.

Despite the intuitive significance of the interactions among
representation learning, clustering, and anomaly detection,
existing methods have only made limited attempts to ex-
ploit them and fall short of expectations. On one hand,
some methods (Zong et al., 2018) have acknowledged the
interplay among these three factors, but their focus remains
primarily on the interactions between two factors at a time,
making only targeted improvements. For instance, some
strategies include explicitly removing outlier samples during
the clustering process (Chawla & Gionis, 2013) or designing
robust representation learning methods (Cho et al., 2021)
to mitigate the influence of anomalies. On the other hand,
recent methods (Song et al., 2021) have begun to explore
the simultaneous optimization of these three factors within
a single framework. However, these attempts are still in the
stage of merely superimposing the objectives of the three
factors without a unified theoretical framework. This lack
of a guiding framework prevents the adequate modeling of
the interdependencies among these factors, thereby limiting
their collective contribution to a unified anomaly detection
objective. Consequently, we aim to address the following
question: Is it possible to employ a unified theoretical frame-
work to jointly model these three interdependent objectives,
thereby leveraging their respective strengths to enhance
anomaly detection?

In this paper, we try to answer this question and propose a
novel model named UniCAD for anomaly detection. The
proposed UniCAD integrates representation learning, clus-
tering, and anomaly detection into a unified framework,
achieved through the theoretical guidance of maximizing
the anomaly-aware data likelihood. Specifically, we explic-
itly model the relationships between samples and multiple
clusters in the representation space using the probabilistic
mixture models for the likelihood estimation. Moreover,
we creatively introduce a learnable indicator function into
the objective of maximum likelihood to explicitly attenu-
ate the influence of anomalies on representation learning
and clustering. Under this framework, we can theoretically
derive an anomaly score that indicates the abnormality of
samples, rather than heuristically designing it based on clus-
tering results as existing works do. Furthermore, building
upon this theoretically supported anomaly score and inspired
by the theory of universal gravitation, we propose a more
comprehensive anomaly metric that considers the complex
relationships between samples and multiple clusters. This
allows us to better utilize the learned representations and

clustering results from this framework for anomaly detec-
tion. We conduct extensive experiments with 15 baselines
on 30 datasets from different data domains to evaluate the
effectiveness of the proposed method. The results verify
the effectiveness and generalization capability in detecting
anomalies in real-world applications.

To sum up, we underline our contributions as follows:

• We propose a unified theoretical framework to jointly
optimize representation learning, clustering, and anomaly
detection, allowing their mutual enhancement and aid in
anomaly detection.

• Based on the proposed framework, we derive a theoret-
ically grounded anomaly score and further introduce a
more comprehensive score with the vector summation,
which fully releases the power of the framework for effec-
tive anomaly detection.

• Extensive experiments have been conducted on 30
datasets to validate the superior unsupervised anomaly
detection performance of our approach, which surpassed
the state-of-the-art through comparative evaluations with
17 baseline methods.

2. Related Work
Various UAD methods have been proposed based on differ-
ent assumptions, making them suitable for detecting vari-
ous types of anomaly patterns, including subspace-based
models (Kriegel et al., 2009), statistical models (Gold-
stein & Dengel, 2012), linear models (Wold et al., 1987;
Manevitz & Yousef, 2001), density-based models (Bre-
unig et al., 2000; Peterson, 2009), ensemble-based mod-
els (Pevnỳ, 2016; Liu et al., 2008), probability-based mod-
els (Reynolds et al., 2009; Zong et al., 2018; Li et al., 2022;
2020), representation-based models (Ruff et al., 2018; Xu
et al., 2023; Goyal et al., 2020; Qiu et al., 2021), and cluster-
based models (He et al., 2003; Chawla & Gionis, 2013).
Considering the field of anomaly detection has progressed
by integrating clustering information to enhance detection
accuracy (Li et al., 2021; Zhou et al., 2022), we primarily
focus on and analyze anomaly patterns related to clustering,
incorporating a global clustering perspective to assess the
degree of anomaly. Notable methods in this context include
CBLOF (He et al., 2003), which evaluates anomalies based
on the size of the nearest cluster and the distance to the
nearest large cluster. Similarly, DCFOD (Song et al., 2021)
introduces innovation by applying the self-training architec-
ture of the deep clustering (Xie et al., 2016) to outlier detec-
tion. Meanwhile, DAGMM (Zong et al., 2018) combines
deep autoencoders with Gaussian mixture models, utilizing
sample energy as a metric to quantify the anomaly degree.
In contrast, our approach introduces a unified theoretical
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framework that integrates representation learning, cluster-
ing, and anomaly detection, overcoming the limitations of
heuristic designs and the overlooked anomaly influence in
existing methods.

3. Methodology
In this section, we first define the problem we studied and
the notations used in this paper. Then we elaborate on
the proposed method UniCAD. More specifically, we first
introduce a novel learning objective that optimizes represen-
tation learning, clustering, and anomaly detection within a
unified theoretical framework by maximizing the data like-
lihood. A novel anomaly score with theoretical support is
also naturally derived from this framework. Then, inspired
by the concept of universal gravitation, we further propose
an enhanced anomaly scoring approach that leverages the
intricate relationship between samples and clustering to de-
tect anomalies effectively. Finally, we present an efficient
iterative optimization strategy to optimize this model and
provide a complexity analysis for the proposed model in
Appendix D.4.

Definition 1 (Unsupervised Anomaly Detection). Given
a dataset X ∈ RN×D comprising N instances with D-
dimensional features, unsupervised anomaly detection aims
to learn an anomaly score oi for each instance xi in an
unsupervised manner so that the abnormal ones have higher
scores than the normal ones.

3.1. Maximizing Anomaly-aware Likelihood

Previous research has demonstrated the importance of
discriminative representation and accurate clustering in
anomaly detection (Song et al., 2021). However, the pres-
ence of anomalous samples can significantly disrupt the
effectiveness of both representation learning and cluster-
ing (Duan et al., 2009). While some existing studies have at-
tempted to integrate these three separate learning objectives,
the lack of a unified theoretical framework has hindered
their mutual enhancement, leading to suboptimal results.

To tackle this issue, in this paper, we propose a unified
and coherent approach that considers representation learn-
ing, clustering, and anomaly detection by maximizing the
likelihood of the observed data. Specifically, we denote
the parameters of representation learning as Θ, the clus-
tering parameter as Φ, and the dynamic indicator function
for anomaly detection as δ(·). These parameters are opti-
mized simultaneously by maximizing the likelihood of the

observed data X:

max log p(X|Θ,Φ)

= max

N∑
i=1

δ(xi) log p(xi|Θ,Φ)

= max

N∑
i=1

δ(xi) log

K∑
k=1

p(xi, ci = k|Θ,Φ),

(1)

where ci represents the latent cluster variable associated
with xi, and ci = k denotes the probabilistic event that
xi belongs to the k-th cluster. The δ(xi) is an indicator
function that determines whether a sample xi is an anomaly
of value 0 or a normal sample of value 1.

3.1.1. JOINT REPRESENTATION LEARNING AND
CLUSTERING WITH p(xi|Θ,Φ)

Based on the aforementioned advantages of MMs, we esti-
mate the likelihood p(xi|Θ,Φ) with mixture models defined
as:

p(xi|Θ,Φ) =

K∑
k=1

p(xi, ci = k|Θ,Φ)

=

K∑
k=1

p(ci = k) · p(xi|ci = k,Θ,µk,Σk)

=

K∑
k=1

ωk · p(xi|ci = k,Θ,µk,Σk),

(2)

where Φ = {ωk,µk,Σk}. The mixture model is parame-
terized by the prototypes µk, covariance matrices Σk, and
mixture weights ωk from all clusters.

∑K
k=1 ωk = 1, and

k = 1, 2, · · · ,K.

In practice, the samples are usually attributed to high-
dimensional features and it is challenging to detect anoma-
lies from the raw feature space (Ruff et al., 2021). There-
fore, modern anomaly detection methods (Ruff et al., 2018;
Zong et al., 2018) often map raw data samples X =
{xi} ∈ RN×D into a low-dimensional representation space
Z = {zi} ∈ RN×d with a representation learning func-
tion zi = fΘ(xi) and detect anomalies within this latent
representation space.

Following this widely adopted practice, we model the distri-
bution of samples in the latent representation space with a
multivariate Student’s-t distribution giving its cluster ci = k.
The Student’s-t distribution is robust against outliers due
to its heavy tails. Bayesian robustness theory leverages
such distributions to dismiss outlier data, favoring reliable
sources, making the Student’s-t process preferable over
Gaussian processes for data with atypical information (An-
drade, 2023). Thus the probability distribution of generating
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xi with latent representation zi given its cluster ci = k can
be expressed as:

p(xi|ci = k,Θ,µk,Σk)

=
Γ(ν+1

2 )|Σk|−1/2

Γ(ν2 )
√
νπ

(
1 +

1

ν
DM (zi,µk)

2

)− ν+1
2

,
(3)

where zi = fΘ(xi) denotes the representation obtained
from the data mapped through the neural network pa-
rameterized by Θ. Γ denotes the gamma function while
ν is the degree of freedom. Σk is the scale parameter.

DM (zi,µk) =
√
(zi − µk)TΣ

−1
k (zi − µk) represents the

Mahalanobis distance (McLachlan, 1999). In the unsu-
pervised setting, as cross-validating ν on a validation set
or learning it is unnecessary, ν is set as 1 for all experi-
ments (Xie et al., 2016; Van Der Maaten, 2009). The overall
marginal likelihood of the observed data xi can be simpli-
fied as:

p(xi|Θ,Φ) =

K∑
k=1

ωk ·
π−1 · |Σk|−1/2

1 +DM (zi,µk)2
. (4)

3.1.2. ANOMALY INDICATOR δ(xi) AND SCORE oi

As we have discussed, the indicator function δ(xi) not only
benefits both representation and clustering but also directly
serves as the output of anomaly detection. Ideally, with
the percentage of outliers denoted as l, an optimal solution
for δ(xi) that maximizes the objective function J(Θ,Φ)
entails setting all δ(xi) = 0 for xi among the l percent
of outliers with lowest generation possibility p(xi|Θ,Φ),
and otherwise δ(xi) = 1 is set for the remaining normal
samples. Therefore, the indicator function is determined as:

δ(xi) =

{
0, if p(xi|Θ,Φ) is among the l lowest,
1, otherwise.

(5)

As this method involves sorting the samples based on the
generation probability as being anomalous, the values of
p(xi|Θ,Φ) can serve as a form of anomaly score, a classic
approach within the mixture model framework (Reynolds
et al., 2009; Zong et al., 2018). This suggests that the likeli-
hood of a sample being anomalous is inversely related to its
generative probability since a lower generative probability
indicates a higher chance of the sample being an outlier.
Thus the anomaly score of sample xi can be defined as:

oi =
1

p(xi|Θ,Φ)
=

1∑K
k=1 ωk · π−1·|Σk|−1/2

1+DM (zi,µk)2

. (6)

3.2. Gravity-inspired Anomaly Scoring

In practical applications, it is proved that anomaly scores
derived from generation probabilities often yield suboptimal
performance (Han et al., 2022). This observation prompts a
reconsideration of how to fully leverage the complex rela-
tionships among samples or even across multiple clusters
for anomaly detection. In this section, we first provide a
brief introduction to the concept of Newton’s Law of Univer-
sal Gravitation (Newton, 1833) and then demonstrate how
the anomaly score is intriguingly similar to this cross-field
principle. Finally, we discuss the advantages of introducing
the vector sum operation into the anomaly score inspired by
the analogy.

3.2.1. ANALOG ANOMALY SCORING AND FORCE
ANALYSIS

To begin with, Newton’s Law of Universal Gravitation (New-
ton, 1833) stands as a fundamental framework for describing
the interactions among entities in the physical world. Ac-
cording to this law, every object in the universe experiences
an attractive force from another object. In classical mechan-
ics, force analysis involves calculating the vector sum of all
forces acting on an object, known as the resultant force,
which is crucial in determining an object’s acceleration or
change in motion:

F⃗i,total =

K∑
k=1

F⃗ik, with F⃗ik =
G ·mimk

r2ik
· r⃗ik, (7)

where F⃗ik represents the k-th force acting on the object i.
This force is proportional to the product of their masses,
(mi and mk), and inversely proportional to the square of the
distance rik between them. G represents the gravitational
constant, and r⃗ij is the unit direction vector.

Similarly, if denoting: F̃ik = p(xi, ci = k|Θ,Φ) = ωk ·
π−1·|Σk|−1/2

1+DM (zi,µk)2
, the score of Equation (6) bears analogies to

the summation of the magnitudes of forces as:

oi =
1∑K

k=1 F̃ik

, with F̃ik =
G̃ · m̃im̃k

r̃2ik
, (8)

where G̃ = π−1, m̃k = ωk|Σk|−1/2, m̃i = 1, and
r̃ik =

√
1 +DM (zi,µk)2. Here, r̃ik is taken as the mea-

sure of distance within the representation space, modified
slightly by an additional term for smoothness. The constant
G̃ serves a role akin to the gravitational constant in this
analogy, whereas m̃k resembles the concept of mass for the
cluster. The notation m̃i suggests a standardization where
the mass of each data point is considered uniform and not
differentiated.
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(a) Scalar Sum (b) Vector Sum

Figure 2: Analysis of gravitational force.

3.2.2. ANOMALY SCORING WITH VECTOR SUM

Comparing Equation (7) with Equation (8), what still differs
is that, unlike a simple sum of the scalar value, the resul-
tant force F⃗i,total employs the vector sum and incorporates
both the magnitude and direction r̂ik of each force. This
distinction is crucial because forces in different directions
can neutralize each other with a large angle between them
or enhance each other’s effects with a small angle. Inspired
by this difference, we consider modeling the relationship
between samples and clusters as a vector, and aggregat-
ing them through vector summation. The vector-formed
anomaly score oVi is defined as:

oVi =
1

∥
∑K

k=1 F̃ik · r⃗ik∥
, (9)

where r⃗ik represents the unit direction vector in the repre-
sentation space from the sample zi to the cluster prototype
µk , and ∥ · ∥ represents the L2 norm.

3.2.3. ADVANTAGES OF VECTOR SUM

The application of the vector sum principle extends beyond
physical mechanics and finds relevance in various domains.
In relational embedding (Bordes et al., 2013), for example,
relationships can be represented as vectors. Aggregating
these vectors allows for capturing complexities like transi-
tivity, symmetry, and antisymmetry.

Similarly, in our context, the vector sum can help capture
more complex relationships along clusters. In Figure 2, a
sample v is attracted to two groups of cluster prototypes,
{µ1,µ2} and {µ3,µ4}, with equal mass and distances.
While both groups exert equal forces, we argue that their
influences differ: a sample near two clusters with a large
difference is more likely to be an anomaly than one near
similar clusters. For instance, a user liking both money-
saving tips and luxury items is more anomalous than one
liking two similar luxury items. The vector sum shows
that the total force from {µ1,µ2} is smaller, leading to a
higher anomaly score, thus demonstrating its effectiveness
in identifying subtle distinctions among clusters.

Algorithm 1 Model Training for UniCAD

Require: Data points X, cluster number K, outlier ratio l,
tolerance λ, iterations t

Ensure: Network parameters Θ, mixture parameters
{ωk,µk,Σk}

1: Initialize Θ and {µk, ωk,Σk}
2: for i = 1 to t do
3: if i = 1 then
4: Xi ← X
5: else
6: Re-order points in X such that o1 ≥ · · · ≥ on
7: Li ← {x1, . . . , x⌊N ·l⌋}
8: Xi ← X \ Li {Remove top-l anomalies}
9: end if

10: Update Θ via Equation (15)
11: while |J(Θ,Φ)− Jold(Θ,Φ)| > λ do
12: Jold(Θ,Φ)← J(Θ,Φ)
13: Calculate τ via Equation (10)
14: Update {ωk,µk,Σk} via Equations (12), (13),

(14)
15: end while
16: Calculate oi via Equation (9)
17: end for
18: return Θ, {ωk,µk,Σk}

3.3. Iterative Optimization

Given the challenge posed by the interdependence of the
parameters of the network Θ and those of the mixture model
{ωk,µk,Σk} in joint optimization, we propose an iterative
optimization procedure. The pseudocode for training the
model is presented in Algorithm 1.

3.3.1. UPDATE Φ

To update the parameters of the mixture model Φ =
{ωk,µk,Σk}, we use the Expectation-Maximization (EM)
algorithm to maximize equation (1) (Peel & McLachlan,
2000). The detailed derivation is included in Appendix B.

E-step. During the E-step of iteration (t + 1), our goal is
to compute the posterior probabilities of each data point be-
longing to the k-th cluster within the mixture model. Given
the observed sample xi and the current estimates of the pa-
rameters Θ(t) and Φ(t), the expected value of the likelihood
function of latent variable ck, or the posterior possibilities,
can be expressed as:

τ
(t+1)
ik =

p(xi, ci = k|Θ,Φ(t))∑K
j=1 p(xi, ci = j|Θ,Φ(t))

=
F̃

(t)
ik∑K

j=1 F̃
(t)
ij

.

(10)

The scale factor(Peel & McLachlan, 2000) serving as an
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intermediate result for subsequent updates in the M-step is :

u
(t+1)
ik =

2

1 +DM (z
(t)
i ,µ

(t)
k )

. (11)

M-step. In the M-step of iteration (t+1), given the gradients
∂J(Θ,Φ)

∂ωk
= 0, ∂J(Θ,Φ)

∂µk
= 0, and ∂J(Θ,Φ)

∂Σk
= 0, we derive

the analytical solutions for the mixture model parameters
ωk, µk, and Σk. Assume the anomalous ratio is l ∈ [0, 1],
the number of the normal samples is n = int(l ∗N). The
updating process for {ω(t+1)

k ,µ
(t+1)
k ,Σ

(t+1)
k } is as follows:

• The mixture weights ωk are updated by averaging the
posterior probabilities over all data points with the num-
ber of samples , reflecting the relative presence of each
component in the mixture:

ω
(t+1)
k =

n∑
i=1

τ
(t+1)
ik /n. (12)

• The prototypes µk are updated to be the weighted aver-
age of the data points, where weights are the posterior
probabilities:

µ
(t+1)
k =

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik zi

)
/

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik

)
.

(13)

• The covariance matrices Σk are updated by considering
the dispersion of the data around the newly computed
prototypes:

Σ
(t+1)
k =

∑n
i=1 τ

(t+1)
ik u

(t+1)
ik (zi − µ

(t+1)
k )(zi − µ

(t+1)
k )⊺∑K

j=1 τ
(t+1)
ij

.

(14)

3.3.2. UPDATE Θ

We focus on anomaly-aware representation learning and
use stochastic gradient descent to optimize the network
parameters Θ, by minimizing the following joint loss:

L = −J(Θ,Φ) + g(Θ), (15)

where J(Θ,Φ) = log p(X|Θ,Φ). An additional con-
straint term g(Θ) is introduced to prevent shortcut solu-
tion (Geirhos et al., 2020). In practice, an autoencoder
architecture is implemented, utilizing a reconstruction loss
g(Θ) = ∥x− x̂∥2 as the constraint.

These updates are iteratively performed until convergence,
resulting in optimized model parameters that best fit the
given data according to the mixture model framework.

4. Experiments
4.1. Datasets & Baselines

We evaluated UniCAD on an extensive collection of datasets,
comprising 30 tabular datasets that span 16 diverse fields.
We specifically focused on naturally occurring anomaly
patterns, rather than synthetically generated or injected
anomalies, as this aligns more closely with real-world sce-
narios. The detailed descriptions are provided in Table 4
of Appendix D.1. Following the setup in ADBench (Han
et al., 2022), we adopt an inductive setting to predict newly
emerging data, a highly beneficial approach for practi-
cal applications. The code for reproducing our experi-
ments is publicly available at https://github.com/
BabelTower/UniCAD.

To assess the effectiveness of UniCAD, we compared it with
17 advanced unsupervised anomaly detection methods, in-
cluding: (1) traditional methods: SOD (Kriegel et al., 2009)
and HBOS (Goldstein & Dengel, 2012); (2) linear methods:
PCA (Wold et al., 1987) and OCSVM (Manevitz & Yousef,
2001); (3) density-based methods: LOF (Breunig et al.,
2000) and KNN (Peterson, 2009); (4) ensemble-based meth-
ods: LODA (Pevnỳ, 2016) and IForest (Liu et al., 2008); (5)
probability-based methods: DAGMM (Zong et al., 2018),
ECOD (Li et al., 2022), and COPOD (Li et al., 2020);
(6) cluster-based methods: DBSCAN (Ester et al., 1996),
CBLOF (He et al., 2003), DCOD (Song et al., 2021) and
KMeans-- (Chawla & Gionis, 2013); and (7) representation-
based methods: DeepSVDD (Ruff et al., 2018) and DIF (Xu
et al., 2023). These baselines encompass the majority of the
latest methods, providing a comprehensive overview of the
state-of-the-art. For a detailed description, please refer to
Appendix D.2.

4.2. Experiment Settings

In the unsupervised setting, we employ the default hyperpa-
rameters from the original papers for all comparison meth-
ods. Similarly, the UniCAD also utilizes a fixed set of
parameters to ensure a fair comparison. For all datasets,
we employ a two-layer MLP with a hidden dimension of
d = 128 and ReLU activation function as both encoder
and decoder. We utilize the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 1e−4 for 100 epochs. For
the EM process, we set the maximum iteration number to
100 and a tolerance of 1e−3 for stopping training when the
objectives converge. The number of components in the mix-
ture model is set as k = 10, and the proportion of the outlier
is set as l = 1%. We evaluate the methods using Area
Under the Receiver Operating Characteristic (AUC-ROC)
and Area Under the Precision-Recall Curve (AUC-PR) met-
rics (Han et al., 2022), reporting the average ranking (Avg.
Rank) across all datasets. All experiments are run 3 times
with different seeds, and the mean results are reported.
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Table 1: AUCROC of 10 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset, the algorithm with the
highest AUCROC is marked in red, the second highest in blue, and the third highest in green.

Dataset OC
SVM LOF IForest DA

GMM ECOD DB
SCAN CBLOF DCOD KMeans-- DIF UniCAD

w/ oSi
UniCAD

w/ oVi
annthyroid 57.23 70.20 82.01 56.53 78.66 50.08 62.28 55.01 64.99 66.76 75.27 72.72
backdoor 85.04 85.79 72.15 55.98 86.08 76.55 81.91 79.57 89.11 92.87 87.28 89.24
breastw 80.30 40.61 98.32 N/A 99.17 85.20 96.86 99.02 97.05 77.45 98.15 98.56

campaign 65.70 59.04 71.71 56.03 76.10 50.60 64.34 63.16 63.51 67.53 73.52 73.64
celeba 70.70 38.95 70.41 44.74 76.48 50.36 73.99 91.41 56.76 65.29 81.38 82.00
census 54.90 47.46 59.52 59.65 67.63 58.50 60.17 72.84 63.33 59.66 67.90 67.84
glass 35.36 69.20 77.13 76.09 65.83 54.55 78.30 78.07 77.30 84.57 79.52 82.17

Hepatitis 67.75 38.06 69.75 54.80 75.22 68.12 73.05 48.38 64.64 74.24 75.53 80.62
http 99.59 27.46 99.96 N/A 98.10 49.97 99.60 99.53 99.55 99.49 99.53 99.52

Ionosphere 75.92 90.59 84.50 73.41 73.15 81.12 90.79 57.78 91.36 89.74 92.04 90.37
landsat 36.15 53.90 47.64 43.92 36.10 50.17 63.69 33.40 55.31 54.84 49.60 57.37

Lymphography 99.54 89.86 99.81 72.11 99.52 74.16 99.81 81.19 100.00 83.67 99.29 99.73
mnist 82.95 67.13 80.98 67.23 74.61 50.00 79.96 65.23 82.45 88.16 86.00 86.64
musk 80.58 41.18 99.99 76.85 95.40 50.00 100.00 42.19 72.16 98.22 99.92 100.00

pendigits 93.75 47.99 94.76 64.22 93.01 55.33 96.93 94.33 94.37 93.79 95.12 95.52
Pima 66.92 65.71 72.87 55.93 63.05 51.39 71.49 72.16 70.44 67.28 75.16 74.87

satellite 59.02 55.88 70.43 62.33 58.09 55.52 71.32 55.97 67.71 74.52 72.46 77.65
satimage-2 97.35 47.36 99.16 96.29 96.28 75.74 99.84 86.01 99.88 99.63 99.87 99.88

shuttle 97.40 57.11 99.56 97.92 99.13 50.40 93.07 97.20 69.97 97.00 99.15 98.75
skin 49.45 46.47 68.21 N/A 49.08 50.00 68.03 64.34 65.47 66.36 72.26 69.69

Stamps 83.86 51.26 91.21 88.89 87.87 52.08 69.89 93.41 79.78 87.95 91.37 94.18
thyroid 87.92 86.86 98.30 79.75 97.94 53.57 94.74 78.55 92.26 96.26 97.66 97.48

vertebral 37.99 49.29 36.66 53.20 40.66 49.74 41.01 38.13 38.14 47.20 33.11 47.37
vowels 61.59 93.12 73.94 60.58 62.24 57.50 92.12 51.56 93.45 81.02 88.38 92.09

Waveform 56.29 73.32 71.47 49.35 62.36 66.41 71.27 63.47 74.35 75.33 71.81 74.29
WBC 99.03 54.17 99.01 N/A 99.11 87.43 96.88 94.92 97.45 81.27 97.68 98.93
Wilt 31.28 50.65 41.94 37.29 36.30 49.96 34.50 44.71 34.91 39.46 48.95 52.56
wine 73.07 37.74 80.37 61.70 77.22 40.33 27.14 82.18 27.36 41.69 82.72 95.25

WPBC 45.35 41.41 46.63 47.80 46.65 52.22 45.32 49.67 45.01 44.69 48.02 49.90

Avg. Rank 7.8 8.9 5.1 8.7 6.4 9.3 5.7 7.4 6.0 5.8 3.7 2.6

4.3. Performance and Analysis

Performance Comparison. Table 1 presents a comparison
of UniCAD with 10 unsupervised baseline methods across
30 tabular datasets using the AUC-ROC metric. The experi-
mental results, which encompass 17 baselines, are included
in Tables 5 and 6 of Appendix D.3. Our proposed Uni-
CAD achieves the top average ranking, exhibiting the best
or near-best performance on a larger number of datasets
and confirming advanced capabilities. It is noteworthy that
there is no one-size-fits-all unsupervised anomaly detection
method suitable for every type of dataset, as demonstrated
by the observation that other methods have also achieved
some of the best results on certain datasets. However, our
model showcased a remarkable ability to generalize across
most datasets featuring natural anomalies, as evidenced by
statistical average ranking. As for clustering-based methods
such as KMeans--, DCOD, and CBLOF, they mostly rank
in the top tier among all baseline methods, supporting the
advantage of combining deep clustering with anomaly detec-
tion. However, our method significantly outperformed these
methods by mitigating their limitations and further provid-

ing a unified framework for joint representation learning,
clustering, and anomaly detection.

Effectiveness of Vector Sum in Anomaly Scoring. As
demonstrated in Table 1, we compare the anomaly score
oi derived directly from the generation possibility with its
vector summation form oV

i . According to our statistical
findings, we observe that vector scores oV

i consistently out-
perform scalar scores oi. This indicates that the introduction
of the vector summation, analogous to the concept of re-
sultant force, makes a substantial difference in anomaly
detection scenarios involving multiple clusters. The perfor-
mance gains of the vector sum scores strongly demonstrate
the effectiveness of the UniCAD in capturing the subtle
differences in the distinctions among multiple clusters and
underscore the utility of this factor in the context of anomaly
detection based on clustering.

Runtime Comparison. We present a analysis of the run-
time performance of various methods, including our pro-
posed approach, as detailed in Table 2. Our experiments,
conducted on the backdoor dataset, reveal that while non-
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(a) Optimization Analysis (b) AUC-ROC Surface (c) AUC-PR Surface

Figure 3: (a) demonstrates the performance variations during the optimization process on the satimage-2 dataset. (b) & (c)
Analysis of cluster count k, anomaly ratio l.

Table 2: Runtime Comparison. The runtime is reported in
seconds (s).

Phase IForest KMeans-- DAGMM DCOD UniCAD

Fit 0.256 103.697 795.004 4548.634 246.113
Infer 0.018 0.059 4.190 16.190 0.079

Table 3: Ablation Study on 30 Datasets (AUC-ROC)

Metric Gauss.
Dist.

w/o
Objective

w/o
Indicator

Full
Model

Avg. Rank 6.2 6.6 5.0 4.2

deep learning methods exhibit lower runtime, they often
simplify the problem space excessively, failing to capture
the complex non-linear relationships present in the data.
In contrast, our method, when compared to existing deep
learning techniques, demonstrates a significant reduction
in computational time. This indicates that our approach
not only manages to efficiently model complex patterns but
also achieves an optimal balance between computational
efficiency and modeling capability.

4.4. Ablation Studies

In this section, we examine the contributions of different
components in UniCAD. Tables 3 reports the results. We
make three major observations. Firstly, the anomaly de-
tection performance experiences a significant drop when
replacing the Student’s t distribution with a Gaussian distri-
bution for the Mixture Model, highlighting the robustness
of the Student’s t distribution in unsupervised anomaly de-
tection. Secondly, omitting the likelihood maximization
loss (w/o J(Θ,Φ)) also results in a considerable decrease
in overall performance. This observation underscores the

importance of deriving both the optimization objectives and
anomaly scores from the likelihood generation probability
through a theoretical framework, which allows for unified
joint optimization of anomaly detection and clustering in the
representation space. Furthermore, the indicator function
δ(xi) also contributes to a performance increase. These
results further confirm the effectiveness of our UniCAD in
mitigating the negative influence of anomalies in the clus-
tering process, as the existence of outliers may significantly
degrade the performance of clustering. In summary, all
these ablation studies clearly demonstrate the effectiveness
of our theoretical framework in simultaneously considering
representation learning, clustering, and anomaly detection.

4.5. Hyperparameters Analysis

This section analyzes how hyperparameters affect our
model’s performance during the iterative training process.
As shown in Figure 3a, we tracked iteration counts from 0
to 10 for the satimage-2 dataset, keeping other parameters
constant. The AUC-ROC and AUC-PR curves demonstrated
stable performance with only minor fluctuations initially,
highlighting the convergence of the iterative EM optimiza-
tion. We also conducted a sensitivity analysis on key hyper-
parameters for the donors dataset, focusing on the number
of clusters k and the outlier set proportion l. The results,
shown in Figure 3, reveal that the optimal l is generally
lower than the actual anomaly proportion. Furthermore, a
pattern was observed with the number of clusters k, where
the model performance initially improved with an increase
in k, followed by a subsequent decline. This suggests the
existence of an optimal range for the number of clusters,
which should be carefully selected based on the specific
application context.
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5. Conclusion
This paper presents UniCAD, a novel model for Unsuper-
vised Anomaly Detection (UAD) that seamlessly integrates
representation learning, clustering, and anomaly detection
within a unified theoretical framework. Specifically, Uni-
CAD introduces an anomaly-aware data likelihood based on
the mixture model with the Student-t distribution to guide
the joint optimization process, effectively mitigating the im-
pact of anomalies on representation learning and clustering.
This framework enables a theoretically grounded anomaly
score inspired by universal gravitation, which considers
complex relationships between samples and multiple clus-
ters. Extensive experiments on 30 datasets across various
domains demonstrate the effectiveness and generalization
capability of UniCAD, surpassing 15 baseline methods and
establishing it as a state-of-the-art solution in unsupervised
anomaly detection.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Iterative Training Algorithm

B. Derivation of EM Algorithm
This appendix provides the detailed derivation of the Expectation-Maximization (EM) algorithm for optimizing the
parameters of a mixture model based on Student’s t-distribution. The focus is on deriving analytical solutions for the
maximization of the parameters Φ = {µk,Σk, ωk} of the mixture components. The EM algorithm alternates between two
steps:

In the E-step, we calculate the posterior probabilities τik, representing the probability of data point i belonging to cluster k,
given the current parameters. The posterior probabilities for a Student’s t-distribution mixture model are formulated as:

τik =
ωk · p(zi|µk,Σk)∑K
j=1 ωj · p(zi|µj ,Σj)

, (16)

where τ (zi|µk,Σk) denotes the Student’s t-distribution for data point i with respect to cluster k, and K is the number of
mixture components.

The Student’s t-distribution is depicted as a hierarchical conditional probability, resembling a Gaussian distribution with an
accuracy scale factor u, where its latent variable follows a gamma distribution. Adopting a degree of freedom ν = 1, the
value of uik is given by:

uik =
ν + 1

ν +DM (zi,µk)
=

2

1 +DM (zi,µk)
(17)

In the M-step, we update the parameters Φ = {ωk, µk, and Σk} using the derivatives obtained in the previous steps. In our
model, the likelihood function for a Student’s-t Distribution Mixture Model (SMM) is represented as:

L(ω,µ,Σ) =

N∑
i=1

K∑
k=1

ωk ·
π−1 · |Σk|−

1
2

1 + (zi − µk)TΣ
−1
k (zi − µk)

, (18)

where ωk are the mixture weights, Σk the covariance matrices, µk the means, and zi the data points.

The derivative with respect to ωk must consider the constraint that the sum of the mixture weights equals 1, i.e.,
∑

k ωk = 1.
Hence, we introduce a Lagrange multiplier λ to address this constraint and construct the Lagrangian L′:

L′(ω,µ,Σ, λ) = L(ω,µ,Σ) + λ

(
1−

K∑
k=1

ωk

)
, (19)

The derivative with respect to ωk is:
∂L′

∂ωk
=

∂L

∂ωk
− λ, (20)

Substituting the definition of L(ω,µ,Σ), we obtain:

∂L

∂ωk
=
∑
i

p(zi|µk,Σk)∑K
j=1 ωj · p(zi|µj ,Σj)

=
∑
i

τik
ωk

, (21)

To solve for ωk, we first multiply both sides of the equation by ωk and apply the constraint condition:

∑
k

ωk

(∑
i

τik
ωk
− λ

)
= 0, (22)

Upon further organization, we find that the Lagrange multiplier λ actually equals the total number of data points N (since∑
i τik = Nk, where Nk is the expected total number of data points belonging to the kth component, and the sum of all Nk

equals the total number of data points N ).
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Figure 4: Score comparison with other methods.

Finally, we can solve for ωk:

ωk =

∑
i τik
N

, (23)

This result indicates that the weight ωk of each mixture component equals the proportion of the posterior probabilities of the
data points it contains relative to all data points.

To update µk and Σk, we consider the conditional expectation of the data log-likelihood function:

Q(µk,Σk) =

N∑
i=1

τik

(
− log(π)− 1

2
log |σk|+

1

2
log uik

−1

2
uik(zi − µk)

TΣ−1
k (zi − µk)

) (24)

Maximizing Q(µk,Σk) with respect to µk leads to:

∂Q

∂µk
=

1

2

N∑
i=1

τikuik(2Σ
−1
k µk − 2Σ−1

k zik) (25)

Setting ∂Q
∂µk

= 0 results in the updated mean µ
(t+1)
k :

µ
(t+1)
k =

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik zi

)
/

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik

)
. (26)

Considering the derivative of Q(µk,Σk) with respect to Σ−1
k :

∂Q

∂Σ−1
k

=
1

2

N∑
i=1

τik
(
Σk − uik(zi − µk)× (zi − µk)

T
)
. (27)

Setting ∂Q
∂µk

= 0 yields the updated covariance matrix Σ
(t+1)
k :

Σ
(t+1)
k =

∑n
i=1 τ

(t+1)
ik u

(t+1)
ik (zi − µ

(t+1)
k )(zi − µ

(t+1)
k )T∑K

j=1 τ
(t+1)
ij

. (28)

C. Anomaly Score with Vector Sum
C.1. Toy Example

In the appendix, as illustrated in Figure 4, we investigated a toy example. We discussed a specific pattern of anomalies termed
group anomalies, where a small number of anomalous samples cluster together. It is crucial to note that we do not claim this
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anomaly pattern is common in real-world data; our goal is merely to point out a specific anomaly pattern that is challenging
for traditional cluster-based anomaly detection methods to detect. Specifically, we utilize three Gaussian distributions with
high variance (each generating 300 data samples) and one with lower variance (generating 30 data samples). Because the
samples from the smaller Gaussian follow a different generative mechanism and represent a minority in the dataset, we
consider them anomalies.

We set the cluster number for KMeans-- and GMM at four, indicating that the Gaussian distribution comprising anomalous
samples was also recognized as a cluster. KMeans-- employs a cluster-based approach, using the distance to the nearest
cluster center as the anomaly score, while GMM uses a probability-based approach, considering the samples’ likelihood in
the mixture model as the anomaly score. However, both approaches are ineffective in this scenario. Rather than identifying
the small cluster as anomalous, they tend to misidentify samples on the peripheries of larger clusters as anomalies.

By contrast, our scoring method views the entire small cluster as more likely anomalous, followed by outlier samples on the
margins of the larger clusters. This visualization provides a perspective that distinguishes our method from previous efforts.

D. Experimental Supplementary
D.1. Benchmark Datasets Details

Due to space constraints in the main text, we utilized 30 public datasets from ADBench (Han et al., 2022), covering all
different types of data. The details of the 30 datasets are presented in Table 4.

D.2. Baselines Details

A comprehensive overview of the unsupervised anomaly detection methods is presented below.

D.2.1. TRADITIONAL MODELS

• Subspace Outlier Detection (SOD) (Kriegel et al., 2009): Identifies outliers in varying subspaces of a high-dimensional
feature space, targeting anomalies that emerge in lower-dimensional projections.

• Histogram-based Outlier Detection (HBOS) (Goldstein & Dengel, 2012): Assumes feature independence and calculates
outlyingness via histograms, offering scalability and efficiency.

D.2.2. LINEAR MODELS

• Principal Component Analysis (PCA) (Wold et al., 1987): Utilizes singular value decomposition for dimensionality
reduction, with anomalies indicated by reconstruction errors.

• One-class SVM (OCSVM) (Manevitz & Yousef, 2001): Defines a decision boundary to separate normal samples from
outliers, maximizing the margin from the data origin.

D.2.3. DENSITY-BASED MODELS

• Local Outlier Factor (LOF) (Breunig et al., 2000) : Measures local density deviation, marking samples as outliers if
they lie in less dense regions compared to their neighbors.

• K-Nearest Neighbors (KNN) (Peterson, 2009): Anomaly scores are assigned based on the distance to the k-th nearest
neighbor, embodying a simple yet effective approach.

D.2.4. ENSEMBLE-BASED MODELS

• Lightweight On-line Detector of Anomalies (LODA) (Pevnỳ, 2016) : An ensemble method suitable for real-time
processing and adaptable to concept drift through random projections and histograms.

• Isolation Forest (IForest) (Liu et al., 2008): Isolates anomalies by randomly selecting features and split values, leveraging
the ease of isolating anomalies to identify them efficiently.
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Table 4: Statistics of tabular benchmark datasets.

Data # Samples # Features # Anomaly % Anomaly Category

annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 2.44 Network
breastw 683 9 239 34.99 Healthcare

campaign 41188 62 4640 11.27 Finance
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.20 Sociology
glass 214 7 9 4.21 Forensic

Hepaitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web

Ionosphere 351 33 126 35.90 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics

Lymphography 148 18 6 4.05 Healthcare
magic.gamma 19020 10 6688 35.16 Physical

mnist 7603 100 700 9.21 Image
musk 3062 166 97 3.17 Chemistry

pendigits 6870 16 156 2.27 Image
Pima 768 8 268 34.90 Healthcare

satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics

shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image

Stamps 340 9 31 9.12 Document
thyroid 3772 6 93 2.47 Healthcare

vertebral 240 6 30 12.50 Biology
vowels 1456 12 50 3.43 Linguistics

Waveform 3443 21 100 2.90 Physics
WBC 223 9 10 4. 48 Healthcare
Wilt 4819 5 257 5.33 Botany
wine 129 13 10 7.75 Chemistry

WPBC 198 33 47 23.74 Healthcare
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D.2.5. PROBABILITY-BASED MODELS

• Deep Autoencoding Gaussian Mixture Model (DAGMM) (Zong et al., 2018): Combines a deep autoencoder with a
GMM for anomaly scoring, utilizing both low-dimensional representation and reconstruction error.

• Empirical-Cumulative-distribution-based Outlier Detection (ECOD) (Li et al., 2022): Uses ECDFs to estimate
feature densities independently, targeting outliers in distribution tails.

• Copula Based Outlier Detector (COPOD) (Li et al., 2020): A hyperparameter-free method leveraging empirical copula
models for interpretable and efficient outlier detection.

D.2.6. CLUSTER-BASED MODELS

• DBSCAN (Ester et al., 1996): A density-based clustering algorithm that identifies clusters based on the density of data
points, effectively separating high-density clusters from low-density noise, and is widely used for anomaly detection in
spatial data.

• Clustering Based Local Outlier Factor (CBLOF) (He et al., 2003): Calculates anomaly scores based on cluster
distances, using global data distribution.

• KMeans-- (Song et al., 2021): Extends k-means to include outlier detection in the clustering process, offering an
integrated approach to anomaly detection.

• Deep Clustering-based Fair Outlier Detection (DCFOD) (Chawla & Gionis, 2013): Enhances outlier detection with a
focus on fairness, combining deep clustering and adversarial training for representation learning.

D.2.7. REPRESENTATION-BASED MODELS

• Deep Support Vector Data Description (DeepSVDD) (Ruff et al., 2018): Minimizes the volume of a hypersphere
enclosing network data representations, isolating anomalies outside this sphere.

• Deep Isolation Forest for Anomaly Detection (DIF) (Xu et al., 2023): Utilizes deep learning to enhance traditional
isolation forest techniques, offering improved anomaly detection in complex datasets with minimal parameter tuning.

Each method’s unique mechanism and application context provide a rich landscape of techniques for unsupervised anomaly
detection, illustrating the field’s diverse methodologies and the breadth of approaches to tackling anomaly detection
challenges.

D.3. Supplementary Experimental Results

In the appendix, we detail the statistical analysis conducted to compare the performance of various anomaly detectors. We
obtained this diagram by conducting a Friedman test (p-value: 4.657e-19), indicating significant differences among different
detectors. We utilized average ranks and the Nemenyi test to generate the critical difference diagram, as shown in Figure 5.
It is noteworthy that the vector version exhibits significantly superior performance compared to the scalar version across
more methods. The detailed outcomes for the AUCROC and AUCPR metrics, spanning 30 datasets and against 17 baseline
approaches, are showcased in Table 5 and Table 6.

D.3.1. DEGREES OF FREEDOM IN T-DISTRIBUTION

In fixed degrees of freedom scenarios, specifically when set to 1, the benefits of utilizing the t-distribution become less
pronounced. Drawing from existing literature (Xie et al., 2016; Van Der Maaten, 2009), the flexibility to learn the degrees of
freedom or to perform cross-validation on the validation set is particularly pertinent in unsupervised contexts. For the sake
of simplicity and to minimize computational demands, we opted to maintain the degrees of freedom at 1, which provided
robust performance while reducing complexity.
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Table 5: AUCROC of 17 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset, the algorithm with the
highest AUCROC is marked in red, the second highest in blue, and the third highest in green.

Dataset SOD HBOS PCA OC
SVM LOF KNN LODA IForest DA

GMM ECOD COPOD DB
SCAN CBLOF DCOD KMeans-- Deep

SVDD DIF UniCAD
(Scalar)

UniCAD
(Vector)

annthyroid 77.38 60.15 66.24 57.23 70.20 71.69 41.02 82.01 56.53 78.66 76.80 50.08 62.28 55.01 64.99 76.09 66.76 75.27 72.72
backdoor 68.77 71.56 80.16 85.04 85.79 80.58 66.38 72.15 55.98 86.08 80.97 76.55 81.91 79.57 89.11 78.83 92.87 87.28 89.24
breastw 93.97 98.94 95.13 80.30 40.61 97.01 98.49 98.32 N/A 99.17 99.68 85.20 96.86 99.02 97.05 63.36 77.45 98.15 98.56

campaign 69.16 78.55 72.78 65.70 59.04 72.27 51.67 71.71 56.03 76.10 77.69 50.60 64.34 63.16 63.51 54.42 67.53 73.52 73.64
celeba 48.44 76.18 79.38 70.70 38.95 59.63 60.17 70.41 44.74 76.48 75.68 50.36 73.99 91.41 56.76 45.17 65.29 81.38 82.00
census 62.12 64.89 68.74 54.90 47.46 66.88 37.14 59.52 59.65 67.63 69.07 58.50 60.17 72.84 63.33 54.16 59.66 67.90 67.84
glass 73.36 77.23 66.29 35.36 69.20 82.29 73.13 77.13 76.09 65.83 72.43 54.55 78.30 78.07 77.30 55.71 84.57 79.52 82.17

Hepatitis 67.83 79.85 75.95 67.75 38.06 52.76 64.87 69.75 54.80 75.22 82.05 68.12 73.05 48.38 64.64 57.45 74.24 75.53 80.62
http 78.04 99.53 99.72 99.59 27.46 3.37 12.48 99.96 N/A 98.10 99.29 49.97 99.60 99.53 99.55 60.38 99.49 99.53 99.52

Ionosphere 86.37 62.49 79.19 75.92 90.59 88.26 78.42 84.50 73.41 73.15 79.34 81.12 90.79 57.78 91.36 53.94 89.74 92.04 90.37
landsat 59.54 55.14 35.76 36.15 53.90 57.95 38.17 47.64 43.92 36.10 41.55 50.17 63.69 33.40 55.31 62.48 54.84 49.60 57.37

Lymphography 71.22 99.49 99.82 99.54 89.86 55.91 85.55 99.81 72.11 99.52 99.48 74.16 99.81 81.19 100.00 71.91 83.67 99.29 99.73
mnist 60.10 60.42 85.29 82.95 67.13 80.58 72.27 80.98 67.23 74.61 77.74 50.00 79.96 65.23 82.45 50.98 88.16 86.00 86.64
musk 74.09 100.00 100.00 80.58 41.18 69.89 95.11 99.99 76.85 95.40 94.20 50.00 100.00 42.19 72.16 66.02 98.22 99.92 100.00

pendigits 66.29 93.04 93.73 93.75 47.99 72.95 89.10 94.76 64.22 93.01 90.68 55.33 96.93 94.33 94.37 27.32 93.79 95.12 95.52
Pima 61.25 71.07 70.77 66.92 65.71 73.43 65.93 72.87 55.93 63.05 69.10 51.39 71.49 72.16 70.44 49.49 67.28 75.16 74.87

satellite 63.96 74.80 59.62 59.02 55.88 65.18 61.98 70.43 62.33 58.09 63.20 55.52 71.32 55.97 67.71 57.40 74.52 72.46 77.65
satimage-2 83.08 97.65 97.62 97.35 47.36 92.60 97.56 99.16 96.29 96.28 97.21 75.74 99.84 86.01 99.88 55.68 99.63 99.87 99.88

shuttle 69.51 98.63 98.62 97.40 57.11 69.64 60.95 99.56 97.92 99.13 99.35 50.40 93.07 97.20 69.97 51.81 97.00 99.15 98.75
skin 60.35 60.15 45.26 49.45 46.47 71.46 45.75 68.21 N/A 49.08 47.55 50.00 68.03 64.34 65.47 45.69 66.36 72.26 69.69

Stamps 73.26 90.73 91.47 83.86 51.26 68.61 87.18 91.21 88.89 87.87 93.40 52.08 69.89 93.41 79.78 59.48 87.95 91.37 94.18
thyroid 92.81 95.62 96.34 87.92 86.86 95.93 74.30 98.30 79.75 97.94 94.30 53.57 94.74 78.55 92.26 52.14 96.26 97.66 97.48

vertebral 40.32 28.56 37.06 37.99 49.29 33.79 30.57 36.66 53.20 40.66 25.64 49.74 41.01 38.13 38.14 37.81 47.20 33.11 47.37
vowels 92.65 72.21 65.29 61.59 93.12 97.26 70.36 73.94 60.58 62.24 53.15 57.50 92.12 51.56 93.45 49.87 81.02 88.38 92.09

Waveform 68.57 68.77 65.48 56.29 73.32 73.78 60.13 71.47 49.35 62.36 75.03 66.41 71.27 63.47 74.35 53.94 75.33 71.81 74.29
WBC 94.60 98.72 98.20 99.03 54.17 90.56 96.91 99.01 N/A 99.11 99.11 87.43 96.88 94.92 97.45 62.46 81.27 97.68 98.93
Wilt 53.25 32.49 20.39 31.28 50.65 48.42 26.42 41.94 37.29 36.30 33.40 49.96 34.50 44.71 34.91 45.90 39.46 48.95 52.56
wine 46.11 91.36 84.37 73.07 37.74 44.98 90.12 80.37 61.70 77.22 88.65 40.33 27.14 82.18 27.36 64.26 41.69 82.72 95.25

WPBC 51.28 51.24 46.01 45.35 41.41 46.59 49.31 46.63 47.80 46.65 49.34 52.22 45.32 49.67 45.01 44.01 44.69 48.02 49.90

Avg. Rank 11.00 8.26 8.98 11.59 13.59 10.00 13.24 7.09 13.24 9.19 8.29 14.21 8.07 10.90 8.71 15.48 8.38 5.41 3.59

(a) AUC-ROC (b) AUC-PR

Figure 5: Critical difference diagrams for AUC-ROC and AUC-PR.

D.3.2. ABLATION STUDY ON HYPERPARAMETER SETTINGS

An ablation study was conducted to evaluate the impact of hyperparameters k and l. A grid search was performed over
various values of these hyperparameters across 30 datasets, benchmarking against 17 baseline methods. The comprehensive
results, showcasing average ranks based on AUC-ROC, are summarized in the following table:

The findings indicate that the method exhibits robustness across specific parameter ranges. To ensure fair comparisons, a
consistent parameter set (k = 10, l = 1%) was applied, demonstrating strong performance across the majority of datasets.

Additionally, guidelines for selecting hyperparameters were examined. While techniques such as the elbow method and
silhouette coefficient were considered for determining the optimal number of clusters, they proved to be time-consuming and
exhibited weak correlation with anomaly detection performance. An ensemble learning approach, which involved random
searches of k values and aggregation of anomaly scores, showed promise in enhancing performance and model robustness
for certain datasets. Future research will further explore this area.

D.4. Complexity Analysis

The complexity of each iteration in UniCAD involves three parts: constructing the outlier set, updating the network
parameters Θ, and optimizing the mixture model using the EM algorithm. Constructing the outlier set requires a sorting
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Table 6: AUCPR of 17 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset, the algorithm with the
highest AUCPR is marked in red, the second highest in blue, and the third highest in green.

Dataset SOD HBOS PCA OC
SVM LOF KNN LODA IForest DA

GMM ECOD COPOD DB
SCAN CBLOF DCOD KMeans-- Deep

SVDD DIF UniCAD
(Scalar)

UniCAD
(Vector)

annthyroid 18.84 16.99 16.12 10.37 15.71 16.74 7.06 30.47 9.64 25.35 16.58 7.60 13.74 10.01 15.41 21.75 18.93 26.37 25.03
backdoor 37.07 4.96 31.29 8.79 26.14 44.37 13.84 4.75 5.47 10.72 7.69 21.04 7.03 6.77 15.47 55.70 41.46 37.77 36.36
breastw 84.88 97.71 95.11 82.70 28.55 92.19 97.04 96.04 N/A 98.54 99.40 78.42 91.94 96.83 92.25 48.60 50.65 94.47 95.90

campaign 19.14 38.01 27.90 29.25 14.59 27.18 14.11 32.26 14.54 36.65 38.58 11.43 20.88 19.61 18.86 16.75 26.52 27.66 27.12
celeba 2.36 13.82 15.89 10.73 1.73 3.14 4.04 8.96 1.95 13.96 13.69 2.32 11.22 17.48 3.19 2.73 5.44 15.12 14.66
census 8.54 8.68 10.02 6.82 5.48 9.04 5.03 7.78 9.03 9.46 9.92 7.52 7.52 10.92 8.13 8.42 7.42 9.70 9.75
glass 18.73 11.82 10.05 8.02 20.11 20.26 13.37 10.99 24.58 15.35 9.78 6.88 11.57 9.66 14.66 8.46 18.86 13.29 15.33

Hepatitis 24.73 37.73 36.65 29.44 13.67 21.95 30.90 26.25 22.93 32.80 41.50 22.31 36.54 19.53 25.14 30.04 34.93 36.08 43.37
http 8.32 44.79 56.43 46.86 3.82 0.70 0.67 90.83 N/A 16.61 35.19 0.37 47.53 44.03 45.09 13.39 41.72 43.53 43.52

Ionosphere 85.88 41.78 73.92 74.54 88.07 90.41 73.04 80.41 64.97 64.69 69.89 63.04 89.77 47.63 91.36 43.24 87.45 89.55 87.61
landsat 26.38 22.03 16.18 16.21 24.69 24.65 18.86 19.81 24.48 16.24 17.48 20.80 31.05 15.57 22.40 36.92 24.35 20.84 23.27

Lymphography 22.00 91.83 97.02 93.59 23.08 38.69 44.54 97.31 19.52 90.87 88.68 7.66 97.31 12.34 100.00 34.58 32.84 91.69 96.66
mnist 19.15 12.51 39.93 33.20 20.90 35.53 25.86 27.71 23.75 17.45 21.35 9.21 30.60 23.59 37.12 20.18 44.55 41.19 41.94
musk 7.59 100.00 99.89 10.61 2.82 9.65 47.60 99.61 32.76 50.13 34.79 3.16 100.00 2.87 37.55 8.78 70.70 97.65 99.96

pendigits 4.46 29.27 23.65 23.52 3.78 6.50 18.71 26.05 4.67 30.65 21.22 2.94 32.87 22.21 32.67 1.53 23.75 24.86 21.68
Pima 48.24 56.61 54.03 50.00 47.18 55.14 44.09 55.82 41.55 50.45 55.19 36.65 52.99 50.24 53.50 35.02 46.34 54.66 54.23

satellite 47.23 67.25 59.64 57.61 37.68 50.01 61.94 65.92 58.33 52.22 56.58 37.56 61.43 43.31 54.68 41.77 68.92 71.68 75.13
satimage-2 26.11 78.04 85.69 82.71 4.30 39.14 80.52 93.45 22.07 64.49 76.55 12.08 97.09 8.12 97.13 2.58 72.90 97.33 97.31

shuttle 20.27 96.40 92.35 85.29 13.76 20.38 48.75 97.62 93.20 90.45 96.56 7.68 79.89 81.82 32.66 12.41 67.23 92.05 92.36
skin 24.61 23.70 17.40 19.03 18.25 28.72 18.44 26.08 N/A 18.37 17.99 20.89 28.34 26.29 25.58 19.06 25.36 28.87 28.72

Stamps 20.28 35.24 41.09 31.39 21.29 23.53 34.60 39.49 43.73 33.21 43.10 11.03 24.46 47.36 35.63 12.07 34.68 42.39 50.94
thyroid 23.56 50.98 44.34 21.23 20.81 34.98 14.68 63.11 16.06 51.06 19.64 9.44 29.88 10.56 31.69 2.70 50.36 60.99 60.06

vertebral 11.79 9.23 10.49 10.94 14.24 10.57 9.68 10.46 15.24 11.84 8.89 13.11 11.43 11.58 10.54 10.62 14.31 9.78 12.96
vowels 38.88 13.41 8.92 8.24 34.42 63.41 13.82 15.12 12.22 10.56 4.14 13.27 35.14 3.58 49.10 4.58 14.97 26.52 32.42

Waveform 9.66 5.86 5.79 4.37 11.33 13.04 4.71 6.24 3.11 4.76 6.90 5.33 17.93 4.26 19.74 4.41 11.28 6.49 7.83
WBC 54.00 73.56 82.29 89.87 5.57 66.55 78.67 90.49 N/A 86.19 86.19 30.25 67.31 33.43 71.88 8.99 13.32 68.69 83.14
Wilt 5.53 3.84 3.13 3.62 5.05 4.73 3.36 4.23 4.00 3.93 3.69 5.33 3.74 4.62 3.76 4.65 4.05 4.80 5.19
wine 7.95 43.08 30.87 21.56 7.77 8.43 48.82 25.96 17.51 23.54 45.71 8.11 5.98 24.44 6.27 18.78 8.38 21.40 49.59

WPBC 25.62 23.04 23.01 22.93 20.29 21.49 25.39 22.42 22.49 21.24 22.81 23.86 21.08 22.86 20.58 25.00 20.73 22.71 24.90

Avg. Rank 10.83 8.19 8.31 11.14 13.24 9.36 11.79 7.29 11.96 9.36 9.53 14.91 8.53 11.97 9.03 13.41 9.10 6.31 4.74

Table 7: Learning vs. Fixed Degrees of Freedom

Metric Learn v Fix v = 1

AUC-ROC Avg. Rank 4.4 3.34
AUC-PR Avg. Rank 5.05 4.47

Table 8: Results of Hyperparameter Grid Search

l\k 10 20 30 40

0.01 3.34 4.31 4.69 4.71
0.05 4.44 4.23 4.65 4.88
0.10 4.27 4.46 4.48 4.88

operation, for which we use Numpy’s built-in quantile calculation with a time complexity of O(N logN). Considering
the number of network parameters along with the computation of the loss function, the computational complexity for
optimizing Θ is approximately O(TNDd+ TNKd). The EM algorithm for the Student’s t mixture model includes two
main steps: the E-step, where the complexity for computing the probability (or responsibility) of each data point belonging
to each component is approximately O(NKd), and the M-step, where the full computational complexity of updating the
parameters (mean, covariance matrix) of each component is O(NKd2). In practice, we use diagonal covariance matrices,
which reduces the update complexity to roughly O(NKd). If the EM algorithm requires T round to converge, its time
complexity is approximately O(TNKd). Therefore, the time complexity for t-iterations is O(tN(logN + Td(D +K))).
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