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Abstract

Unsupervised Graph Domain Adaptation (UGDA) involves the transfer of knowl-
edge from a label-rich source graph to an unlabeled target graph under domain
discrepancies. Despite the proliferation of methods designed for this emerging
task, the lack of standard experimental settings and fair performance compar-
isons makes it challenging to understand which and when models perform well
across different scenarios. To fill this gap, we present the first comprehensive
benchmark for unsupervised graph domain adaptation named GDABench, which
encompasses 16 algorithms across diverse adaptation tasks. Through extensive
experiments, we observe that the performance of current UGDA models varies
significantly across different datasets and adaptation scenarios. Specifically, we
recognize that when the source and target graphs face significant distribution
shifts, it is imperative to formulate strategies to effectively address and mitigate
graph structural shifts. We also find that with appropriate neighbourhood aggrega-
tion mechanisms, simple GNN variants can even surpass state-of-the-art UGDA
baselines. To facilitate reproducibility, we have developed an easy-to-use library
PyGDA for training and evaluating existing UGDA methods, providing a standard-
ized platform in this community. Our source codes and datasets can be found at
https://github.com/pygda-team/pygda.

1 Introduction

The last decade has witnessed significant advancements in Graph Neural Networks (GNNs) with their
successful applications spanning various fields [1, 2], including social network analysis [3, 4], protein
interaction prediction [5], and traffic flow forecasting [6], etc. However, the presence of distribution
shifts [7] and label scarcity in real-world graph data impedes the ability of existing GNN models
to adapt to new domains [8]. To addresses this challenge, Unsupervised Graph Domain Adaptation
(UGDA) has become an important solution for transferring knowledge from a labeled source graph
to an unlabeled target graph. This powerful paradigm has been widely studied, unlocking broader
application for graph neural networks.

Despite a wide range of researches of UGDA have been developed [9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26], the understanding of their capabilities and limitations is inadequate
due to the following reasons:

• Inadequate Evaluation of Domain Distribution Discrepancies. The distribution shifts in node
attributes, graph structures, and label proportions between graphs will significantly influence the
adaptation performance and result in various adaptation scenarios [26, 27]. However, the types
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and magnitudes of distribution discrepancies among different domains have not been thoroughly
evaluated and discussed, which makes it challenging to understand the robustness and efficacy of
current methods.

• Lack of Standard, Fair, and Comprehensive Comparisons. The utilization of distinct datasets,
varying data processing methodologies, and divergent data partitioning strategies among existing
domain adaptation models results in incomparability across different findings [9, 28, 17]. Further-
more, they are mainly evaluated against limited baselines with constrained scenarios, such as social
networks or citation networks, which lack validation of the model’s capability in more diverse or
complex applications.

• Limited Investigation on GNN Inherent Transferability. Despite the advancements made by
existing UGDA algorithms, it is still unclear how data shift impose challenges on GNN and how to
unleash the transferabililty power for GNN. Due to the non-IID nature of graph data, the aggregation
architectures and aggregation scopes affect the underlying distribution of latent representations
generated by GNN. When there exists significant structural difference between the source and
target domains, such as variations in the degree [29, 30] or differences in subgraph patterns
[23, 31], the information aggregation capability of GNN will be directly affected [32, 25, 31]. Thus,
understanding the key components that affect adaptation in GNN will be crucial for enhancing
GNN’s transferabililty, which is still an open problem.

To fill these gaps, we revisit existing UGDA algorithms and conduct a comprehensive benchmark
named GDABench. Specifically, GDABench includes 16 state-of-the-art UGDA models and diverse
real-world graph datasets covering node attributes, graph structures, and label proportion shifts.
Additionally, we also explore the limits of GNN transferability by combining 7 GNN variants with 2
domain alignment and 3 unsupervised graph learning techniques. Our work is the first to provide a
rigorous empirical analysis of how various aggregation mechanisms influence alignments in domain
adaptation task. Through comprehensive experiments, we observe that: (1) the performance of
current UGDA models varies greatly across different datasets and adaptation scenarios; (2) it is
crucial to develop tailored strategies to address graph structural shifts, especially when the distribution
discrepancies are significant; (3) the GNN’s transferability in UGDA heavily relies on two factors:
aggregation scope and aggregation architecture, which are influenced by the severity of label shift and
the level of graph heterophily, etc; (4) the inherent adaptability of GNNs is largely underestimated by
existing methods, which motivates the exploration of a simple yet effective model that fully leverages
the core property of GNN. More insights can be found in Section 5.

In summary, our main contributions are as follows:

• We introduce GDABench, the first comprehensive benchmark for unsupervised graph domain
adaptation. It includes 16 recent state-of-the-art methods across various real-world datasets with
diverse range of adaptation tasks.

• To explore the capability and limitations of exiting UGDA models, we systematically evaluate
existing algorithms and investigate the underlying transferability for GNN. With these findings, we
reveal a simple yet effective method that can even surpass existing UGDA algorithms.

• We develop an easy-to-use library PyGDA to alleviate the workload of researchers when conducting
experiments. Furthermore, users can easily construct their own models or datasets with minimal
effort.

The source codes of our benchmark are available at https://github.com/pygda-team/pygda/
tree/main/benchmark, which provide unified APIs and adopt consistent data processing as well
as data splitting approaches for fair comparisons.

2 Preliminaries and Related Work

2.1 Problem Definition

Consider a graph G = (V, E) with n nodes and m edges. The node feature matrix, denoted
by X = {xv|v ∈V} ∈ Rn×d, contains attribute vector for each node, where d represents the
dimensionality of the attributes. We denote adjacency matrix as A ∈ Rn×n, where Ai,j = 1
indicates the presence of an edge ei,j ∈ E connecting node vi and vj , and Ai,j = 0 otherwise.
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Figure 1: This timeline illustrates the diverse UGDA algorithms revisited in this paper. All of them
are incorporated into our PyGDA library. More details are shown in Section 2 and Appendix C

Y ∈ RN×C represents the node label matrix, where C is the category of node labels. We focus on
Unsupervised Graph Domain Adaptation (UGDA) on classification tasks. It is a non-trivial task due
to the complex domain shift between source and target graphs. Formally, given a labeled source
graph GS = (VS , ES ,YS) and an unlabeled target graph GT = (VT , ET ) with the data shift that
PS(G) ̸= PT (G). The goal is to train a graph neural network model h : G → Y that utilizes the
labeled source graph Gs and the unlabeled target graph Gt in order to make accurate label predictions
for the target graph Gt.

2.2 Related Work

Classical Methods. There are two classical categories to reduce the domain discrepancy [33, 34]:
minimizing pre-defined probability discrepancy metrics [35, 36] and adversarial learning techniques
[37, 38, 39, 40]. For the pre-defined probability discrepancy metric minimization models, node
representations are initially derived from the encoder, after which domain-invariant representations
are acquired by minimizing probability discrepancy distances, such as MMD [41], CMD [36], etc.
Rather than directly minimizing domain discrepancies, some approaches integrate the encoder with a
domain classifier that predicts the source domain of each representation. For example, DANN [37]
facilitates domain invariant learning (DIRL) to distinguish between source and target samples in
the latent space. Building upon this framework, WDGRL [42] replaces the domain classifier with
a network that learns an approximate Wasserstein distance. These classical methods are designed
for CV and NLP tasks, where samples are independently and identically distributed [43]. However,
marginal alignment of node representations in non-graph DA research is insufficient for graph-
structured data, of which the distribution shift becomes more complex due to the interconnection
among different nodes.

Specialized Methods for Graph Data. To tackle the unique challenges of knowledge transfer
in graphs, several approaches have been proposed [9, 11, 44, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26]. The key idea behind existing work on node-level UGDA is to leverage node
representations as intermediaries while minimizing domain shift through adversarial learning. This
kind of methods incorporate classical DA methods with deep node embedding by designing a
special encoder to learn transferable features. DANE [10] uses shared weight GCNs to get node
representations and then handles distribution shift via least square generative adversarial network.
ACDNE [11] employs two feature extractors to simultaneously maintain both attributed affinity
and topological proximity through a deep network embedding module. Additionally, it integrates a
domain classifier to enhance the label-discriminative nature of the node representations. UDAGCN
[12] introduces a dual graph convolutional network enhanced by an attention mechanism, allowing
it to leverage both local and global consistency for improved graph representation learning. ASN
[44] distinguishes between domain-private and domain-shared information while integrating both
local and global consistency to effectively capture network topology information. AdaGCN [13]
utilizes GCNs to merge network topology with adversarial domain adaptation, effectively enhancing
graph convolution processes. CWGCN [22] introduces a two-step correntropy-induced Wasserstein
GCN. This method first eliminates noisy nodes from the source graph and subsequently learns the
target GCN by extending the Wasserstein distance. SA-GDA [23] introduces a spectral augmentation
module aimed at improving node representation learning by integrating spectral information from
the target domain into the source domain. DMGNN [21] utilizes a GNN encoder equipped with
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dual feature extractors to distinguish between ego-embedding learning and neighbor-embedding
learning. Following this, a label propagation node classifier is applied to enhance the accuracy of
label predictions. DGDA [24] approaches graph domain adaptation from a generative perspective,
breaking down the generation process into three components: semantic latent variables, domain latent
variables, and random latent variables.

Despite the progress made by the aforementioned UGDA models, such solutions still struggle to
address the complex domain shift present in real-world graph data. The complex distribution shift
between graphs usually combine node attribute shift, graph structure shift and label shift. Thus, to
deal with the distinct effects of distribution shifts caused by graph structures, StruRW [17] investigates
different types of distribution shifts of graph-structured data and reweights edges in the source graph
to reduce the conditional shift of neighborhoods. Based on this work, PairAlign [26] addresses
conditional structure shifts by recalibrating the influence of neighboring nodes using edge weights,
while also modifying the classification loss through label weights to tackle label shifts. Except
for reweighting, JHGDA [18] develops a hierarchical pooling model that extracts meaningful and
adaptive structures at various levels. This model simultaneously minimizes both marginal and class
conditional distribution shifts across each hierarchical layer. KBL [19] redefines the aggregation
mechanism as a process of learning a knowledge-enhanced posterior distribution for target domains,
facilitating knowledge transfer by linking informative samples across domains.

Instead of simply using GNN as a node embedding module, some methods devote effort to empirically
and theoretically studying the role of GNN within domain adaptation [15, 16, 25]. This allows the
UGDA method to be precisely customized based on the property of GNN, thereby enhancing their
performance in graph domain adaptation. GRADE [15] introduces graph subtree discrepancy as a
metric to measure the graph distribution shift by connecting GNNs with WL subtree kernel [45].
SpecReg [16] finds that the OT-based bound for graph is closely coupled with the Lipschitz constant
of GNN and proposes spectral regularization to modulate the Lipschitz constant to restrict the target
risk bound. A2GNN [25] further investigates the GNN’s underlying generalization capability behind
its architecture and finds propagation operation plays a pivotal role in the adaptation procedure. Based
on this observation, A2GNN proposes a simple yet effective GNN framework, which stacks more
propagation layers on target branch. The timeline of UGDA algorithms covered in GDABench is
shown in Figure 1 and more detailed descriptions are provided in Appendix C.

3 Datasets

We have carefully selected 5 widely used public datasets that showcase a wide spectrum of distribution
shifts across graphs for the node classification task. These include Airport which consists of three
domains: Brazil (B), Europe (E) and USA (U); Blog that includes two domains: Blog1 (B1) and
Blog2 (B2); ArnetMiner which encompasses three domains: DBLPv7 (D), Citationv1 (C) and
ACMv9 (A); Twitch that includes six domains: Germany (DE), England (EN), Spain (ES), France
(FR), Porutgal (PT) and Russia (RU); MAG that includes six domains like CN, US, JP, FR, RU, and
DE. The selection criteria for these datasets are primarily based on three factors: the complexity of
the distribution shift, the scale of the dataset, and the potential for downstream applications. From
these datasets, we have included a comprehensive collection, comprising 74 distinct source-target
adaptation pairs. Detailed information about each dataset is provided in Table 1, while the statistical
methods used to quantify the types of domain shifts exhibited in the dataset are presented in Appendix
B. The chosen datasets possess the following characteristics:

• Wide range of distribution shift. The graph distribution shifts between source and target domains
can largely fall into three categories: feature shift, structure shift and label shift [32, 46, 26].
Our GDABench datasets encompass a diverse range of three distribution shifts across domains in
varying degrees. The details are illustrated in Table 1 and more statistics are given in Appendix B.
Specifically, the domains within Airport are dominated by structure shift, while domains in Blog,
ArnetMiner, Twitch and MAG are affected by all kinds of shifts with different degrees.

• Different scales with variant spans. We categorize the size of the dataset by the average number
of domain nodes. The small size (S) covers nodes below 5 thousand. The medium size (M) cover
nodes below 10 thousand. The large size (L) covers nodes from 10 thousand to hundred thousand.
Smaller datasets exhibit smaller differences in domain sizes, and vice versa. In the Blog and
Airport, the size difference between the largest and smallest domains is less than 1000 nodes. In the
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Table 1: Datasets used in GDABench reflecting a wide range of distribution shifts. ‘-’ indicates
no data shift exists. Circles (#, H# and  ) represent the degree of the corresponding shift between
domains and Airport does not contain node features. The magnitude of shift is directly proportional
to the filling area of the circle. The statistic manners and more details are provided in Appendix B.

Dataset Size Feature Shift Structure Shift Label Shift # Domains # Labels # Homo

Airport S - H# # 3 4 0.52
Blog S # # # 2 6 0.40
ArnetMiner M H# H# # 3 5 0.83
Twitch M   H# 6 2 0.59
MAG L    6 20 0.58

case of ArnetMiner and Twitch, this difference ranges between 1,000 and 10,000. For the MAG,
this difference ranges between 10,000 to 100,000. This allows us to understand the impacts of
varying domain size on the efficacy of adaptation task.

• Various downstream application scenarios. The GDABench datasets encompass multiple appli-
cation scenarios, including citation relationships (ArnetMiner and MAG), social media interactions
(Blog and Twitch) and routine connections (Airport). Specifically, in ArnetMiner and MAG, nodes
represent academic papers and edges indicate citation relationship. ArnetMiner groups domains
by publisher, while MAG by country. Blog and Twitch capture friendship within blog and gamer
networks, respectively. Airport delineates routines connections, where airports serve as nodes
connected by flight routes.

4 Compared Models

Specialized UGDA Methods. This group includes specifically designed algorithms for graph domain
adaptation task. We compare 16 models including (1) nine methods incorporating classicial DA
methods with deep node embedding: DANE [10], ACDNE [11], UDAGCN [12], ASN [44], AdaGCN
[13], CWGCN [22], SAGDA [23], DMGNN [21] and DGDA [24]; (2) four methods tailored for
graph structure shift: StruRW [17], JHGDA [18], KBL [19] and PairAlign [26]; and (3) three methods
based on domain adaptive message passing: GRADE [15], SpecReg [16], and A2GNN [25].

SimGDA: Vanilla DA with GNN Variants. To understand the inherent transferability of GNN,
we delve into its aggregation process by decoupling it into two key perspectives: how to aggregate
and what to aggregate. For how to aggregate, we consider five types of aggregators, including
sum aggregator [47], mean aggregator [48], aggregate with weighted neighbours (GAT) [49] and
aggregate with discriminative neighbours (GIN) [50]. For what to aggregate, we consider three
aspects in terms of the hop-count of neighbours: (1) GNN without neighbours, where graph structure
is not considered (degenerating to MLP); (2) GNN with one-hop neighours; and (3) GNN with
multi-hop neighours. To avoid the over-smooth problem, we also add residual connections to
enhance its modeling power [51, 47]. For alignment, we consider two widely used models for
domain-invariant feature learning from computer vision: domain distance metric MMD [35] and
adversarial learning DANN [37]. Among them, MMD proposes to match the distribution in the latent
space through maximum mean discrepancy [41], while DANN introduces an adversarial objective to
distinguish source and target samples in the latent space. We use one-layer GCN [47] as a control
and create six GNN variants by altering only one module each time. Then, we get 14 models by
combining these variants with two vanilla DA methods, abbreviated these 14 models as SimGDA.

Without 
neighbors

One-hop
neighbors

Multi-hop
neighborsScope

Sum Mean Max

GAT-Aggr GIN-Aggr
Architecture

Select Aggregate Process

MMD DANN

IM AE CL

Select Alignment Metrics

Select Unsupervised Techniques

SimGDA

SimGDA+

Figure 2: The combination process of SimGDA / SimGDA+.

SimGDA+: SimGDA with Unsuper-
vised Techniques. To further unlock
the power of GNN for graph domain
adaptation, we enhance SimGDA with
different unsupervised graph learning
techniques on unlabeled target graph,
which allows the model to learn mean-
ingful representations without relying
on domain-specific labels. We imple-
ment three unsupervised techniques in
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Table 2: We compared Micro-F1 of each model on Airport, Blog, and ArnetMiner. Highlighted are
the top first, second, and third results. Results for other tasks can be found in Appendix D.

Airport Blog ArnetMiner
Models E→ U U → E B1 → B2 B2 → B1 C → A D → A

DANE 31.18 ±3.26 33.75 ±0.31 32.17 ±3.20 32.77 ±0.66 62.87 ±1.98 59.19 ±1.66

ACDNE 48.52 ±1.17 45.03 ±0.43 54.30 ±1.42 56.93 ±0.56 72.34 ±0.39 65.37 ±3.50

UDAGCN 41.62 ±0.58 33.17 ±0.12 27.58 ±0.63 25.46 ±5.96 70.24 ±1.01 62.49 ±1.16

ASN 46.58 ±0.21 40.85 ±0.54 53.91 ±0.52 56.25 ±0.52 71.70 ±0.38 66.15 ±1.02

AdaGCN 46.55 ±0.42 49.62 ±0.01 43.06 ±3.03 36.58 ±8.94 67.66 ±0.36 60.47 ±0.99

DMGNN 45.85 ±1.03 27.82 ±2.95 46.27 ±2.40 44.96 ±1.57 72.91 ±0.44 70.68 ±0.27

CWGCN 44.68 ±0.42 40.69 ±0.47 31.96 ±3.47 33.46 ±4.96 71.65 ±0.21 68.21 ±0.09

SAGDA 30.62 ±5.57 35.92 ±1.01 26.51 ±11.12 26.91 ±7.26 65.40 ±4.38 64.60 ±0.89

DGDA 43.45 ±2.16 43.78 ±2.90 22.10 ±1.45 21.06 ±2.07 52.20 ±4.62 56.31 ±2.01

StruRW 45.94 ±0.69 36.09 ±0.01 40.02 ±0.37 42.10 ±1.18 70.59 ±0.15 64.15 ±0.31

KBL 44.54 ±0.73 32.08 ±0.20 35.14 ±3.97 34.90 ±2.49 70.49 ±0.26 63.34 ±0.53

JHGDA 36.89 ±0.25 40.85 ±1.68 17.79 ±2.12 23.16 ±6.59 65.53 ±0.94 60.80 ±0.35

PairAlign 42.38 ±0.77 36.84 ±1.48 32.17 ±10.88 41.16 ±3.02 58.06 ±2.62 56.68 ±0.89

GRADE 49.36 ±0.35 48.45 ±1.56 38.64 ±3.73 44.01 ±4.51 69.16 ±0.39 63.47 ±1.10

SpecReg 37.59 ±2.55 28.91 ±8.77 28.27 ±4.22 30.30 ±1.35 68.90 ±4.78 66.30 ±4.28

A2GNN 50.64 ±1.47 53.47 ±0.24 22.58 ±0.01 33.04 ±4.12 76.15 ±0.06 74.12 ±0.18

SimGDA 55.29 ±0.39 54.39 ±0.90 53.35 ±0.69 43.04 ±0.86 70.80 ±0.06 67.04 ±0.15

SimGDA+ 58.11 ±0.40 57.52 ±0.38 57.04 ±0.45 44.17 ±0.02 73.18 ±0.38 71.81 ±2.44

an end-to-end manner: (1) Information Maximization (IM) [52, 53, 20]. Ideally, an accurate predic-
tion for the target domain should exhibit individual certainty while maintaining global diversity. To
accomplish this, we minimize the entropy for each individual sample while maximizing the entropy
across classes. (2) Graph AutoEncoder (AE) [54, 55, 56]. Graph autoencoders encode nodes into
a latent vector space and reconstruct the graph data from the encoded latent space. After obtaining
target graph node representations, we employ a distinct decoder to reconstruct target graph structure.
(3) Graph Contrastive Learning (CL) [57, 58, 59, 60]: Graph contrastive learning methods maximize
mutual information between augmented instances of the same object (e.g., node).

As changing the graph structure may affect the estimation of structure shift, we take random attribute
masking to create augmented instances for each target node. Following previous works [58, 60],
we utilize a one-layer perceptron (MLP) as projection head to map augmented representations to
the shared latent space and then calculate contrastive loss based on normalized temperature-scaled
cross entropy loss (NT-Xent) [61]. As a result, we get 42 combined models, which integrates 14
SimGDA variants with 3 unsupervised techniques. We collectively refer to these combined models as
SimGDA+, and the combination process is shown in Figure 2.

5 Experimental Results and Analyses

In this section, we study the experimental results of all the models. We first provide a comprehensive
comparison of specialized UGDA methods across five datasets with diverse distribution shifts for node
classification task. Following that, we perform a thorough analysis between different GNN variants
to understand how data shift imposes challenges on GNNs. Finally, we present the performance
of SimGDA variants, which shows the limit of GNNs’ transferability. For more information about
metrics, hyperparameters, search spaces, and other implementation details, please refer to Appendix
D. We further extend our scope to include the graph-level classification task; please refer to the
Appendix E for details.

5.1 Overall Comparisons

In this section, we try to elucidate the success of these UGDA algorithms through empirical evaluation
across diverse datasets. In Table 2 and Table 3, we take a close look at the models’ performance across
5 datasets on partial tasks utilizing Micro-F1 for Blog, Airport, and ArnetMiner, while employing
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Table 3: We evaluated Macro-F1 on MAG and AUROC scores on Twitch. Highlighted are the top
first, second, and third results. OOM indicates out of memory. Results for other tasks can be found
in Appendix D

Models Twitch MAG

DE→ ES EN → RU DE → PT FR → JP JP → FR JP → RU

DANE 56.71 ±0.57 53.47 ±0.84 55.71 ±1.70 16.16 ±0.24 16.71 ±1.45 12.61 ±0.19

ACDNE 51.13 ±0.34 50.79 ±0.12 52.47 ±1.83 20.12 ±0.37 18.92 ±1.08 13.91 ±0.35

UDAGCN 56.48 ±0.18 53.72 ±0.42 54.22 ±2.10 12.22 ±0.31 11.62 ±0.35 11.17 ±0.29

ASN 53.57 ±0.72 50.29 ±0.15 55.03 ±0.75 11.91 ±1.45 12.04 ±0.70 10.79 ±0.24

AdaGCN 52.32 ±0.76 51.99 ±1.31 51.09 ±0.61 16.21 ±0.47 14.12 ±0.46 13.05 ±0.08

DMGNN 54.11 ±0.09 50.42 ±0.03 53.44 ±0.04 12.01 ±0.78 9.93 ±0.40 10.28 ±1.04

CWGCN 57.62 ±0.64 52.90 ±0.37 58.21 ±0.57 11.01 ±0.48 12.37 ±0.54 12.38 ±0.25

SAGDA 51.58 ±0.09 51.03 ±0.23 51.96 ±0.70 16.28 ±0.51 3.64 ±5.07 11.40 ±0.59

DGDA 54.43 ±3.60 51.68 ±1.08 54.29 ±4.28 OOM OOM OOM

StruRW 59.60 ±0.19 52.04 ±0.36 58.74 ±2.09 22.10 ±0.40 12.89 ±0.85 12.96 ±0.43

KBL 58.33 ±0.44 55.91 ±0.16 51.66 ±0.08 17.60 ±0.39 6.12 ±0.14 14.49 ±0.30

JHGDA 62.25 ±0.49 53.75 ±0.15 61.88 ±0.48 20.51 ±0.20 20.46 ±0.57 11.85 ±0.37

PairAlign 50.78 ±0.22 51.19 ±0.20 52.03 ±0.97 23.29 ±0.49 23.72 ±0.30 12.34 ±0.31

GRADE 58.57 ±0.42 53.55 ±0.28 62.12 ±0.17 11.93 ±0.48 10.95 ±0.55 9.35 ±0.25

SpecReg 51.04 ±0.33 50.17 ±0.06 55.91 ±0.59 19.45 ±0.54 20.17 ±1.35 15.82 ±0.50

A2GNN 59.41 ±0.34 52.01 ±0.32 61.82 ±0.77 26.20 ±0.74 25.78 ±0.25 16.94 ±0.13

SimGDA 61.30 ±0.32 53.11 ±0.19 58.27 ±0.16 18.59 ±0.07 15.16 ±0.11 13.27 ±0.04

SimGDA+ 61.53 ±0.08 53.82 ±0.08 61.60 ±0.11 21.94 ±0.18 21.36 ±0.09 15.64 ±0.46

Macro-F1 for MAG and AUROC for Twitch due to their imbalanced labels. For comprehensive
experimental results, please refer to Appendix D. Our key findings include:

Observation 1: When facing significant shifts, it is important to design solutions tailored to mitigate
structural discrepancies. Although several methods that incorporate classical DA approaches with
deep node embedding have achieved impressive results on Airport, Blog and ArnetMiner datasets
(e.g., ACDNE and DMGNN), they fail to obtain satisfied performance on datasets with significant
shifts. These results underscore the limitations of marginal distribution alignment techniques in
the presence of significant structural and label shifts in graph data. As shown in Table 3, methods
tailored to address graph structure shifts show reasonable improvements over those that incorporate
classical DA techniques with deep node embeddings. This suggests that mitigating the impact of
graph structure shift on node representation learning under this scenario is crucial.

Observation 2: Domain-adaptive message passing methods demonstrate superior and robust
performance across a wide range of datasets and tasks. While methods that align marginal feature
distributions and those designed for graph structure shifts can address datasets with mild and severe
data shifts respectively, strategies specifically developed to leverage GNN properties demonstrate
robustness and superior performance across diverse data shifts. As shown in Table 2 and Table 3,
methods designed based on the inherent properties of GNN achieves the top-three best performance
in 8 tasks out of 12 tasks. This finding suggests that leveraging the structural strengths of GCNs,
combined with well-established domain adaptation principles, can result in an effective and efficient
approach to addressing the challenges of domain variability in graph datasets. Such strategies
represent a promising direction for future research and application in this field.

5.2 Understanding and unlocking the inherent power of GNN

Although many UGDA methods integrate traditional domain adaptation techniques, we observe their
performance remains unsatisfactory and can even fall below that of SimGDA. This leads us to an
intriguing question: do the intrinsic mechanisms of GNN play a more crucial role in enhancing
transferability? To further investigate the question, we take one-layer GCN combined with vanilla
DA as a baseline, and compare six variants: Max-Aggr, Mean-Aggr, GAT-Aggr, GIN-Aggr, with-no-
neighbor, and with-multi-hop-neighbor; The results are shown in Figure 3. Moreover, we enhance
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Figure 3: SimGDA: the compared performance of vanilla DA with 6 GNN variants.

above SimGDA with unsupervised graph learning techniques, referred to as SimGDA+, to explore
the limit of GNNs in graph domain adaptation, which is shown in Table 2 and Table 3.

Observation 3: SimGDA achieves competitive performance compared with UGDA methods. As
shown in Table 2 and Table 3, SimGDA shows comparable results with state-of-the-art approaches
across various datasets. Specifically, SimGDA exhibits better performance than structure shift tailored
solutions in datasets with minor data shifts, i.e., Airport, Blog and ArnetMinver, and demonstrates
advantages surpassing state-of-the-art methods in E → U and U → E. Similar trends are also observed
in the Twitch and MAG dataset, where SimGDA outperforms most UGDA methods in six tasks. To
further explore the impacts of data shifts on GNNs, we analyze the role of aggregation scope and
mechanisms, which tackle diverse shifts through the graph structure.

Observation 4: The benefit of multi-hop neighbors depends on the degree of label shift and graph
heterophily. Across ArnetMiner, Blog, and Airport datasets, we observed a significant decline in
performance for most tasks without neighbours, shown in Figure 3 and Appendix D. In contrast, on
the Twitch and MAG datasets with heavy label shift, overlooking neighbor information generally
benefits task performance. This suggests that the impact of structural information varies depending
on the dataset with diverse degree of label shift.

Besides, we note a performance decline on the Airport and Blog datasets when including multi-
hop neighbors. However, on the ArnetMiner, Twitch, and MAG datasets, incorporating multi-hop
neighbors leads to performance improvement. The enhancement in performance in these cases can
be attributed to the fact that heterophilous graphs exhibit a larger degree of conditional shift, and
aggregation process may help to mitigate this situation by providing a more comprehensive view of
the node’s context.

Observation 5: A source-unbiased discriminative aggregation mechanism is needed. As depicted
in Figure 3, mean and max aggregators consistently exhibit lower performance across tasks compared
to the sum aggregator used in GCN. This can be attributed to their inherent limitations in capturing
discriminative structural information [50]. In contrast, the aggregator utilized in GCN can identify
and distinguish between different structures by effectively incorporating degree-aware neighbors.
Thus, the superiority of the GCN aggregator over mean and max emphasizes the necessity of a
discriminative aggregation operator with highly expressive power.

To enhance the expressive power of aggregation operator, we evaluate aggregate mechanism used in
GAT and GIN. Despite their stronger expressive capacities, their performance is generally ineffective
across datasets such as ArnetMiner, Blog, Airport, and Twitch. This inefficiency can be attributed to
the increased risk of model bias towards information from the source domain, stemming from the
requirement of more parameters for learning. Consequently, source-biased discriminative aggregation
mechanisms deteriorate the model’s transfer capability.

Observation 6: GNNs can serve as a powerful graph domain adaptor. With the optimal number
of neighbor hops and aggregators, we further enhance SimGDA with unsupervised graph learning
techniques and obtain SimGDA+. As can be seen in Table 2 and Table 3, SimGDA+ surpasses the
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performance of most specially-designed methods for graph domain adaptation and even achieves the
best performance in certain tasks. This superior performance under various types of shifts showcases
the potential of GNNs as powerful domain adaptors. In summary, we contend that GNNs, when
designed with appropriate aggregators, careful selection of neighbor hops, and the application of
unsupervised graph learning techniques, can serve as effective and reliable graph domain adaptors.

5.3 Do LLMs help mitigate distribution shift in graphs?

Recently, Large Language Models (LLMs) [62] have demonstrated an impressive ability to understand
and handle various text-related tasks. When dealing with text-attributed graph, an important question
arises: does the distribution shift persist after leveraging LLMs as feature encoders?

To investigate this question, we utilize the prompts from TAPE [63], which allows us to assess the
impact of LLM-based features on the model’s performance. For datasets, we choose the widely
used ogbn-arxiv dataset [64], which contains paper title and abstract text information. Each node
represents an arXiv paper, with directed edges indicating citations from one paper to another. The
objective is to predict the 40 subject areas of arXiv computer science papers, which are manually
assigned by the authors and moderators of arXiv. We split the data into three disjoint domains based
on the publication year of the papers, i.e. 1950-2016, 2016-2018, 2018-2020. The statistical details
for each domain are shown in the Table 4.

Table 4: Statistics of the split ogbn-arxiv dataset.

Domains # Nodes # Edges # Homo # Avg Degree

1950-2016 69,499 237,163 0.6945 3.41
2016-2018 51,241 111,754 0.6886 2.18
2018-2020 48,603 60,403 0.7092 1.24

We explored two approaches to enhance the original node attributes:

• LLM enhanced text with word2vec embedding [65], which combines the title, abstract, and LLM-
generated predictions and explanations into a single input. This composite text is then fed into
word2vec. Then, the node features are obtained by averaging the embeddings of its combined input.
We refer to it as arxiv-LLM-w2v.

• LLM enhanced text with BERT embedding [66], which feeds the same composite text into a
pretrained DeBERTa. Then, the node features are obtained by sentence embedding. Note that
we did not finetune the DeBERTa like TAPE [63], since we focus on unsupervised graph domain
adaptation. We refer to it as arxiv-LLM-bert.

First, we use MMD to characterize the degree of feature shift among these three datasets, i.e., ogbn-
arxiv, arxiv-LLM-w2v and arxiv-LLM-bert. We consider 3 adaptation tasks, and the results are shown
in Table 5. As we can see, when word2vec is used to encode the LLM-enhanced text, the feature shift
is reduced compared to the original node features. However, when BERT is used for encoding, the
feature shift increases. This indicates that the choice of text encoding method significantly influences
the degree of feature shift.

Table 5: Feature shift among domains in arxiv dataset by using MMD [41] as metric.

Source Target ogbn-arxiv arxiv-LLM-w2v arxiv-LLM-bert

1950-2016 2016-2018 0.0405 0.0400 ↓ 0.0427 ↑
1950-2016 2018-2020 0.0528 0.0535 ↑ 0.0796 ↑
2016-2018 2018-2020 0.0148 0.0138 ↓ 0.0149 ↑

Next, we choose 5 recent graph domain adaptation models to assess the impact of LLM-based
features on the model’s performance. Each experiment is repeated 3 times, and we report the average
Micro-F1 score with standard deviation. As illustrated in Table 6, the performance of most baselines
shows significant improvement with the arxiv-LLM-w2v dataset, whereas performance notably
declines with the arxiv-LLM-bert dataset compared to the original ogbn-arxiv dataset. These results
align with the MMD scores presented in the Table 5, which indicate that arxiv-LLM-bert exhibits a
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Table 6: Micro-F1 score of 5 recent graph domain adaptation models with LLM-based features.

Source Target Features UDAGCN AdaGCN KBL GRADE A2GNN

1950-2016 2016-2018
ogbn-arxiv 52.42±0.52 61.78±0.18 50.88±0.24 61.85±0.17 60.18±0.54

arxiv-LLM-w2v 43.55±0.90 66.23±0.14 64.90±0.12 65.41±0.31 63.77±0.36
arxiv-LLM-bert 34.81±0.29 35.66±1.20 34.64±0.85 35.04±0.86 39.14±2.00

1950-2016 2018-2020
ogbn-arxiv 48.41±0.64 56.74±0.34 47.53±1.15 57.19±0.26 58.89±0.28

arxiv-LLM-w2v 39.56±0.54 62.04±0.29 60.67±0.29 62.04±0.29 65.35±0.12
arxiv-LLM-bert 30.18±0.25 31.69±0.42 30.26±1.09 31.09±0.12 35.40±1.55

2016-2018 2018-2020
ogbn-arxiv 54.84±0.22 62.05±0.04 52.99±0.05 61.42±0.14 59.45±0.28

arxiv-LLM-w2v 47.20±0.99 68.42±0.04 66.77±0.13 66.84±0.16 65.83±0.40
arxiv-LLM-bert 39.20±2.53 39.93±1.90 37.27±2.06 34.14±1.54 43.62±1.87

larger distribution shift compared to the other datasets. This emphasizes the necessity of selecting
an appropriate text encoder when utilizing LLM-enhanced text for graph domain adaptation. An
effective choice of text encoder can greatly impact the performance and mitigate the distribution
shifts in text-attributed graph domain adaptation tasks.

6 Conclusion

In this paper, we introduce GDABench, the first comprehensive benchmark for unsupervised graph
domain adaptation. Our evaluation encompasses 16 well-known models across various real-world
datasets exhibiting diverse data distribution shifts. Furthermore, we also designed 6 GNN variants to
investigate the inherent transferability of GNNs, enhancing them with 3 unsupervised techniques to
explore their potential limits. Our empirical results shows that (1) the performance of current UGDA
models varies significantly across different datasets and adaptation scenarios; (2) tailored strategies
are essential for addressing and mitigating graph structural shifts, particularly when distribution
discrepancies are substantial. (3) the transferability of GNNs in UGDA is heavily dependent on
aggregation scope and architecture, influenced by factors such as label shift severity and graph
heterophily. We have provided unified APIs and adopted consistent data processing as well as data
splitting approaches for fair comparisons. In the future, we plan to extend GDABench to include
broader scenarios [67, 68], more cutting-edge models and more complex types of datasets. We hope
our benchmark and findings will promote realistic and rigorous evaluations, inspiring new advances
in graph domain adaptation.

Border Impacts and Limitations. Our benchmark fosters innovation and advances research in
graph domain adaptation by providing a standardized evaluation platform, leading to the development
of more effective algorithms. This standardization helps researchers compare methods more fairly,
driving progress and collaboration within the field. However, benchmark datasets may introduce
limitations that could impact the generalization of findings to real-world scenarios. This risk includes
the potential for unrealistic performance expectations if the benchmark does not adequately represent
the diversity and complexity of real-world data. We plan to enhance GDABench by including more
settings such as source-free and open-set scenarios. This expansion will help to cover a wider
range of domain adaptation challenges, thereby fostering the development of algorithms that are
not only more robust but also versatile enough to navigate the complexities of diverse and dynamic
real-world scenarios. This trajectory in research will be pivotal in advancing the capabilities of
domain adaptation techniques, ensuring their applicability and efficacy across various domains and
evolving data landscapes.
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Appendix

A Distribution Shift in Graph-Structured Data

Distribution shift appears when the joint distribution differs between source domain and target domain
[7, 69]. Assuming that the relationship between the input and class variables is unchanged, there are
two kinds of distribution shift, i.e., covariate shift and label shift (prior probability shift) [70].

A.1 Covariate Shift

Covariate shift [71] refers to changes in the distribution of the input variables, which can be defined
formally as follows:

Definition 1 (Covariate Shift). Covariate shift appears when PS(G) ̸= PT (G) with the assumption
of PS(Y |G) = PT (Y |G), where PS and PT are the probability distributions of the source and target
domains, respectively.

To deal with covariate shift, it is essential to align PS(Y |H) and PT (Y |H), where H is the repre-
sentation after data attributes passing through the encoder. However, in graph-structured data, node
representation is not only affected by the data attributes but also graph structure. Thus, covariate shift
in graph data can be decoupled as feature shift and structure shift [26].

Definition 2 (Feature Shift). Given the joint distribution of the node attributes and node labels
PT (X,Y ), the feature shift is then defined as PS(X,Y ) ̸= PT (X,Y ) with the assumption of
PS(Y |G) = PT (Y |G).

Definition 3 (Structure Shift). Given the joint distribution of the adjacency matrix and node labels
PT (A, Y ), the structure shift is then defined as PS(A, Y ) ̸= PT (A, Y ) with the assumption of
PS(Y |G) = PT (Y |G).

A.2 Label Shift

Label shift refers to changes in the distribution of the class variable Y . It also appears with different
names in the literature and the definitions have slight differences between them.

Definition 4 (Label Shift). Label shift occurs when the distribution of labels changes across two
domains, which is defined as PS(Y ) ̸= PT (Y ) where PS(G|Y ) = PT (G|Y ).

In all, structure shift is unique to graph data due to the non-IID nature caused by node interconnections.
Moreover, the learning of node representations implemented by the GNN will mix the feature shift,
sutructure shift and label shift [32].

B Detailed Description of Datasets

In this section, we provide additional details about the datasets used in our benchmark.

B.1 Dataset Description

• Airport2: The Airport datasets consist of three separate collections corresponding to Brazil (B),
Europe (E), and the USA (U). In these datasets, nodes represent airports and edges denote flight
connections between them. The labels categorize airports by activity levels, measured in terms of
flights or passenger numbers.

• Blog3: Blog1 and Blog2 are disjoint social networks derived from the BlogCatalog dataset. In these
networks, nodes correspond to bloggers, and edges reflect friendships among them. The attributes
for each node consist of keywords from the blogger’s self-description, and each node is assigned
a label denoting its group affiliation. Given that both Blog1 and Blog2 originate from the same
underlying network, their data distributions are nearly identical.

2https://github.com/GentleZhu/EGI/tree/main/data
3https://github.com/shenxiaocam/ACDNE/tree/master/ACDNE_codes/input
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Table 7: Dataset Statistics.

Dataset # Domains # Nodes # Edges # Homo # Avg Degree # Feat Dims # Labels

Airport
USA (U) 1,190 27,198 0.6978 22.86

241 4BRAZIL (B) 131 2,148 0.4683 16.40
EUROPE (E) 399 11,990 0.4048 30.05

Blog Blog1 (B1) 2,300 66,942 0.3991 29.11 8,189 6Blog2 (B2) 2,896 107,672 0.4002 37.18

ArnetMiner
DBLPv7 (D) 5,484 16,234 0.8198 2.96

6,775 5ACMv9 (A) 9,360 31,112 0.7998 3.32
Citationv1 (C) 8,935 30,196 0.8598 3.38

Twitch

England (EN) 7,126 35,324 0.5560 4.96

3,170 2

Germany (DE) 9,498 153,138 0.6322 16.14
France (FR) 6,549 112,666 0.5595 17.20
Russia (RU) 4,385 37,304 0.6176 8.51
Spain (ES) 4,648 59,382 0.5800 12.78

Porutgal (PT) 1,912 31,299 0.5708 16.40

MAG

China (CN) 101,952 285,991 0.5307 2.81

128 20

Germany (DE) 43,032 127,704 0.5311 2.97
France (FR) 29,262 79,182 0.5732 2.71
Janpan (JP) 37,498 91,412 0.5645 2.44
Russia (RU) 32,833 68,294 0.7682 2.08
USA (US) 132,558 702,482 0.5174 5.30

• ArnetMiner4: These datasets comprise paper citation networks sourced from three distinct origins
as provided by ArnetMiner [72]: "ACMv9" (A), "Citationv1" (C), and "DBLPv7" (D). Each
dataset’s nodes symbolize papers, while edges reflect their citation relationships. Specifically,
"ACMv9" (A) includes papers from ACM spanning 2000 to 2010, "Citationv1" (C) consists of
papers from the Microsoft Academic Graph up to 2008, and "DBLPv7" (D) contains papers from
DBLP collected between 2004 and 2008. The aim is to categorize all papers into five specific
research areas: Databases, Artificial Intelligence, Computer Vision, Information Security, and
Networking.

• Twitch5: Twitch gamer networks from six regions—Germany (DE), England (EN), Spain (ES),
France (FR), Portugal (PT), and Russia (RU)—comprise nodes representing users and connections
that signify friendships among them. Node features include data on users’ preferred games,
geographical location, and streaming habits, among others. Users within these networks are
categorized into two groups based on their use of explicit language.

• MAG6: The MAG dataset, a subset of the Microsoft Academic Graph, is a heterogeneous network
featuring four distinct types of entities: papers (736,389 nodes), authors (1,134,649 nodes), in-
stitutions (8,740 nodes), and fields of study (59,965 nodes). It includes four varieties of directed
relationships linking pairs of entity types: an author’s affiliation with an institution, an author’s
authorship of a paper, paper citations, and papers’ association with fields of study. Each paper
node is enriched with a 128-dimensional word2vec feature vector, while the other entities lack
input node features. The primary task within this dataset involves predicting the publication venue
(conference or journal) for each paper, leveraging information about its content, cited references,
authors, and the affiliations of these authors. Following PairAlign [26], we split the original dataset
into six countries.

B.2 Shift Statistics of Datasets

According to dataset statistics, shown in Table 7 and Figure 4, we measure the degree of domain
shift exhibited in the datasets for each tasks using statistical methods. We use MMD [41], CSS [26],
Kullback-Leibler Divergence to characterize the degree of feature shift, structure shift and label shift.
The results of each tasks is shown in Table 13. We take the average results of all tasks as the shift
statistics for the datasets, shown in Table 8. The 74 tasks compiled by the five carefully selected
datasets can cover all combinations of domain shift scenarios.

4https://github.com/yuntaodu/ASN/tree/main/data
5http://snap.stanford.edu/data/twitch-social-networks.html
6https://zenodo.org/records/10681285
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Table 8: Domain shifts statistics of GDABench datasets.

Dataset Size Feature Shift Structure Shift Label Shift Domain Num

Blog S 0.0132 0.0802 0.2532 2
Airport S 0 0.2769 0.0351 3
ArnetMiner M 0.0241 0.2074 1.1519 3
Twitch M 0.0468 0.3264 8.6949 6
MAG L 0.0499 0.3960 25.7725 6
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Figure 4: Label distribution of GDABench datasets.

• Feature shift determined: Tasks ES → PT, PT→ES, EN→DE, ED→EN, FR→ES, FR→PT,
ES→FR, PT→FR, RU→ES, ES→RU, RU→PT, PT→RU, RU→FR and FR→RU in Twitch. Tasks
JP→US, US→JP, JP→CN and CN→JP in MAG.

• Sturcture shift determined: Tasks E→B, B→E, U→B, B→U, U→E and E→U in Airport.
Tasks GP→DE and US→DE in MAG. Tasks FR→DE, RU→EN, RU→DE, ES→DE, EN→RU,
DE→RU, DE→ES and DE→PT in Twitch.

• Lable shift determined: Task FR→DE in MAG.
• Determined by both feature and structure shift: Tasks D→A, D→C, A→D and C→D in

ArmetMiner. Tasks FR→EN, EN→FR, PT→EN, EN→PT, DE→FR, FR→DE, PT→DE and
EN→ES in Twitch. Tasks JP→FR, RU→PT, RU→CN and DE→JP in MAG.

• Determined by both feature and label shift: Tasks EN→US, US→EN in MAG.
• Determined by both structure and label shift: Tasks DE→US, FR→US, US→FR, FR→RU in

MAG.
• All shifts effects: Tasks B1→B2 and B2→B1 in Blog. Tasks A→C and C→A in ArnetMiner.

Tasks DE→FR, CN→FR, JP→RU, RU→FR, CN→RU, FR→JP, RU→DE, CN→DE, RU→US,
DE→CN, FR→CN, DE→RU and US→RU in MAG.

C GDA Baselines

MLP, GCN [47], GAT [49], and GIN [50] are classical GNN models. We directly adopt the imple-
mentation from Pytorch Geometric. The publicly available implementations of baselines can be
found at the following URLs:

• DANE [10] uses shared weight GCNs to get node representations and then handles distribution
shift via least square generative adversarial network. The source code is available at https:
//github.com/Jerry2398/DANE-Simple-implementation.
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Figure 5: The compared performance of vanilla DA with 6 GNN variants.

• ACDNE [11] utilizes two feature extractors to jointly preserve attributed affinity and topological
proximities as deep network embedding module and incorporates a domain classifier to make
node representations label-discriminative. The source code is available at https://github.com/
shenxiaocam/ACDNE.

• UDAGCN [12] develops a dual graph convolutional network with attention mechanism to jointly
exploit local and global consistency for effective graph representation learning. The source code is
available at https://github.com/GRAND-Lab/UDAGCN.

• ASN [44] separates domain-private and domain-shared information and combines local and global
consistency to capture network topology information. The source code is available at https:
//github.com/yuntaodu/ASN.

• AdaGCN [13] leverages GCN to integrate network topology and combines adversarial domain
adaptation with graph convolution. The source code is available at https://github.com/
daiquanyu/AdaGCN_TKDE.

• StruRW [17] investigates different types of distribution shifts of graph-structured data and
reweights edges in the source graph to reduces the conditional shift of neighborhoods. The
source code is available at https://github.com/Graph-COM/StruRW.

• GRADE [15] introduces graph subtree discrepancy as a metric to measure the graph distribution
shift by connecting GNNs with WL subtree kernel [45]. The source code is available at https:
//github.com/jwu4sml/GRADE.

• SpceReg [16] finds the OT-based bound for graph is closely coupled with the Lipschitz constant of
GNN and proposes spectral regularization to modulate the Lipschitz constant to restrict the target
risk bound. The source code is available at https://github.com/Shen-Lab/GDA-SpecReg.

• A2GNN [25] further investigates the GNN’s underlying generalization capability behind its archi-
tecture and finds propagation operation plays a pivotal role. Based on this observation, A2GNN
proposes a simple yet effective GNN which stacks more propagation layers on target branch. The
source code is available at https://github.com/Meihan-Liu/24AAAI-A2GNN.

• JHGDA [18] designs a hierarchical pooling model to extract meaningful and adaptive hierarchi-
cal structures and jointly minimizes marginal and class conditional distribution shifts on each
hierarchical level. The source code is available at https://github.com/Skyorca/JHGDA.

• KBL [19] redefines the aggregate mechanism as learning a knowledge-enhanced posterior distribu-
tion for target domains, which learns the scope of knowledge transfer by connecting knowledgeable
samples between domains. The source code is available at https://github.com/wendongbi/
Bridged-GNN.

• DMGNN [21] employes a GNN encoder with dual feature extractors to separate ego-embedding
learning from neighbor-embedding learning and then a label propagation node classifier is employed
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Table 9: We evaluated the Micro-F1 score on Airport and ArnetMiner.

Models Airport ArnetMiner

B → E B → U E → B U → B A → C A → D C → D D → C

DANE 33.00 41.23 41.98 39.44 64.40 62.52 66.13 71.30
ACDNE 46.45 56.30 55.73 64.12 79.07 74.27 75.47 79.06
UDAGCN 43.78 35.49 45.29 37.91 78.21 72.98 76.14 72.15
ASN 53.05 46.58 62.34 49.36 78.68 72.02 75.57 77.58
AdaGCN 50.63 43.47 60.56 61.32 73.87 66.91 72.56 71.20
DMGNN 33.92 29.92 35.37 34.10 81.59 76.62 76.77 80.65
CWGCN 46.37 46.58 58.78 44.27 80.00 74.29 76.23 76.95
SAGDA 35.51 37.76 47.33 48.35 77.5 70.56 74.03 59.49
DGDA 49.71 33.56 44.02 49.36 64.48 57.85 63.29 57.98

StruRW 56.06 43.36 65.65 61.32 77.24 67.51 74.37 73.96
KBL 45.28 45.52 51.40 33.84 77.71 69.16 74.48 74.62
JHGDA 48.87 40.59 65.14 43.51 73.74 69.13 71.71 71.59
PairAlign 39.93 42.18 51.91 54.96 68.29 61.80 62.89 63.28

GRADE 52.88 49.22 75.83 49.62 74.09 69.18 72.57 73.12
SpecReg 48.87 44.20 63.36 40.97 80.81 73.16 74.60 71.96
A2GNN 53.13 54.54 62.34 59.29 82.64 77.43 78.13 81.54

SimGDA 55.64 53.11 60.31 62.60 79.91 75.16 75.95 77.31
SimGDA+ 58.40 57.56 72.14 67.18 82.97 76.60 77.50 82.09

to refine label prediction. The source code is available at https://github.com/shenxiaocam/
DM_GNN.

• CWGCN [22] puts forward a two-step correntropy-induced Wasserstein GCN, which first sup-
presses the noisy nodes in the source graph and then learns the target GCN based on extending the
Wasserstein distance. The source code is available at https://github.com/CocoLab-2022/
CW-GCN.

• SAGDA [23] proposes a spectral augmentation module to enhance the node representation learning,
which combines the target domain spectral information within the source domain. Since the authors
did not release the source code, we try our best to reproduce their results.

• DGDA [24] addresses graph domain adaptation in a generative view, which disentangles the
generation process into the semantic latent variables, the domain latent variables, and the random
latent variables. The source code is available at https://github.com/rynewu224/GraphDA.

• PairAlign [26] not only uses edge weights to recalibrate the influence among neighboring nodes to
handle conditional structure shift but also adjusts the classification loss with label weights to handle
label shift. The source code is available at https://github.com/Graph-COM/Pair-Align.

D Other Information in GDABench

We implement our GDABench library in PyTorch [73] and provide an infrastructure to run all
the experiments to generate corresponding results. We have stored all models and logged all hy-
perparameters to facilitate reproducibility. Our framework can be easily extended to include new
algorithms.

D.1 Metrics

Following previous works [44, 12], we present the experiment performance on target domain. We
select Area Under the Receiver Operating Characteristic Curve (AUROC) for Twitch, Micro-F1 for
Airport, Blog and ArnetMiner and Macro-F1 for MAG.

• AUROC measures how well a model can distinguish between positive and negative classes by
looking at the area under the ROC curve. This curve shows the true positive rate versus the false
positive rate at various thresholds. An AUROC score of 1 means perfect distinction, while a score
of 0.5 indicates the model does no better than guessing randomly.

• Macro-F1 calculates the F1 score for each category independently and then taking the average of
these scores. This method treats all categories equally, regardless of their frequency in the dataset.
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Figure 6: The impact of node representation dimension and the number of layers on ArnetMiner
dataset (D→A). We classify all baselines into three groups: DA incorporated node embedding
methods (Group 1), structure shift directed alignment (Group 2) and domain adaptive message
passing (Group 3). The first row illustrates the impact of node representation dimension, while the
second row presents the effect of the number of layers.

It is particularly useful when you want to understand the model’s performance across smaller
or less frequent categories, ensuring that performance on rare categories has as much weight as
performance on more common ones.

• Micro-F1 computes the average F1 score. This is achieved by summing up the true positives,
false positives, and false negatives of the model across all categories and then calculating the F1
score using these totals. As a result, Micro-F1 gives a higher weight to the performance on more
frequent categories, making it a useful metric when you’re interested in understanding how the
model performs on the majority of cases or the overall dataset.

D.2 Additional Experimental Details

• Hardware Specifications. The experiments were conducted on a Linux server equipped with an
Intel(R) Xeon(R) Platinum 8163 CPU operating at 2.50GHz, running Ubuntu 18.04.5 LTS. For
GPU resources, we utilized a single NVIDIA Tesla V100 graphics card with 32GB of memory.
The Python libraries employed for implementing our experiments include Python 3.8, PyTorch
1.13.1, PyTorch Geometric 2.4.0, PyTorch Sparse 0.6.15, and PyTorch Scatter 2.1.0.

• Hyperparameter Settings. To control the effect of hyperparameter selection and ensure fairness,
we standardize the evaluation process with hyperparameter tuning. We utilize grid search to form
the predefined search space for each models. We use all the source nodes and target nodes for
model training. The experiments are repeated three times, and we report the mean performance.
Table 14 provides a comprehensive list of all hyperparameters used in our grid search.

• More Experimental Results. In accordance with Table 2 and 3, we provide the performance for all
tasks of each model in Table 9, 11 and 12. In accordance with Figure 3, we provide the compared
performance of vanilla DA with 6 GNN variants in Figure 5.

• Exploration of Hyperparameter Impact. We investigate how various hyperparameters in common
modules influence the performance of different UGDA methods on ArnetMiner dataset (task D →
A). We focus on two key aspects: the number of GNN layers and the representation dimensions.
Results are shown in Figure 6.

• Running Time and Memory Consumption. We also demonstrate the running time and memory
consumption of each model on S/M/L datasets respectively. For time consumption, we evaluate the
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efficiency of baselines by measuring the time it takes to converge. As shown in Figure 7, we can
observe that some algorithms (e.g. A2GNN) can achieve relatively good performance with less
complexity.

D.3 The PyGDA Library

PyGDA is a Python library for Graph Domain Adaptation built upon PyTorch and PyG to easily train
graph domain adaptation models in a sklearn style. PyGDA includes 15+ graph domain adaptation
models. See examples with PyGDA below!

Graph Domain Adaptation Using PyGDA with 5 Lines of Code

PyGDA is featured for:

• Consistent APIs and comprehensive documentation.
• Cover 15+ graph domain adaptation models.
• Scalable architecture that efficiently handles large graph datasets through mini-batching and

sampling techniques.
• Seamlessly integrated data processing with PyG, ensuring full compatibility with PyG data struc-

tures.

E Experiments on Graph Classification

To expand our research scope, we take graph-level shifts into consideration and add a pooling layer
to evaluate capabilities of baselines in graph-level domain adaptation. We employ three TUdatasets:
Proteins, Mutagenicity, and Frankenstein, partitioning each dataset into 2 equally sized disjoint
groups based on density shifts. Detailed statistics are shown in Table 10.

Table 10: Statistics of graph-level datasets in GDABench.

Dataset # Nodes # Edges # Feature # Class Num of graphs

Proteins 39.06 72.82 4 2 1,113
Mutagenicity 30.32 30.77 14 2 4,337
Frankenstein 16.90 17.88 780 2 4,337

The results are detailed in Table 15 and Table 16. Among the methods, GRADE and A2GNN are
domain adaptive message passing methods and the remaining are DA incorporated node embedding
methods. Key observations are as follows:

DA incorporated node embedding methods shows task-inconsisteny across node and graph-level
tasks. For example, DANE performs averagely in node-level tasks, but its performance improves sig-
nificantly in graph-level tasks. This disparity highlights a challenge in predicting the performance of
unsupervised graph domain adaptation (UGDA) models in real-world applications. The inconsistency
suggests that models optimized for node-level tasks may not generalize well to graph-level tasks and
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(a) Running time of B → U in Airport.
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(b) Running time of D → A in ArnetMiner.
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(c) Running time of FR → JP in MAG.
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(d) Memory consumption of B → U in Airport.
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(e) Memory consumption of D → A in ArnetMiner.
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(f) Memory consumption of FR → JP in MAG.

Figure 7: Running time and memory consumption of baselines.
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Table 11: We evaluated the AUROC score on Twitch.

Models DE → EN DE → FR EN → DE EN → ES EN → FR EN → PT EN → RU ES → DE ES → EN

DANE 56.95 59.67 67.10 60.67 62.29 62.11 53.64 64.37 58.96
ACDNE 51.29 53.61 52.78 52.83 53.45 52.52 50.65 56.21 55.96
UDAGCN 54.70 54.51 56.95 53.80 54.64 51.55 50.76 55.35 56.58
ASN 51.00 51.79 55.17 53.95 50.64 54.56 51.01 56.96 54.64
AdaGCN 51.64 57.33 56.28 53.05 52.37 56.23 50.52 59.02 56.34
DMGNN 53.08 51.44 53.94 53.70 51.09 52.09 50.46 51.90 52.41
CWGCN 54.85 52.81 60.47 56.97 51.14 60.09 52.52 65.00 56.66
SAGDA 54.39 53.58 54.82 51.99 54.75 52.57 50.95 54.48 53.34
DGDA 56.67 52.63 62.77 60.47 56.37 57.75 52.25 62.64 54.00

StruRW 51.31 56.26 51.87 58.65 51.68 59.41 52.92 58.60 53.90
KBL 52.01 63.93 66.43 60.34 61.01 52.48 55.42 68.86 61.87
JHGDA 57.50 59.04 62.43 57.67 56.96 56.85 51.16 52.22 53.36
PairAlign 51.05 52.12 52.13 51.93 51.62 51.52 50.56 59.86 53.18

GRADE 53.66 57.61 52.31 50.77 53.04 54.60 50.49 62.48 57.54
SpecReg 54.67 54.55 58.35 51.94 54.88 50.70 51.02 59.18 55.43
A2GNN 53.84 51.17 53.45 59.31 51.15 53.43 52.64 52.42 53.24

SimGDA 58.64 57.91 59.21 58.48 55.97 57.73 52.95 60.03 53.98
SimGDA+ 58.64 59.97 63.01 60.34 59.44 60.06 53.67 63.61 57.69

Models ES → FR ES → PT ES → RU FR → DE FR → EN FR → ES FR → PT FR → RU PT → DE

DANE 55.36 62.22 51.71 65.58 57.48 58.45 53.49 50.43 57.66
ACDNE 52.55 53.61 51.74 54.68 53.91 52.76 54.33 51.57 52.82
UDAGCN 52.49 62.08 52.49 56.71 56.52 59.47 58.27 54.37 53.78
ASN 53.02 55.38 51.68 55.55 53.03 53.49 51.39 51.20 55.38
AdaGCN 53.82 62.24 52.93 59.52 57.47 61.22 56.42 51.37 57.82
DMGNN 50.07 50.71 51.06 51.72 52.51 51.86 50.76 51.21 51.65
CWGCN 50.92 61.59 51.83 62.45 56.55 58.15 60.44 52.87 58.30
SAGDA 53.42 52.36 50.70 54.34 54.69 51.25 52.66 50.92 55.11
DGDA 54.95 51.72 50.95 62.74 57.39 61.17 60.90 52.12 59.19

StruRW 53.70 53.74 52.17 56.96 53.62 56.29 51.23 51.38 55.85
KBL 63.05 62.26 55.29 64.37 60.01 63.02 62.08 54.03 66.22
JHGDA 51.62 53.98 51.01 57.57 53.98 56.94 55.36 50.92 51.35
PairAlign 54.07 50.95 52.60 53.88 53.81 53.28 51.93 52.05 54.10

GRADE 57.72 60.46 53.56 59.25 56.58 55.08 55.71 50.34 57.54
SpecReg 55.00 50.81 51.52 59.58 55.50 54.05 50.89 51.08 56.18
A2GNN 51.39 54.59 50.34 53.38 54.05 53.89 53.91 50.63 52.27

SimGDA 54.05 61.91 60.35 61.09 56.00 65.66 60.93 62.65 59.47
SimGDA+ 59.73 62.07 60.37 62.99 58.08 65.96 61.57 62.85 61.23

Models PT → EN PT → ES PT → FR PT → RU RU → DE RU → EN RU → ES RU → FR RU → PT

DANE 55.74 53.11 51.90 52.46 68.75 59.79 59.34 57.42 66.34
ACDNE 54.34 54.46 52.51 51.52 52.46 51.32 53.05 50.96 50.78
UDAGCN 53.01 57.08 51.63 51.19 54.74 51.32 51.30 53.21 55.47
ASN 52.13 52.03 52.80 51.71 51.97 52.87 51.86 51.24 51.77
AdaGCN 51.80 58.28 53.98 51.23 58.35 54.78 57.76 54.35 57.23
DMGNN 52.63 51.89 50.20 50.83 52.21 52.69 52.43 50.34 51.29
CWGCN 52.39 55.46 54.98 51.58 61.25 57.48 54.90 50.46 62.36
SAGDA 53.92 51.58 53.92 50.37 54.84 53.62 51.41 53.83 52.67
DGDA 54.64 50.74 55.66 52.51 62.34 57.31 60.86 56.15 60.88

StruRW 52.78 53.50 53.96 50.77 52.27 51.77 52.73 50.67 51.03
KBL 56.53 64.56 52.92 53.16 59.17 55.15 59.35 58.15 59.23
JHGDA 51.38 54.64 52.12 51.36 55.20 51.37 51.12 55.43 54.31
PairAlign 53.97 53.79 54.42 50.88 52.29 50.94 52.87 50.90 50.80

GRADE 54.52 57.04 55.15 50.14 50.22 53.90 60.48 57.54 55.08
SpecReg 53.12 53.34 51.71 50.13 58.77 53.59 52.17 55.42 51.01
A2GNN 50.49 53.80 50.99 51.21 51.54 52.15 54.70 51.60 53.53

SimGDA 55.48 60.17 63.02 54.20 51.16 51.43 55.31 52.64 62.27
SimGDA+ 57.57 61.29 63.07 55.20 61.96 56.14 59.17 56.47 62.78
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Table 12: We evaluated the Macro-F1 score on MAG. OOM indicates out of memory.

Models CN → DE CN → FR CN → JP CN → RU CN → US DE → CN DE → FR DE → JP DE → RU

DANE OOM 12.56 19.50 11.04 OOM OOM 23.44 22.53 14.84
ACDNE 12.18 10.41 10.08 8.57 13.40 16.08 20.99 18.07 13.95
UDAGCN 12.84 6.85 10.69 7.32 12.23 15.01 23.26 21.82 14.48
ASN 9.52 OOM OOM OOM 10.64 14.67 24.08 22.60 13.99
AdaGCN 7.63 10.51 12.36 10.65 9.30 10.75 14.79 12.85 10.47
DMGNN OOM 7.64 11.18 6.99 OOM 12.11 17.82 11.52 11.43
CWGCN OOM 10.62 10.58 10.20 OOM 11.00 13.95 12.63 9.59
SAGDA OOM 6.14 9.05 6.09 OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM 19.66 18.70 11.94

StruRW 3.32 3.54 3.75 4.59 7.69 10.55 4.94 6.08 4.63
KBL 15.79 14.03 16.53 11.69 16.98 13.14 19.51 17.26 12.60
JHGDA OOM OOM OOM OOM OOM OOM 25.10 21.69 12.52
PairAlign 10.52 20.90 18.70 12.13 9.33 11.53 17.61 13.80 12.45

GRADE 11.72 11.06 13.18 10.14 12.54 11.21 17.30 14.06 10.43
SpecReg 19.42 12.11 13.85 11.64 22.23 23.22 30.80 28.13 17.89
A2GNN 22.59 18.44 22.22 13.37 25.23 19.75 24.15 24.16 12.19

SimGDA 12.20 11.42 13.83 11.40 14.09 14.55 19.53 17.53 13.28
SimGDA+ 21.28 18.25 22.50 13.96 23.16 18.50 25.39 24.60 15.47

Models DE → US FR → CN FR → DE FR → RU FR → US JP → CN JP → DE JP → US RU → CN

DANE OOM 15.77 22.11 12.92 16.38 16.59 20.21 OOM 7.35
ACDNE 18.04 14.20 20.47 14.60 14.79 14.89 15.79 15.96 6.73
UDAGCN 25.24 16.27 25.97 8.47 24.25 17.34 21.31 18.57 8.70
ASN 23.11 15.22 25.62 10.92 21.22 15.36 22.27 20.77 8.88
AdaGCN 10.48 9.27 12.73 12.34 9.17 9.99 9.97 9.63 4.36
DMGNN 12.65 11.52 16.84 9.89 12.94 11.62 14.45 11.39 4.10
CWGCN 10.78 OOM 0.19 11.16 10.33 9.93 9.39 9.44 4.74
SAGDA OOM OOM OOM 2.98 OOM OOM OOM OOM OOM
DGDA OOM OOM 15.80 OOM OOM OOM 12.51 OOM OOM

StruRW 12.16 15.67 15.27 14.65 25.45 8.30 6.59 20.05 5.65
KBL 13.94 14.08 18.06 13.88 13.39 14.61 16.24 17.40 12.49
JHGDA OOM OOM 24.23 12.88 OOM OOM 21.96 0.00 0.00
PairAlign 13.44 8.67 15.78 12.49 11.65 12.99 12.49 12.87 4.51

GRADE 12.52 10.92 16.94 9.56 12.57 11.98 11.64 13.95 4.09
SpecReg 29.09 22.49 31.57 14.33 28.01 25.54 28.97 30.30 17.65
A2GNN 27.67 20.95 28.57 16.13 28.51 21.71 25.53 27.14 18.91

SimGDA 16.84 13.53 18.83 12.51 16.01 14.21 14.66 15.04 6.36
SimGDA+ 26.37 17.72 28.91 15.09 26.35 19.99 25.43 24.22 15.05

Models RU → DE RU → FR RU → JP RU → US US → CN US → DE US → FR US → JP US → RU

DANE 7.75 6.17 8.47 6.57 OOM OOM 22.27 OOM OOM
ACDNE 5.98 6.12 7.42 5.93 20.63 22.48 19.65 23.90 14.86
UDAGCN 8.42 7.96 8.92 8.38 19.01 28.24 25.17 25.80 15.37
ASN 9.69 9.73 8.99 10.88 15.99 24.52 21.09 22.93 12.27
AdaGCN 3.59 3.73 4.25 3.26 14.80 15.95 14.40 18.34 10.99
DMGNN 3.69 4.34 4.42 3.22 OOM OOM OOM OOM OOM
CWGCN 3.32 3.76 4.60 4.61 15.11 15.54 13.41 16.85 11.59
SAGDA OOM 5.61 OOM OOM 0.00 0.00 0.00 0.00 0.00
DGDA 4.17 4.52 6.98 OOM 0.00 0.00 0.00 0.00 0.00

StruRW 4.88 3.44 4.31 4.79 8.44 10.61 3.44 6.37 7.44
KBL 11.52 9.35 12.92 11.49 16.62 19.67 17.90 19.25 12.69
JHGDA 19.85 16.67 19.15 OOM OOM OOM OOM OOM OOM
PairAlign 3.61 4.21 4.60 3.51 16.12 17.85 16.66 19.28 11.93

GRADE 3.32 3.47 4.01 3.18 16.30 16.28 17.02 21.42 11.83
SpecReg 18.66 16.51 21.35 16.02 26.23 31.82 28.81 30.12 16.23
A2GNN 22.67 20.36 20.90 22.24 21.47 27.42 25.29 25.43 13.06

SimGDA 6.09 6.21 7.48 6.33 18.37 11.31 10.59 22.19 14.31
SimGDA+ 20.35 16.84 20.06 20.65 21.17 26.94 24.23 25.58 15.62
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Table 13: Domain shifts statistics of each task.

Dataset Source Target Feature Shift Structure Shift Label Shift

Blog Blog1 Blog2 0.0140 0.0802 0.253
Blog2 Blog1 0.0137 0.0802 0.258

Airport

USA BRAZIL 0.0514 0.2331 0.065
USA EUROPE 0.0913 0.3983 0.005

BRAZIL USA 0.0523 0.2331 0.066
BRAZIL EUROPE 0.0549 0.1993 0.035
EUROPE USA 0.1000 0.3983 0.005
EUROPE BRAZIL 0.0582 0.1993 0.034

ArnetMiner

DBLPv7 ACMv9 0.0312 0.2327 0.997
DBLPv7 Citationv1 0.0245 0.1965 1.643
ACMv9 DBLPv7 0.0305 0.2327 1.062
ACMv9 Citationv1 0.0163 0.1931 0.780

Citationv1 DBLPv7 0.0244 0.1965 1.624
Citationv1 ACMv9 0.0166 0.1931 0.805

Twitch

EN DE 0.0493 0.1486 0.715
EN FR 0.0440 0.3148 6.449
EN RU 0.0368 0.5960 20.578
EN ES 0.0530 0.3836 13.883
EN PT 0.0790 0.3374 8.330
DE EN 0.0478 0.1486 0.707
DE FR 0.0408 0.4635 11.403
DE RU 0.0387 0.7446 28.985
DE ES 0.0283 0.5323 20.866
DE PT 0.0391 0.4860 13.871
FR EN 0.0463 0.3148 6.315
FR DE 0.0383 0.4635 11.302
FR RU 0.0503 0.2811 3.754
FR ES 0.0432 0.0688 1.335
FR PT 0.0733 0.0226 0.115
RU EN 0.0369 0.5960 18.693
RU DE 0.0355 0.7446 26.658
RU FR 0.0542 0.2811 3.479
RU ES 0.0426 0.2124 0.562
RU PT 0.0551 0.2586 2.363
ES EN 0.0525 0.3836 13.080
ES DE 0.0282 0.5323 19.901
ES FR 0.0406 0.0688 1.284
ES RU 0.0460 0.2124 0.583
ES PT 0.0320 0.0462 0.640
PT EN 0.0776 0.3374 8.080
PT DE 0.0407 0.4860 13.620
PT FR 0.0713 0.0226 0.114
PT RU 0.0554 0.2586 2.526
PT ES 0.0311 0.0462 0.660

MAG

CN DE 0.0750 0.3608 33.807
CN FR 0.0773 0.3902 26.427
CN JP 0.0451 0.2775 16.382
CN RU 0.0779 0.5454 30.058
CN US 0.0781 0.2858 28.992
DE CN 0.0727 0.3608 46.271
DE FR 0.0213 0.2041 2.316
DE JP 0.0464 0.3278 22.811
DE RU 0.0419 0.4778 48.632
DE US 0.0179 0.3561 16.266
FR CN 0.0702 0.3902 46.780
FR DE 0.0196 0.2041 2.241
FR JP 0.0508 0.3815 30.343
FR RU 0.0382 0.5091 49.558
FR US 0.0187 0.4210 23.644
JP CN 0.0486 0.2775 14.352
JP DE 0.0391 0.3278 12.240
JP FR 0.0467 0.3815 13.597
JP RU 0.0513 0.4968 27.544
JP US 0.0540 0.2893 8.235
RU CN 0.0776 0.5454 18.701
RU DE 0.0442 0.4778 31.345
RU FR 0.0416 0.5091 28.260
RU JP 0.0524 0.4968 18.269
RU US 0.0517 0.6171 35.979
US CN 0.0832 0.2858 35.273
US DE 0.0206 0.3561 14.702
US FR 0.0197 0.4210 19.245
US JP 0.0431 0.2893 10.104
US RU 0.0567 0.6171 60.803

26



Table 14: Parameter search space list.

Dataset Models Hyperparameter Search Space

Airport SimGDA+ SimGDA learning rate [0.0001, 0.0005, 0.001, 0.005]
weight decay [0.0001, 0.0005, 0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

SimGDA + IM beta [0, 0.05, 0.1, 0.5]
epochs 200

SimGDA + AE beta [0, 0.05, 0.1, 0.5]
decoder dropout 0.1

SimGDA + CL beta [0, 0.05, 0.1, 0.5]
epochs 500
augment dropout [0.1, 0.9]
temperature [0.1, 0.9]

GDABench Baselines learning rate [0.0001, 0.001, 0.003]
weight decay [0.0001, 0.001, 0.003, 0.01]
backbone layers [1, 2, 3, 4, 5]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 128
epochs [100, 200, 400]

Blog SimGDA+ SimGDA learning rate [0.0001, 0.0005]
weight decay [0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 2, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

SimGDA + AE beta [0, 0.05]
decoder dropout 0.1

GDABench Baselines learning rate [0.0001,0.0003, 0.001]
weight decay [0.001, 0.003, 0.01]
backbone layers [1, 2, 3, 4]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 128
epochs [200, 300, 400]

ArnetMiner SimGDA+ SimGDA learning rate [0.0001, 0.0005, 0.001, 0.005]
weight decay [0.0005, 0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 2, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

SimGDA + IM beta [0.5, 1]
epochs 200

GDABench Baselines learning rate [0.0001, 0.001, 0.003, 0.01]
weight decay [0.0001, 0.001, 0.003, 0.01]
backbone layers [1, 2, 3, 4, 5]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 128
epochs [100, 200, 400, 800]

Twitch SimGDA+ SimGDA learning rate [0.0001, 0.0005, 0.001, 0.005]
weight decay [0.0001, 0.0005, 0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 2, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

SimGDA + AE beta [0, 0.05, 0.1, 0.2, 0.5]
decoder dropout [0.1, 0.9]

SimGDA + CL beta [0, 0.05, 0.1, 0.5, 1, 1.5]
epochs 500
augment dropout [0.1, 0.9]
temperature [0.1, 0.9]

GDABench Baselines learning rate [0.0001, 0.001, 0.003]
weight decay [0.0001, 0.001, 0.003, 0.01]
backbone layers [1, 2, 3, 4, 5]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 128
epochs [100, 200, 400]

MAG SimGDA+ SimGDA learning rate [0.0001, 0.0005, 0.001, 0.005]
weight decay [0.0001, 0.0005, 0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 2, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

GDABench Baselines learning rate [0.0001, 0.001, 0.003]
weight decay [0.0001, 0.001, 0.003]
backbone layers [1, 2, 3]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 300
epochs [200, 400, 600, 800]
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Table 15: To evaluate the baselines on graph-level shifts, we compared the Micro-F1 scores of each
model on the Proteins, Mutagenicity, and Frankenstein datasets. The best results are highlighted in
bold, and the second-best results are underlined.

Proteins Mutagenicity Frankenstein
Models P1 → P2 P2 → P1 M1 → M2 M2 → M1 F1 → F2 F2 → F1

DANE 60.14 ±3.58 75.66 ±0.98 67.25 ±0.14 76.92 ±0.35 54.77 ±0.53 56.96 ±2.89

UDAGCN 53.50 ±2.42 73.14 ±4.29 58.11 ±0.58 65.34 ±0.55 52.48 ±0.32 52.37 ±1.38

AdaGCN 52.60 ±0.78 78.12 ±0.37 58.89 ±0.06 56.18 ±0.02 56.28 ±0.75 53.01 ±3.63

CWGCN 50.45 ±4.81 44.84 ±8.20 55.60 ±1.27 56.72 ±0.67 49.76 ±0.27 51.92 ±0.71

SAGDA 53.14 ±4.80 46.22 ±2.99 57.06 ±3.54 56.00 ±8.85 50.35 ±0.26 51.01 ±8.37

GRADE 43.93 ±0.31 76.80 ±0.29 69.00 ±0.22 76.57 ±0.31 57.54 ±1.09 58.39 ±4.57

A2GNN 51.70 ±1.54 69.65 ±4.21 56.83 ±0.19 58.88 ±1.23 50.43 ±0.69 48.99 ±3.97

Table 16: To evaluate the baselines on graph-level shifts, we compared the Macro-F1 scores of each
model on the Proteins, Mutagenicity, and Frankenstein datasets. The best results are highlighted in
bold, and the second-best results are underlined.

Proteins Mutagenicity Frankenstein
Models P1 → P2 P2 → P1 M1 → M2 M2 → M1 F1 → F2 F2 → F1

DANE 59.14 ±3.06 56.30 ±6.09 67.11 ±0.17 76.50 ±0.35 52.24 ±1.02 54.94 ±2.13

UDAGCN 53.15 ±2.74 50.19 ±1.20 56.71 ±0.61 63.35 ±0.56 50.06 ±0.64 52.32 ±1.40

AdaGCN 49.33 ±1.62 57.99 ±2.82 58.00 ±0.10 35.97 ±0.10 55.99 ±0.94 51.76 ±4.43

CWGCN 40.57 ±3.13 42.75 ±6.01 39.00 ±4.96 37.32 ±1.66 39.46 ±0.22 51.68 ±0.67

SAGDA 46.65 ±6.14 33.42 ±1.01 56.26 ±3.74 54.95 ±8.22 36.89 ±4.93 38.03 ±6.81

GRADE 32.23 ±0.86 50.52 ±1.77 68.98 ±0.21 76.32 ±0.26 56.93 ±1.80 54.98 ±2.62

A2GNN 47.71 ±3.22 58.85 ±1.16 55.42 ±0.10 50.17 ±1.59 46.97 ±0.96 43.33 ±1.87

vice versa. Consequently, this variability complicates the task of assessing how well these models
will perform when deployed in diverse and complex real-world scenarios where both node-level and
graph-level information may be critical.

Domain adaptive message passing methods demonstrate superior and consistency performance
across a wide range of datasets and tasks. As shown in Table 3, 9, 16 and 15, methods designed
based on the inherent properties of GNN achieves the top-three best performance in 8 tasks out of 12
node-level tasks and top-two best performance in 5 tasks out of 6 graph-level tasks. This observation
verified our findings that establishing domain adaptation principles by leveraging inherent properties
of GNN can result in an effective and efficient approach to addressing the challenges of domain
variability in graph datasets.

To summarize, our observations underscore the importance of leveraging the intrinsic properties of
GNNs to devise effective domain adaptation strategies, which not only enhances performance but
also ensures consistency in real-world applications.

F Discussion

F.1 How these findings generalize to real-world scenarios

Our benchmark includes a range of datasets with varying characteristics to capture different aspects
of graph domain adaptation. This diversity aims to provide a broad perspective on the applicability of
our methods. In real-world scenarios, applying graph adaptation methods effectively involves several
key considerations: Firstly, it is imperative to develop tailored strategies specifically designed to
address the structural shifts observed in graphs. For example, if a graph is dynamic and changing
overtime, it is crucial to accord greater attention to its evolving structure. Secondly, recognizing the
importance of the aggregation scope and aggregation architecture in GNNs’ transferability within
unsupervised graph domain adaptation (UGDA) are crucial. In real-world graphs, noise is inevitable,
hence, strategically selecting effective neighbors not only improve performance but also avoid noise.
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Thirdly, by leveraging the properties of GNNs that make them inherently adaptable to changes in
graph structure and data distribution, we can develop simple yet highly effective models.

F.2 A broader discussion on DA problem and other related UGDA scenarios

UDA vs UGDA. Unsupervised domain adaptation (UDA) entails transferring knowledge from a
labeled source domain to an unlabeled target domain. A prevalent strategy in domain adaptation is
to reduce domain discrepancies while learning domain-invariant representations, a method that has
seen considerable success in the fields of computer vision and natural language processing. However,
these techniques typically operate under the assumption that inputs are independently and identically
distributed (IID), making them unsuitable for tasks involving non-IID data, such as node classification
in graph-structured datasets.

UGDA vs muti-domain UGDA. Muti-domain UGDA extends the concept of domain adaptation
to situations where there are multiple source domains and a single target domain. This approach
aims to learn a model that can generalize well across multiple source domains, and then adapt it to
perform well on the target domain. Compared to standard UGDA, multi-domain UGDA can enhance
generalization by leveraging the diversity of multiple source domains. However, it may require more
complex models and additional computational resources.

UGDA vs source-free UGDA. Source-free UGDA advances domain adaptation by tackling the
challenge of adapting models without access to labeled data from the source domains. This setting is
more challenging as it involves learning to transfer knowledge without explicit supervision. Source-
free UGDA methods often employ techniques such as self-training or consistency regularization to
adapt the model to the target domain. Compared to UGDA, source-free UGDA may be more sensitive
to domain shift and require careful selection of adaptation techniques.
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