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Abstract

Graph Neural Networks (GNNs) have achieved remarkable success in various graph mining tasks

by aggregating information from neighborhoods for representation learning. The success relies on

the homophily assumption that nearby nodes exhibit similar behaviors, while it may be violated

in many real-world graphs. Recently, heterophilous graph neural networks (HeterGNNs) have

attracted increasing attention by modifying the neural message passing schema for heterophilous

neighborhoods. However, they suffer from insufficient neighborhood partition and heterophily

modeling, both of which are critical but challenging to break through. To tackle these challenges,

in this paper, we propose heterophilous distribution propagation (HDP) for graph neural networks.

Instead of aggregating information from all neighborhoods, HDP adaptively separates the neighbors

into homophilous and heterphilous parts based on the pseudo assignments during training. The

heterophilous neighborhood distribution is learned with orthogonality-oriented constraint via a

trusted prototype contrastive learning paradigm. Both the homophilous and heterophilous patterns

are propagated with a novel semantic-aware message-passing mechanism. We conduct extensive

experiments on 9 benchmark datasets with different levels of homophily. Experimental results

show that our method outperforms representative baselines on heterophilous datasets.
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1. Introduction1

Graph Neural Networks (GNNs) aim at learning effective representations for graph data, which2

have demonstrated exceptional performance across a range of graph mining tasks, including node3

classification [1, 2], link prediction [3, 4], graph classification [5, 6], and anomaly detection [7, 8].4

The majority of existing GNNs utilize the neural message passing (NMP) schema and aggregate in-5

formation from the neighborhood for representation learning. This is predicated on the homophily6

assumption, which suggests that nodes in close proximity within a graph are likely to exhibit7

similar behaviors, such as labels and features. This assumption has been widely observed in bibli-8

ographic graphs [9] and online social networks [10, 11]. However, many types of graphs challenge9

the homophily assumption that connected nodes can exhibit heterophily patterns, which presents10

significant challenges for the application of GNNs.11

To tackle this challenge, Heterophilous Graph Neural Networks (HeterGNNs) [12, 13, 14, 15]12

have attracted increasing attention from both academic and industry communities in the past13

few years. Specifically, they have mainly focused on modifying the message-passing process by14

targeting the characteristics of heterophilous graphs from different perspectives. Among them,15

early methods primarily adjust the scope of message passing, such as decreasing the proportion16

of heterophilous neighbors by enlarging the high-order neighborhood [16]. Other methods alter the17

message passing process itself, for instance, by assigning varying weights to neighbors based on18

the similarity of their representations [17]. Further, some methods modify the update process,19

such as separating the representations of ego nodes and their neighboring nodes [13].20

Despite their achievements, we argue that existing methods still suffer from the following short-21

comings: (i) Insufficient neighborhood partition. Unlike the homophilous neighborhood that22

exhibits consistent patterns, the heterophilous neighborhood introduces significantly different pat-23

terns and deserves specific modeling. However, most existing methods either do not distinguish24

between homophilous and heterophilous neighborhoods, or simply utilize fixed thresholds for naive25

partition. This not only obscures the unique characteristics of the corresponding class which is26

shared by homophilous neighbors, but also limits the role of heterophilous neighbors, as we show27

in Figure 1a. (ii) Insufficient heterophily modeling. As previously mentioned, many existing28

HeterGNNs aggregated information from both homophilous and heterophilous neighbors at the29

same time without individual heterophily modeling. However, given that heterophilous neighbors30

originate from multiple categories, simply aggregating and fusing their messages with central nodes31
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Figure 1: The illustration of neighborhood partition and heterophily modeling. (a) Nodes u and v belong to different

classes but have identical neighborhoods, where colors denote classes. Without neighborhood partition, message-

passing neural networks(MPNN) produce confused node representations due to similar message sources. On the

contrary, partitioning neighborhoods explicitly and handling them separately can increase the discriminability of

representations. (b) We visualize the observed connection preference among classes in Cornell, where each row

denotes the connect probabilities between the corresponding class and others. In the whole neighborhood, the

connection preferences of different classes are similar. After neighborhood partition, the connection preferences

in heterophilous neighborhoods show the discriminability. Thus, heterophily modeling can also bring additional

information for discriminative representation learning beyond homophilous neighbors.

and homophilous neighbors will lose critical heterophilous connection patterns. Figure 1b shows the32

advantages of neighborhood partition and individual heterophily modeling for real-world datasets.33

34

Although important, overcoming the aforementioned shortcomings is quite challenging: Firstly,35

the accurate partition of homophilous and heterphilous neighborhoods relies on the node labels.36

Given the limited number of semi-supervised labels, we can only rely on the pseudo labels produced37

by the HeterGNNs. The mutually dependent between effective representation learning and38

neighborhood partition poses significant challenges. Secondly, heterophily modeling relies on the39

diverse connections between nodes from different classes. However, due to the network sparsity40

and scarcity of node labels, we can not model the heterophily connection patterns for each node41

from its limited neighborhood. Instead, the patterns are expected to propagate along with the42

homophilous edges for more comprehensive modeling.43

To tackle the above challenges, in this paper, we proposeHeterophilousDistributionPropagation44

for Graph Neural Networks (HDP). More specifically, given a heterophilous graph with an unknown45
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heterophily ratio, HDP first estimates the heterophily level and partition the neighborhood accord-46

ing to the predicted semantic assignments, which are dynamically updated along with the training47

process. On this basis, we model the heterophilous neighborhood distribution via a simple but48

effective operator with orthogonality-oriented constraint as a trusted prototype contrastive learn-49

ing paradigm. We also theoretically prove the advantages of the operator. To further enhance the50

heterophily modeling, we propose a semantic-aware message-passing mechanism that propagates51

both homophilous and heterophilous messages through the edges that connect nodes with the same52

label. We conduct extensive experiments on 9 benchmark datasets with different heterophily ratios.53

Experimental results show that our method outperforms representative baselines on heterophilous54

datasets. Our contributions can be summarized as follows:55

• We point out that existing HeterGNNs suffer from insufficient neighborhood partition and56

heterophily modeling, which are critical but challenging to break through.57

• We propose heterophilous distribution propagation for graph neural networks (HDP), which58

consists of the semantic-aware neighborhood partition and heterophilous neighborhood dis-59

tribution modeling to address the aforementioned challenges.60

• We conduct extensive experiments to compare our models against 13 other competitors on61

9 benchmark datasets with different levels of homophily. Experimental results show the62

superiority of our methods on the heterophilous datasets.63

2. Related Work64

Graph Neural Networks [18] have shown great power to model graph structured data.65

The representative designs [19, 20, 21, 22] aim to smooth features across the graph topology or66

aggregate information from neighbors and then update ego representations, both leading to the67

similar representations between central nodes and neighbors. However, most of them are based on68

an implicit assumption that the graph is homophily, while real-world graphs do not always obey69

it. This leads to their poor performance on heterophily graphs where nodes of different classes are70

connected.71

Heterophilous GNNs[23, 24] have been proposed to tackle this problem. Some of them tend72

to reduce the negative impact of heterophilous neighbors. A naive idea is to decrease73
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the proportion of heterophilous neighbors from the data level, such as neighborhood extension by74

high-order neighbors and graph reconstruction by node similarities. MixHop [16], a representative75

method, aggregates messages from multi-hop neighbors to adapt to different scales. Apart from76

multi-hop neighbors, UGCN [25] and SimP-GCN [26] extend the neighbor set by adding similar but77

disconnected nodes through the kNN algorithm. WRGAT [27] calculates the structural similarity78

according to the degree sequence of the neighbors and utilizes it to reconstruct a multi-relational79

graph. Geom-GCN [12] defines the geometric relationships to discover potential neighbors as a80

complement to the original neighbor set. Li et al. [28] learn discriminating node representations81

with the idea of spectral clustering. Based on the representation distance between nodes, a graph82

is reconstructed to maximize homophily. Also, some methods reduce the weights of heterophilous83

neighbors during aggregation from the model level. H2GCN [13] separates ego- and neighbor-84

representations to prevent ego-node from the pollution of heterophilous neighbors. The subsequent85

methods distinguish the neighbors explicitly or implicitly and set the corresponding weights. GGCN86

[29] distinguishes neighbors according to the signs of representation cosine similarity and applies87

different update weights. HOG-GCN [17] captures the pair-wise homophily estimation from at-88

tribute space and topology space and uses it as the aggregate weight. PEGFAN [30] constructs89

Haar-type graph framelets with the property of permutation equivariance to capture messages from90

multiple scales of the graph.91

Further, some methods found the advantages of heterophilous neighbors and utilized92

them through high-pass filters [31, 32] or negative aggregation weights [33]. FAGCN [14] learns the93

attention weights of low- and high-frequency signals for each node, corresponding to the negative-94

available aggregate weights in the spatial domain. On this basis, ACM-GCN [15] introduces the95

identity filter to capture more information about the original feature. These methods capture96

the differences between heterophilous neighbors and central nodes and are very similar to negative97

sampling methods [34, 35], which dig negative samples globally. GBK-GNN [36] utilizes two kernels98

to capture homophilous and heterophilous information and selects the result by a gate for each node.99

Similarly, GloGNN [37] learns a coefficient matrix based on the self-expressiveness assumption of100

the linear subspace model, which guides the global message passing. UniFilter [38] proposes a101

polynomial filter-based graph neural network with a universal polynomial basis to tackle diverse102

graph heterophily degrees.103
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Table 1: A summary of the notations used in this paper.

Notations Explanations Notations Explanations

V Node set E Edge set
X Node features A Adjacency matrix

Y Node labels Ŷ Predicted labels
H Node representations Z Soft assignment

Ahm Homophilous neighborhood Aht Heterophilous neighborhood
Hego Ego representation Hnb Heterophilous neighbor distributions
Hhm Homophilous representations Hht Heterophilous representations
Xnb Neighbor features Xstr Structural embedding
E ′ Partitioned neighborhood P Homophilous edge probabilities

Stra Training set Stgt Target set
Stst Trust set c Class prototypes
N Number of nodes K Number of classes
F Feature dimension D Representation dimension

h Homophily ratio h′, ĥ Estimated homophily ratio
λ Rescaling parameter ϵ Partition threshold
κ Random walk hop δ Trust set threshold
ρ Training and validation accuracy τ temperature parameter
α Attention weights β weight parameter

3. Preliminaries104

In this section, we first give the notations and problem description, then introduce the concepts105

used in this paper.106

3.1. Notations107

Let G = (V, E) be an undirected graph with nodes V and edges E . N denotes the number of108

nodes. A ∈ RN×N is the adjacency matrix and X ∈ RN×F is the node feature matrix with feature109

dimension F . Node labels are represented as Y ∈ RN×1, and only a part of it is available. We use110

K as the number of classes and D as the representation dimension. Stra, Stgt and Stst denote the111

training set, the target set for structure encoding and trust set for trusted prototype contrastive112

loss respectively, which are described in the following section. Table 1 lists a summary of the used113

notations in this paper.114

3.2. Problem Description115

In this paper, we mainly focus on graph representation learning, of which the performance is116

evaluated by the semi-supervised node classification task. Specifically, in a graph G = (V, E), each117
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Figure 2: Overall framework of HDP, which contains three main parts including semantic-aware neighborhood

partition, heterophilous neighbor distribution modeling and semantic-aware message passing.

node belongs to one of K classes and a part of labels Y are already known. The objective is to118

predict the labels of other nodes.119

3.3. Homophily and Heterophily120

Homophily and Heterophily are two opposite concepts related to edges, features and labels of121

a graph. We use the edge homophily ratio [13] h = |(u,v)|(u,v)∈E ∧ yu=yv|
|E| ∈ [0, 1], the proportion122

of edges connecting nodes of the same class, to measure the specific homophily level for a graph.123

Graphs with strong homophily tend to have a high h close to 1, while graphs with strong heterophily124

are the opposite, i.e. h → 0.125

4. Methodology126

In this section, we introduce our proposed HDP model in detail. An overview of HDP is given in127

the Figure 2. HDP first estimates the heterophily level of a graph and partitions the neighborhood as128

homophilous and heterophilous ones according to the semantic assignments, which are constantly129

refined during the training process. Then, the heterophilous neighbor distribution is modeled130

for each node based on the heterophilous neighborhood and an orthogonality-oriented constraint.131

Further, HDP propagates messages via a semantic-aware message passing mechanism to capture132

class-level information approximatively.133
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4.1. Semantic-Aware Neighborhood Partition134

Most of the existing methods distinguished the neighborhood by the representation similarity135

and a manually selected threshold [29, 39, 40]. However, this approach lacks explainability since the136

definition of homophily is based on semantic labels instead of representation. Hence, we propose a137

semantic-aware neighborhood partition mechanism based on the soft assignments, which is a special138

form of labels. Specifically, we first estimate the level of heterophily in the graph as the guidance139

and then partition the neighborhood.140

4.1.1. Heterophily Estimation141

We use the homophily ratio to measure how heterophily the graph is that a lower homophily

ratio means stronger heterophily. To estimate the homophily ratio of a graph, we start with an

assumption that the training set shares a similar edge distribution with the full graph, which means

the homophily ratio won’t be too far from the truth if there are enough nodes in the training set.

Therefore, the homophily ratio of the full graph can be estimated from the training set where a

part of labels is available:

h′ =
|{(u, v)|(u, v) ∈ E ′ ∧ yu = yv ∧ u, v ∈ Stra}|

|{(u, v)|(u, v) ∈ E ′ ∧ u, v ∈ Stra}|
, (1)

where E ′ ∈ {E , E2} is the partitioned neighborhood, which can be 1-hop or 2-hop considering

efficiency and the number of isolated nodes in results, Stra denotes the training set. As the estimated

homophily ratio h′ can’t be completely accurate, we slightly rescale it to find a suitable boundary

for neighborhood partition:

ĥ = λh′, (2)

where λ ∈ [0.8, 1.2] is a parameter that controls the direction and strength of rescaling.142

4.1.2. Neighborhood Partition143

We start with the soft semantic assignments Z ∈ RN×K , where the sum of each row is 1

and element zij in row i and column j indicates the probability of node i belonging to class j.

In the semi-supervised setting, the semantic assignment is obtained from the predicted results of

models (e.g. the initializing MLP or whole HDP). In other words, we first train the model with

training set labels and predict the soft pseudo labels for all nodes as the semantic assignments. The

implementation details of semantic assignments are described in Sec 4.2.3 and 4.3.1. With the help
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of semantic assignments, we can construct the relationships between central nodes and neighbors

in an interpretable way. Specifically, the homophilous edge probabilities P, which indicates the

probabilities that two nodes belong to the same class, can be calculated as follows:

Puv =

zuz
T
v , (u, v) ∈ E ′,

0, otherwise.

(3)

The neighborhood is then partitioned to fit the estimated heterophily level according to P, i.e. a

lower homophily ratio corresponds to fewer homophilous edges and vice versa. Specifically, HDP

automatically generate a threshold ϵ based on ĥ:

ϵ = TopK(P, ĥ|E ′|), (4)

where TopK(x, y) means the y-largest element in x. Then the homophilous neighborhood Ahm and

heterophilous neighborhood Aht can be partitioned by threshold filtering:

Ahm
uv =

1, Puv ≥ ϵ ∧ (u, v) ∈ E ′,

0, otherwise.

(5)

Aht
uv =

1, Puv < ϵ ∧ (u, v) ∈ E ′,

0, otherwise.

(6)

To avoid the defects of outdated partition results, we conduct an update strategy that refines144

the partition results dynamically when the assignments become more accurate during the training145

process.146

4.2. Heterophilous Neighborhood Modeling147

The heterophilous neighborhood deserves to be modeled separately rather than integrated to the148

central nodes, since its diverse preference is crucial for the discriminability of representations. Thus,149

we model the heterophilous neighborhood in three steps: (1) constructing ego representation for150

each node, (2) modeling the heterophilous neighbor distribution of each node, and (3) propagating151

them via a semantic-aware message-passing mechanism.152
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Figure 3: The illustration of semantic structural encoding. Nodes with a red circle denote the target nodes. After

initialization, the structural embedding is calculated through the random walk with self-loop.

4.2.1. Ego Representation Construction153

Firstly, we construct a representation for each node which contains the attribute and structural154

information of node ego.155

To better utilize the topological information without considering the distinguishing of edges,

we introduce Semantic Structural Encoding (SSE) as a supplementary feature alongside node

attributes. Distance Encoding [41] is used where the embedding Xstr denotes the landing prob-

abilities of random walks from the corresponding node to some target nodes. Different from the

existing methods that select target nodes mainly according to topology or randomness [42, 43], we

construct a target node set Stgt with the nodes in the training set Stra to implicitly introduce some

semantic information: Stgt ⊆ Stra. First, the structural embedding X̂str
i is initialized as a unique

one-hot vector for nodes in the target set and an all-zero vector otherwise.

X̂str
i =

 [0, 0, ..., 1, ..., 0] , i ∈ Stgt

[0, 0, ..., 0, ..., 0] , i ̸∈ Stgt
, (7)

where the position of ‘1’ in the one-hot vector equals the ranking of i in Stgt. The final structural

embedding Xstr can be calculated by the transfer probability of random walks:

Xstr = (D−1A)κX̂str, (8)

where κ is the hop number of random walk. Finally, the structural embedding captures the topolog-156

ical information about target nodes of different classes around the central node, which also brings157

semantic information. Figure 3 gives a toy example of semantic structural encoding.158

The ego representations of nodes are obtained by a simple MLP with nodes’ features and struc-

tural embeddings as input:

Hego = MLP([X∥Xstr]), (9)
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where ∥ denotes the concatenation operation.159

4.2.2. Heterophilous Neighbor Distribution160

To model the distribution of heterophilous neighbors, it would be sufficient to design an oper-

ator (i.e. function) that takes heterophilous neighbors as input, with each distinct distribution of

heterophilous neighbors corresponding to a different output o in the output space O, i.e.

O = {oi | oi = Operator({hegoj |Aht
ij = 1}), i ∈ N}

s.t. ∀ oi, oj ∈ O, oi ̸= oj w.r.t. i ̸= j
. (10)

On this basis, we find that the distribution of heterophilous neighbors can be effectively modeled161

by the mean operator, with the following two assumptions: (1) Assuming node representations162

exhibit clustering characteristics, where the average distance within a class is significantly smaller163

than the average distance between different classes. This implies that the representations of similar164

nodes are linearly correlated within a certain range of error. (2) Assuming the existence of a165

clustering center for each class’s representations, referred to as a prototypes {ck|k ∈ K}. We have166

the following theorem with detailed proof:167

Theorem 1. Let Mean({hegoj |Aht
ij = 1}) be mean operator that aggregate heterophilous neighbor168

representations, ck be the prototype of k-th class. Function Mean({hegoj |Aht
ij = 1}) is injective if it169

is satisfied that all class prototypes ck are orthogonal to each other.170

The injectivity ensures that each element in the domain of the input (i.e. heterophilous neigh-171

bors’ distribution) has a distinct and unique output in the output domain. We found that as long172

as the conditions of Theorem 1 are satisfied, the mean operator can be regarded as an injective173

function within a certain range of error, a simple yet effective approach to perform heterophilous174

neighborhood modeling.175

To prove that heterophily neighbor patterns can be modeled by the mean operator, it suffices176

to demonstrate that the mapping function from the mean of {hegoj |Aht
ij = 1} to Hnb in terms of177

embedding is injective.178

Lemma 1. Injectivity is equivalent to null space equals {0}. Let T ∈ L(V,W ), T (v) = T · v = w.179

Then T is injective if and only if null(T ) = {0}.180
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Proof of lemma 1: Sufficiency: First, suppose T is injective. We want to prove that null

T = {0}. We already know that {0} ⊂ null(T ). To prove the inclusion in the other direction,

suppose v ∈ null(T ), then T (v) = 0 = T (0). Because T is injective, the equation above implies that

v = 0. Thus we can conclude that null T = {0}, as desired. Necessity: To prove the implication

in another direction, now suppose null(T ) = {0}. We want to prove that T is injective. To do this,

suppose u, v ∈ V and T (u) = T (v). Then

0 = T (u)− T (v) = T (u− v). (11)

Thus u− v is in null T , which equals {0}. Hence u− v = 0, which implies that u = v. Hence T is181

injective, as desired.182

Having the Lemma 1 proofed, now we express the mean operator in the following form:

MX = b, (12)

where M1∗n represents the mean operator, Xn∗D is the matrix formed by embeddings of het-

erophilous neighbors, and b is the resulting new embedding. Assuming that embeddings of the

same type of heterophilous neighbors are linearly dependent, we can rewrite this equation as:

M
′
Xp ≈ b, (13)

where M
′

1∗K is a weighted mean operator, Xp is a K ∗ D prototype embedding matrix, K is183

the number of classes. The injectivity of mean operator M involves considering the solution for184

M
′
Xp = 0. It is clear that if it is satisfied that all Xk

p are orthogonal to each other, the null185

space of M
′
= {0}, indicating that the mean operator is approximately injective. In other words,186

each distinct input produces a unique output. Thus in this manner, the mean operator applied187

to heterophilous neighbors can generate distinguishable embeddings based on the distribution of188

heterophilous neighbors.189

Hence, we approximatively model the heterophilous neighbor distribution by the mean operator

with a orthogonality-oriented constraint to make the prototypes as orthogonal as possible,

which is described in Sec 4.3. The heterophilous neighbor distributions are formatted as follows:

Hnb = Dht−1
AhtHego. (14)

where Dht is degree matrix with entries Dht
ii =

∑
jA

ht
ij .190
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4.2.3. Semantic-Aware Message Passing191

Due to the sparse nature of graph data, the heterophilous neighbor distribution of a single node

could be chaotic. Hence, we introduce Semantic-aware Message Passing (SMP) based on

the homophilous neighborhood, which aggregates information from different hops of homophilous

neighbors with adaptive weights. Intuitively, nodes with similar semantics share similar characters

of not only nodes themselves but also neighbor distributions. Thus, aggregating information from

enough homophilous neighbors can approximatively model the class-level heterophilous neighbor-

hood, which is more accurate and discriminative. Specifically, SMP is a multilayer module in which

the messages are propagated only on the homophilous neighborhood. The l-th layer of SMP is

expressed as follows:

H̃l = Dhm−1

AhmH(l−1),

αl = fφl([H0∥H̃l]),

Hl = αlH0 + (1− αl))H̃l,

(15)

where Dhm is a degree matrix with entries Dhm
ii =

∑
jA

hm
ij , H0 is the input of whole SMP, and192

the message from neighbors and ego nodes are linearly combined in which the weights αl ∈ RN×1
193

are set by a weight learner fφl .194

Then, we propagate the heterophilous neighbor distribution via SMP to capture the heterophilous

distribution representations:

Hht = SMP(Hnb, lht). (16)

Meanwhile, propagating the nodes’ ego representations via SMP can capture the homophilous

representations:

Hhm = SMP(Hego, lhm). (17)

lht and lhm are the numbers of SMP layers. When the SMP layers become deeper, HDP195

can adaptively capture homophilous messages and heterophilous distribution from high-order ho-196

mophilous neighbors for the central node. Specifically, in each layer, SMP aggregates messages from197

homophilous neighbors and combines with adaptive weights. When multiple layers are stacked,198

messages from high-order homophilous neighbors can be passed down through the layers with cor-199

responding weights.200

Now we have two kinds of representations that capture homophilous and heterophilous neigh-

borhood information respectively. The final node representations are the concatenation of Hhm
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and Hht, which can be the input to other downstream tasks.

H = [Hhm∥Hht]. (18)

For node classification, the soft assignments Z and predicted labels Ŷ are given by a classifier fψ:

Z = fψ(H), Ŷ = argmax(Z). (19)

4.3. Model Training201

We introduce two modules for model training, including assignment initialization and optimiza-202

tion. The former provides the assignment for the first neighborhood partition while the latter203

describes the optimization object of the whole model.204

4.3.1. Assignment Initialization205

HDP partitions the neighborhood by the semantic assignments, which need to be initialized to

obtain a relatively accurate result at the beginning of training. For the assignment initialization, a

naive approach is to train a classifier with only nodes’ ego features. However, the neighbor features

may also provide helpful information for classification. Since we don’t know the homophily ratio of

the graph, we separate the node’s ego features X and the corresponding neighbor features Xnb to

avoid pollution:

Xnb = ÂX, (20)

where Â is the normalized adjacency matrix. The new node features are obtained through con-

catenating the ego features, neighbor features and structural embedding:

Xall = [X∥Xnb∥Xstr]. (21)

In practice, we choose some of them to construct the new node features according to the performance

on the validation set. Finally, we can get the soft assignments Z through an MLP classifier trained

by cross-entropy loss:

Z = MLPinit(X
all). (22)

To avoid errors caused by precision, we rescale the assignments to a relatively high level during the206

neighborhood partition.207
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4.3.2. Optimization208

HDP contains two kinds of objectives: a commonly used cross-entropy loss for node classification209

and a Trusted Prototype Contrastive (TPC) loss as the orthogonality-oriented constraint for class210

prototypes.211

The cross-entropy function can measure the gap between predicted results and the ground truth:

Lce = CE(Z,Y), (23)

where CE(·, ·) denotes the cross-entropy function.212

In Sec 4.2.2, we find that the modeling of heterophilous neighbor distribution needs to satisfy213

two conditions as far as possible: (i) node representations exhibit clustering characteristics; (2)214

class prototypes exist and are orthogonal to each other. These conditions are not always held in215

practice. Thus, we want to introduce additional constraints to satisfy them as much as possible.216

Many optional constraints can achieve effects severally, such as directly constraining representation217

similarities among nodes and prototypes. Further, is there a constraint that can achieve both effects218

at the same time? We introduce the Trusted Prototype Contrastive (TPC) loss, which is inspired219

by the original prototype contrastive learning (PCL) [44].220

We first introduce TPC loss in detail, and then analyze how it meets the requirements. Con-

trastive learning [22] aims to pull positive samples together while pushing negative samples away.

As a variant, PCL constructs positive and negative samples between samples and class prototypes

calculated by the pseudo labels, leading to highly discriminative representations. In our TPC loss,

we first select some high confidence nodes as trust set Stst:

Stst = {vi|Zmaxi ≥ δ}, (24)

where Zmax is the maximum value in each row of Z, denoting the largest probability of each node

belonging to any class. δ is a threshold decided by the accuracy ρ of training and validation set:

δ = TopK(Zmax, ρ|V|). (25)

Then, the prototype of class j can be calculated as the mean of node ego representations Hego

within trust set:

cj =
1

|Ststj |
∑

vi∈Stst
j

hegoi ,

Ststj = {vi|vi ∈ Stst ∧ Ŷi = j}.

(26)
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Formally, the trusted prototype contrastive loss can be expressed as follows:

Ltpc = −
∑

vi∈Stru

log
exp(s(hegoi , cj)/τ)∑K

k=1 exp([s(h
ego
i , ck)]+/τ))

, (27)

where τ is a temperature parameter, [·]+ = max(·, 0) and s(·, ·) is cosine similarity function:

s(hegoi , cj) =
hegoi · cj
|hegoi ||cj |

. (28)

The numerator of Eq 27 indicates the positive pairs, i.e. nodes and corresponding prototypes,221

while the denominator indicates the negative pairs, i.e. nodes and other prototypes. The goal222

of the constraint is to make the numerator as large as possible and the denominator as small as223

possible. Since the prototypes are computed from representations of the same class, TPC loss can224

pull nodes from the same class together and push nodes from different classes away, which satisfies225

the first condition. In the ideal case, the cosine similarity will be 1 in the numerator and 0 in the226

denominator since it’s set to be non-negative during optimization. In other words, the optimal case227

of TPC loss is that all class prototypes are orthogonal to each other, indicating that the TPC loss228

is also an orthogonality-oriented constraint as we desired. Thus, we have the following remark:229

Remark 1. TPC loss can provide corresponding constraints for the two conditions required by230

heterophilous neighbor distribution modeling at the same time, which is helpful for the handling of231

heterophilous graphs.232

Finally, the overall optimization objective can be written as follows:

L = Lce + βLtpc. (29)

where β is a weight parameter. Finally, we summarize the whole process of HDP in Algorithm 1.233

5. Experiments234

In this section, we first evaluate the representation learning performance of HDP through node235

classification task against some state-of-the-art methods on 9 public datasets. Then, the effective-236

ness of components in HDP is shown by an ablation study and some visualizations.237

16



Algorithm 1 Algorithm of HDP

Require: Graph G = (V, E), training set Stra, node labels Y, adjacency matrix A, node features

X, rescaling parameter λ, epoch E

Ensure: Predicted labels Ŷ

1: Construct structural embedding Xstr via Eq.7 and Eq.8.

2: Initialize the assignment Z via Eq.22.

3: Estimate the homophily ratio of graph via Eq.1 and Eq.2.

4: Partition the neighborhood to Ahm and Aht via Eq.5 and Eq.6.

5: Establish trust set Stru via Eq.24.

6: for iteration 1, 2, ..., E do

7: Construct ego representations Hego for nodes via Eq.9.

8: Modeling heterophilous neighbor distribution Hnb via Eq.14.

9: Propagate Hnb to capture the heterophilous distribution representations Hht via Eq.16

10: Propagate Hego to capture the homophilous representations Hhm via Eq.17

11: Obtain final representations H, assignments Z and predicted labels Ŷ via Eq.18 and Eq.19.

12: Calculate loss L via Eq.27 and Eq.29.

13: Back-propagation L to optimize the weights of networks.

14: if current assignment Z performs better then

15: update the neighborhood partition results Ahm and Aht via Eq.5 and Eq.6 with current

Z.

16: update the trust set Stst via Eq.24 with current Z.

17: end if

18: end for

19: return Ŷ

17
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5.1. Datasets and Baselines238

Experiments are conducted on 6 public heterophilous graph datasets including Cornell, Texas,239

Wisconsin, Chameleon, Actor, and Squirrel [12], and 3 homophilous datasets including Cora, Cite-240

seer and Pubmed [45]. The detailed statistics of these datasets are summarized in Table 2 while241

the descriptions are in follows:242

• Cornell, Texas and Wisconsin are three sub-datasets of the webpage dataset collected from243

computer science departments of various universities, where nodes are web pages belonging244

to one of five categories, and edges represent the hyperlinks between them.245

• Chameleon and Squirrel are two webpage networks in Wikipedia. The nodes are classified246

into five categories based on their average amounts of monthly traffic.247

• Actor (also named Film) is a subgraph of the film-director-actor-writer network, where nodes248

are actors and edges denote the co-occurrence relation between them in Wikipedia pages.249

• Cora, Citeseer and Pubmed are citation networks with high homophily. In these datasets,250

nodes represent the scientific papers while edges denote citations. The node label is the251

research field of a paper.252

We compare HDP with 13 baseline methods, including (1) MLP; (2) general GNN methods:253

GCN [19], GAT [21] and GCNII [22]; (3) methods adapted to heterophilous graphs: MixHop [16],254

H2GCN [13], UGCN [25], WRGAT [27], GPR-GNN [46], LINKX [47], GGCN [29], ACM-GCN255

[15] and GloGNN [37]. The first six heterophilous GNN methods tend to reduce the negative256

impact of heterophilous neighbors while the last three utilize the difference between ego node and257

heterophilous neighbors.258

5.2. Experimental Settings259

We implement HDP by PyTorch and run experiments on the Nvidia RTX 3090 GPU. The models260

are optimized by Adam [48]. For the hyperparameter setting, we use an anneal strategy to turn261

the hyperparameter combination based on the results of the validation set. Early stop strategy is262

applied for model training with the parameter ”patience”. The assignment initialization is separated263

from the main part of HDP for parameter tuning. Detailed search space of hyperparameters is listed264

in Table 3, while specific settings can be seen in codes.265
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Table 3: The search space and settings of hyper-parameters.

Notation Range

learning rate init {0.001, 0.003, 0.01, 0.03}
weight decay init {0, 1e-5, 5e-5, 1e-4, 5e-4, 0.001, 0.005}

epoch init {500, 1000}
patience init {50, 100, 200, 400}

structural dim {0, 26, 27, ..., 213}
hidden dim {512}

embedding dim {128}
learning rate {0.0003, 0.001, 0.003, 0.01, 0.03}
weight decay {0, 5e-6, 5e-5, 5e-4, 0.001, 0.005, 0.01}

epoch {2000}
patience {50, 100, 200, 400}
order {1, 2}
β {0.1, 1, 10}
τ {0.1, 0.2, 0.5}
λ [0.8, 1.2]

κ [0, 8]

lhm [0, 8]

lht [0, 8]

For a fair comparison, we run the experiments with the same split (48%/32%/20% of nodes for266

train/validation/test) of datasets from previous papers [12, 37], and report the average accuracy267

and corresponding standard deviation score over 10 runs on different splits. Since the results of268

some baseline methods on these datasets are public, we directly report them. For methods with269

absent results on some datasets, we use the official code released by corresponding authors and270

finetune the parameters as suggested in the original paper.271

5.3. Performance272

Table 2 shows the semi-supervised node classification performance results of all the methods on273

9 benchmark datasets. We highlight the top-rank and rank two results among all methods in bold274

and underlining respectively for all datasets. From the table, we have the following observations:275

MLP shows the basic baseline performance, which only uses the feature of node ego for classifica-276

tion. It performs well on most heterophilous datasets especially on Actor, indicating the important277

role of ego feature for node classification on both homophilous and heterophilous datasets.278

General GNN methods aggregate the neighbors’ information to the central node, which brings279
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performance improvement on homophilous datasets. However, this also leads to the pool perfor-280

mance on heterophilous datasets since a large number of heterophilous neighbors can contami-281

nate the node representation. As for the improvement on Chameleon and Squirrel compared with282

MLP, we believe that the neighbors’ information contributes much more than the central node to283

classification in these two datasets. Thus the neighbors’ information, no matter homophilous or284

heterophilous, can achieve higher performance. Compared with GCN and GAT, GCNII generally285

performs better since the initial residual and identity mapping mechanisms implicitly combine in-286

termediate representations and reduce the influence of neighbors, which are fit for heterophilous287

graphs.288

Predictably, the heterophilous GNN methods perform relatively well on the heterophilous289

datasets. As early methods, MixHop, H2GCN, UGCN, GPR-GNN and WRGAT seek for higher290

homophily while reducing the negative impact of heterophilous neighbors. Thus, they also show291

a slight improvement in homophilous datasets compared with primary HomoGNNs. However,292

there are still quite a number of heterophilous neighbors which keep them away from the best293

performance. LINKX achieves excellent performance on Squirrel but works badly on others. This294

is probably because the mechanism of separating then mixing adjacency and feature information295

is more applicable to Squirrel. Further, GGCN, ACM-GCN and GloGNN utilize the difference296

between the central node and heterophilous neighbors, which brings additional information for297

classification. As a result, they achieve better performance in both heterophilous and homophilous298

datasets.299

HDP achieves the best results in most heterophilous datasets except Actor, demonstrating the300

effectiveness of semantic-aware neighborhood partition and the heterophilous neighbor distribution301

modeling. For Actor, we believe the unsatisfactory result is due to the inaccurate neighborhood302

partition which is limited by the classification performance. For homophilous datasets Cora, Cite-303

seer and Pubmed, the helpful information from heterophilous neighbors is relatively little, which is304

further shown in Sec 5.9. The detailed reason is analyzed in Sec 5.10. Thus, the performance of305

HDP on homophilous datasets is not the best but also reaches the first echelon.306

5.4. Ablation Study307

HDP contains some important components that may have a significant impact on the clas-308

sification performance. To show the contribution of each component to the model, we conduct309
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Table 4: Ablation study of HDP’s main components on representative datasets.

Methods Wisconsin Actor Squirrel Citeseer

Init. 86.86 ± 3.29 37.24 ± 0.95 61.62 ± 1.71 75.94 ± 1.21

HDP w/o Init. 62.75 ± 13.15 26.94 ± 3.14 31.60 ± 3.24 72.87 ± 2.22

HDP w/o Homo. 67.45 ± 5.13 35.55 ± 0.82 61.05 ± 1.50 46.02 ± 5.88

HDP w/o Hete. 86.47 ± 4.25 36.79 ± 0.61 61.60 ± 1.81 77.07 ± 1.51

HDP w/o SSE. 85.10 ± 2.51 37.26 ± 0.67 59.75 ± 2.24 76.58 ± 1.47

HDP w/o SMP. 86.86 ± 4.96 36.44 ± 0.91 55.98 ± 1.75 75.00 ± 1.78

HDP w/o TPC. 74.90 ± 16.28 36.36 ± 1.03 55.55 ± 12.69 73.76 ± 1.53

HDP w/o Upd. 87.84 ± 2.60 37.18 ± 0.73 61.97 ± 1.59 76.96 ± 1.43

HDP 88.82 ± 3.40 37.26 ± 0.67 62.07 ± 1.57 77.10 ± 1.56

an ablation study on four representative datasets. Specifically, we explore the role of the assign-310

ment initialization module (Init), semantic structural encoding (SSE), homophilous representations311

(Homo), heterophilous distribution representations (Hete), semantic-aware message passing mech-312

anism (SMP), trusted prototype contrastive loss (TPC) and the update strategy (Upd). ”Init.”313

denotes the results of the assignment initialization module. For HDP without assignment ini-314

tialization, we use a randomly initialized MLP without training to construct initial assignments.315

Meanwhile, for HDP without homo-/hetero-philous representations, we only pass the other one as316

the input of the classifier. The results are shown in Table 4. From the overall level, all seven com-317

ponents have a positive contribution to the model. Specifically, we have the following observations318

and analysis:319

• The assignment initialization module achieves satisfactory results as a separate module320

and provides a good foundation for HDP. Without initialization, HDP has some obvious321

performance reduction since the initial partition could be extremely inaccurate, which leads322

to error accumulation. Fortunately, the update strategy can gradually fix some errors and323

thus avoid the model collapse.324

• Relatively speaking, the homophilous representations provide more performance gain325

than the heterophilous distribution representations, which fits the intuition. Meanwhile, the326
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heterophilous neighborhood representations are also effective on heterophilous datasets327

especially Squirrel since the absence of homophilous representations only brings slight perfor-328

mance reduction.329

• The semantic structural encoding provides additional topology and semantic information330

for representation learning thus improving the performance. Distinctively, it doesn’t seem to331

be helpful to Actor, since the 0-dimension structural embedding performs best.332

• The semantic-aware message passing propagates representations along homophilous edges333

and overcomes the limited neighborhood distribution of a single node caused by the sparse334

nature of graphs. This produces class-unified and more discriminative representations.335

• The trusted prototype contrastive loss plays a key role in the overall model since it336

brings discriminability for both homophilous representations and heterophilous distribution337

representations via the orthogonality-oriented constraint. Without TPC loss, the premise of338

heterophilous distribution modeling won’t be hold, which leads to significant performance339

degradation.340

• During the training process, the update strategy creates a virtuous cycle between neighbor-341

hood partitions and assignment accuracy. The performance improvement also shows the ef-342

fectiveness of the mutually enhanced optimization between representation learning and neigh-343

borhood partition.344

345

5.5. Complexity Study346

In this section, we first analyze the space and time complexity of HDP and then conduct347

experiments on a large graph to discuss the practicability of HDP in real scenarios.348

Regarding space requirements, the number of learnable parameters in HDP contains three main349

groups: initializing MLP, backbone and SMP, with up to (2F + |Stgt|+K)D, (2F + |Stgt|)D and350

2(lhm + lht)D parameters respectively. Thus, HDP contains (4F + 2|Stgt| + K + 2(lhm + lht))D351

parameters. For brevity, the space complexity is O((F + |Stgt|+K + lhm + lht)D).352

The time complexity of HDP (without initialization) is composed of three parts: (i) Neighbor-353

hood partition: O(M) for homophily ratio estimation, O(KM) for homophilous edge probability354
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Table 5: The classification performance and training time cost of representative methods on Ogbn-Arxiv.

Methods MLP GCN GAT GCNII HDP

Performance 42.94 ± 1.71 56.71 ± 3.34 55.30 ± 7.05 68.05 ± 0.20 63.90 ± 0.65

Training time (s) 549 1193 3109 61076 7158

calculation and O(M) for partition, where M = |E| denotes the number of edges; (ii) Heterophilous355

neighbor distribution construction: O((F+ |Stgt|)ND) for ego representation and O(MD for neigh-356

bor distribution construction; (iii) Semantic-aware message passing: O((N + M)DL) for L-layer357

SMP. As a result, the overall time complexity is O(KM + (F + |Stgt|)ND + (N +M)DL).358

Since the sizes of graphs are large in real scenarios, we choose a large graph, Ogbn-Arxiv with359

169,343 nodes and 1,166,243 edges, as an example to conduct experiments. While dealing with large360

graphs, HDP focuses on edges for computation rather than nodes to limit memory requirements,361

which utilizes the sparsity of graphs. Specifically, the pair-wise similarities are only calculated362

within connected nodes, and the message passing is based on the sparse matrix. Table 5 shows the363

results of HDP compared with general baselines on Ogbn-Arxiv. Although GCNII can achieve the364

best results, it consumes too much time and thus is not suitable for real scenarios. As a comparison,365

HDP strikes a balance between effectiveness and time consumption, achieving good results while366

maintaining acceptable time consumption given the cost of GCN and GAT. This provides proof for367

the practicability of HDP in real scenarios.368

369

5.6. Impact of Various Numbers of Labels for Training370

The number of training labels greatly impacts the accuracy of pseudo labels, which further affects371

the quality of semantic-aware neighborhood partition and node representation learning. However,372

in many practical application scenarios, only a small proportion of node labels are available since373

the cost of obtaining labels is very high. Thus, we conduct an experiment on the impact of various374

ratios of available node labels. Specifically, we add four additional training ratios (5%, 10%, 20%,375

30%) with 10 random splits each, the same set as the main ratio (48%). The test ratio is fixed as376

20% while other nodes are regarded as the validation set.377
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Table 6: Classification performance of HDP with various numbers of training labels on representative datasets.

Training Ratio Wisconsin Actor Squirrel Citeseer

#Nodes 251 7600 5201 3327

5% 77.55 ± 2.74 34.33 ± 1.52 36.91 ± 2.11 72.02 ± 1.47

10% 84.08 ± 2.00 35.21 ± 1.32 43.17 ± 1.83 72.91 ± 2.16

20% 84.29 ± 2.59 36.47 ± 1.61 50.08 ± 1.17 74.45 ± 1.15

30% 86.94 ± 3.44 36.68 ± 0.98 55.55 ± 1.35 75.49 ± 0.90

48% 88.82 ± 3.40 37.26 ± 0.67 62.07 ± 1.57 77.10 ± 1.56

Table 6 shows the average classification performances on various training ratios. As expected,378

all performance improved when the training ratios increased. For Wisconsin, Actor and Citeseer,379

HDP can perform well with only 5% training labels. Noticed that in Wisconsin, 5% training380

labels means that only about 2 nodes have labels for each class. In this situation, HDP can also381

achieve acceptable performance and significantly outperform GCN. For Squirrel, the training ratio382

of labels has a relatively great influence on the performance. This may be because homophilous383

messages and heterophilous distributions in Squirrel, although discriminative, can easily interfere384

with each other. Thus, initial low-quality neighborhood distribution can lead to confusing node385

representations, which reduces the effectiveness of iterative enhancement between neighborhood386

partition and representation learning.387

5.7. The Results of Neighborhood Partition388

We show the results of neighborhood partition in Figure 4. The first column of each dataset389

shows the ratio of homophilous edges and heterophilous edges in the whole neighborhood, where390

the dividing line corresponds to the homophily ratio of the graph. Note that the original graphs are391

processed by some operations such as undirected graph conversion and adding self-loop. Thus the392

homophily ratio of the processed graph may be different from the original graph. The second and393

third columns denote the partitioned homophilous and heterophilous neighborhoods respectively.394

Although the accuracy of neighborhood partition is limited by incomplete labels, it still shows395

great power to handle heterophily thanks to the pseudo assignments. For Wisconsin, the esti-396

mated homophily ratio is almost accurate and the partition result is also quite correct thanks to397
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Figure 4: The visualization of neighborhood partition results on representative datasets. The 3 columns of each

dataset denote the whole neighborhood, the homophilous and heterophilous neighborhoods partitioned by HDP

respectively.

the high accuracy of assignments. Actor and Squirrel have similar heterophily levels, but their398

partition results are quite different because of the classification accuracy. For Actor, although the399

heterophily of the homophilous neighborhood has been reduced, it still suffers from the limitation400

of unsatisfactory accuracy. As a result, a large number of homophilous neighbors are partitioned as401

heterophilous, which leads to inaccurate distribution modeling and further affects the classification402

performance as we analyzed in Sec 5.3. For Squirrel, some homophilous edges are incorrectly parti-403

tioned, but the homophilous neighborhood is getting better since the heterophily level is reduced.404

For Citeseer, there is a gap between the estimated homophily ratio and the truth. But it is also405

effective since the homophily ratio becomes higher in the homophilous neighborhood and very low406

in the heterophilous neighborhood. To sum up, the adaptive neighborhood partition mechanism407

can adapt to different levels of heterophily and produce high-quality neighborhoods.408

5.8. Influence of Rescaling Parameter409

The rescaling parameter λ controls the trade-off between accuracy and recall of neighborhood410

partition. A low λ makes the model choose high-confidence edges as the homophilous neighborhood411

while abandoning edges that could be homophilous but with relatively low confidence, and vice412

versa. To show the impact of λ, we give the changes of partition accuracy and node classification413
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Figure 5: The variation of partition and classification accuracy while changing rescaling parameter λ. We calculate

the average and standard deviation of 10 split/runs which are shown by the lines and shaded area.

accuracy concerning λ in Fig 5. Specifically, partition accuracy is evaluated by regarding the414

neighborhood partition as a binary classification problem.415

As we expected, the variation of the neighborhood partition shows an inverted U-shaped curve416

as in Figure 5b. This also illustrates that the rescaling parameter λ is important since estimating417

graph homophily from the training set may be inaccurate as we said before. For Squirrel, λ needs to418

be smaller to show the other half of the curve. As for the classification accuracy, it’s quite steady as419

λ changes, which shows the robustness of HDP. Further, the best point of the two kinds of accuracy420

is not the same. A large λ seems to be better for the classification accuracy. This can be attributed421

to the semantic-aware message passing, for which a relatively complete homophilous neighborhood422

is desired.423

5.9. Contribution of Homophilous and Heterophilous Representations424

To intuitively observe the contribution of heterophilous distribution, we estimate the mutual425

information between two kinds of representations and labels via DIM [49]. The results are shown426

in Figure 6 as a Venn diagram, where the overlap between two circles denotes the value of corre-427

sponding mutual information, and big mutual information value means an important role. We have428

the first interesting observation that the overlap between the label circle and others corresponds to429
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Figure 6: Mutual information between two kinds of Representations and Labels

the classification performance. The bigger the overlap area is, the bigger the mutual information430

between labels and representations is, thus the better the classification performance is. For Wiscon-431

sin and Citeseer, homophilous representations play a more important role in node discrimination.432

This is consistent with intuition, especially in homophilous datasets like Citeseer. For Actor and433

Squirrel, the heterophilous representations show similar contributions with homophilous ones. It434

illustrates that our heterophily modeling is helpful in handling heterophilous graphs.435

5.10. Visualization of Representation Discriminability436

To prove the effectiveness of trusted prototype contrastive loss on the prototype orthogonality,437

which brings the discriminability to representations, we visualize the node representations and438

prototypes via T-SNE [50] in Figure 7. The classes of nodes are shown in different colors while the439
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Figure 7: The T-SNE visualization of representations and prototypes.

stars denote the prototypes. The results of final representations H, homophilous representations440

Hhm and heterophilous distribution representations Hht show the effectiveness of HDP, TPC loss441

and heterophily modeling respectively.442

From Figure 7a, 7b, 7d and 7e, we can see clear boundaries between classes, which indicates443

the high discriminability of representations. Further, they also signify TPC loss well constrains the444

orthogonality of representations and HDP learns high-quality representations. In Figure 7c, the445

result also shows discrimination. Note that the heterophilous distribution representations Hht are446

constructed without the node’s ego feature. Thus, the discrimination of Hht illustrates our het-447

erophily modeling is effective and captures additional discriminative information from heterophilous448

neighbors as we desire. In Figure 7f, the result looks like a bit of a mess. Some representations449

have clear boundaries between classes while others mix. This may be due to the quantity of het-450
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erophilous neighbors of nodes in the homophilous dataset Citeseer being too small. Although we451

solve this problem with the semantic-aware message passing, there still are some classes that don’t452

have clear connection preferences to other classes. This is a limitation of HDP: if there is no clear453

connection preference between classes, the heterophily modeling is unable to capture discriminative454

representations.455

6. Discussion and Conclusion456

In this paper, we study the problem of Heterophlous Graph Neural Networks (HeterGNNs),457

which is important in real-world graph mining scenarios. To overcome the shortcomings of existing458

methods in insufficient neighborhood partition and heterophily modeling, we propose Heterophilous459

Distribution Propagation for Graph Neural Networks (HDP). Specifically, HDP adaptively sepa-460

rates the neighbors into homophilous and heterphilous parts based on the pseudo assignments461

during training and propagates both homophilous patterns and heterophilous neighborhood distri-462

bution with a novel semantic-aware message passing module. Extensive experiments on 9 real-world463

datasets demonstrate the effectiveness of the HDP method. On the other hand, HDP has a limita-464

tion that the nodes should have connection preferences to nodes from other classes. Otherwise, the465

heterophilous distribution will lose its discriminability. In our future works, we will explore more466

advanced distribution modeling and more efficient model updating strategies.467
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