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A B S T R A C T

Graph Neural Networks (GNNs) have demonstrated remarkable success in graph node classification task.
However, their performance heavily relies on the availability of high-quality labeled data, which can be
time-consuming and labor-intensive to acquire for graph-structured data. Therefore, the task of transferring
knowledge from a label-rich graph (source domain) to a completely unlabeled graph (target domain) becomes
crucial. In this paper, we propose a novel unsupervised graph domain adaptation framework called Structure
Enhanced Prototypical Alignment (SEPA), which aims to learn domain-invariant representations on non-
IID (non-independent and identically distributed) data. Specifically, SEPA captures class-wise semantics by
constructing a prototype-based graph and introduces an explicit domain discrepancy metric to align the source
and target domains. The proposed SEPA framework is optimized in an end-to-end manner, which could be
incorporated into various GNN architectures. Experimental results on several real-world datasets demonstrate
that our proposed framework outperforms recent state-of-the-art baselines with different gains.
1. Introduction

Real-world complex systems are often represented as networks,
such as citation networks (Sen et al., 2008; Tang et al., 2008), social
networks (Rozemberczki et al., 2021), and so on. Mining valuable infor-
mation from graphs has gained substantial research attention from both
academic and industrial communities (Bhagat et al., 2011; Rao et al.,
2022). For example, in citation networks, papers are interconnected
with each other through citations, which can be categorized into dif-
ferent topics based on their contents and relationships. In social media
platforms, users can be grouped for personalized services according to
their interaction characteristics and behaviors. Recently, graph neural
networks (GNNs) (Hamilton et al., 2017; Kipf & Welling, 2017; Velick-
ovic et al., 2018) have emerged as a powerful deep learning technique
for modeling graph-structured data. By incorporating neighborhood in-
formation, GNNs can effectively capture the meaningful representations
and achieve impressive performance in node classification task.

Despite the impressive progress of graph neural networks, their
success heavily relies on the availability of high-quality labeled data.
However, in real-world applications, graphs coming from different
periods or sources are ubiquitous and it could be labor-intensive and
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time-consuming to annotate sufficient labels. For example, in the con-
text of citation networks, graphs acquired from different publishers
and times demonstrate distinct node attributes and graph structure
properties. As a result, the performance of a GNN model trained on one
source, such as papers extracted from ACM between 2000 and 2004,
may not be satisfactory when applied to another source, such as papers
obtained from DBLP between 2004 and 2008. One natural question is
why not transfer knowledge from a label-rich graph to a label-scare
graph. Unfortunately, most existing GNN models fail to generalize to
new domains due to the domain shift problem (Quionero-Candela et al.,
2009; Torralba & Efros, 2011), especially when the distributions of the
source domain and the target domain are highly different.

Recently, domain adaptation (Wang & Deng, 2018) has become
an appealing solution to tackle the distribution shift problem, which
aims to transfer knowledge from source domain to target domain. It
motivates a line of researches (Long et al., 2015; Wang & Zheng,
2015) under the IID assumption, where the source and target data
are independent and identically distributed in each domain. Although
these models (Gretton et al., 2012; Kang et al., 2019; Sun et al., 2016;
Tzeng et al., 2017) have obtained satisfied performance in the fields of
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Fig. 1. An example illustrates the class-wise alignment by minimizing distance between
prototypes from source and target graph. The red dashed line represents the decision
boundary of the classifier. The classifier is supervised by source domain and cannot
generalize well to the target graph. (a) The performance of class-wise alignment
is limited by the unrepresentative prototypes. (b) SEPA finds more representative
prototypes for target domain and conducts class-wise alignment effectively.

computer vision and natural language processing, they are not suitable
to other tasks with non-IID data, e.g., node classification in graph-
structured data. When it comes to graph-structured data, the situation
becomes more complicated. First, each node in the graph could have
complex interactions with its neighborhood. Second, the distribution
shift may come from either graph structures or node attributes, which
are highly related. Therefore, it is necessary to investigate how to
transfer knowledge across graph-structured non-IID data.

Several recent efforts have been devoted to unsupervised graph
domain adaptation (Dai et al., 2022; Shen et al., 2020, 2021; Wu et al.,
2023, 2020; You et al., 2023; Zhang et al., 2021). Existing research can
be categorized into two main lines: (1) Learning domain-invariant fea-
tures by minimizing a divergence that quantifies the distance between
distributions (Shen et al., 2021; Wu et al., 2023). Commonly employed
divergence measures include maximum mean discrepancy (Shen et al.,
2021), graph subtree discrepancy (Wu et al., 2023). These metrics
define the difference between two distributions with their mean em-
beddings. (2) Utilizing adversarial learning techniques (Dai et al., 2022;
Shen et al., 2020; Wu et al., 2020; You et al., 2023; Zhang et al., 2021)
for domain discrimination by incorporating a domain discriminator to
induce domain-level confusion. However, existing methods that rely
on pre-defined distance metrics or adversarial learning face a common
limitation: they primarily focus on minimizing distribution discrepancy
at the domain level while often neglecting the semantic correlations
between classes. Consequently, there is a risk of erroneously align-
ing samples belonging to different classes, resulting in misalignment
between target domain samples and source domain samples.

In this paper, we propose a novel framework named Structure
Enhanced Prototypical Alignment (SEPA) for unsupervised cross-domain
node classification task. SEPA first estimates prototypes to capture
semantics information, and then performs domain alignment by mini-
mizing a divergence in measuring the distance between the prototypes.
The performance of domain alignment is determined by the repre-
sentation ability of the prototypes. A simple method for estimating
prototypes is to average the representations of the same pseudo labels
obtained from the classifiers (Pan et al., 2019; Yue et al., 2021).
Nevertheless, utilizing pseudo-labeling under domain shift creates a
dilemma. On the one hand, the presence of unreliable pseudo-labels
deteriorates the model’s performance. On the other hand, only selecting
nodes with high confidence provides limited information. In this way,
the prototypes induced from pseudo labels are usually not representa-
tive enough, thereby limiting the performance of domain alignment.
2

As shown in Fig. 1, since the classifier is under the supervision of
source domain, some target nodes might be wrongly classified based
on the decision boundary due to the existence of domain shift. Thus,
the features learnt in the embedding space are not representative
enough, making the prototypes not suitable to represent the classes.
In this scenario, the prototypes we get are biased against the expected
prototypes and directly conducting class-wise alignment can alter the
decision boundary, further consolidating the dominant position of the
source domain over the classifier.

To overcome the above problem, our proposed SEPA avoids using
pseudo-labeling methods and instead attempts to calibrate the proto-
types to better reflect the commonality within the category of target
graph. First, we estimate the transition matrix for each target node
to reveal the class possibility that the instance might belong to. The
calculation of transition matrix is based on the prediction of the classi-
fier, which provides underlying semantic information for modeling the
target graph distribution. Second, we assign a soft prototype to each
target node based on the transfer matrix and a prototype-based graph
is constructed by the assignment. By constructing the prototype-based
graph, SEPA is able to directly map conditionally independent proto-
types to the nodes, enabling an effective capture and representation of
the characteristics of the target domain. Propagating on the prototype-
based graph can intuitively represent the impact of target structure on
prototypes. Lastly, we estimate prototypes for target graph and propose
an explicit alignment loss function, which enables us to address the
domain discrepancy at a class-wise level.

The proposed SEPA framework is optimized in an end-to-end man-
ner, which could be easily incorporated into various GNN architec-
tures. Empirical results on two types of real-world datasets demonstrate
that SEPA outperforms recent state-of-the-art baselines on unsuper-
vised cross-domain node classification task. To summarize, our main
contributions are as follows:

• We propose a novel framework for unsupervised cross-domain
node classification task, which takes high-level semantic informa-
tion into consideration and performs prototypical alignment for
graph data.

• To facilitate the prototype alignment, we propose prototype-based
graph and propagate on it to estimate prototypes for target graph,
which takes target personalized structure into consideration and
avoids the classifier dominated by the source graph.

• We perform extensive experiments to validate its effectiveness
and analyze the properties of SEPA via thorough comparisons
with state-of-the-art methods on two types of real-world graph
datasets.

2. Related work

2.1. Graph representation learning

Graph representation learning aims to transform the complex net-
work structure and associated attributes into low-dimensional vector
representations, enabling efficient analysis for downstream tasks such
as node classification, link prediction, and graph clustering (Cui et al.,
2019; Ji et al., 2022). Graph representation learning methods can be
divided into two groups: transductive methods and inductive methods.
Transductive embedding methods require that all nodes in the graph
are present during training (Grover & Leskovec, 2016; Perozzi et al.,
2014; Shi et al., 2018; Xu et al., 2019). DeepWalk (Perozzi et al.,
2014) and node2vec (Grover & Leskovec, 2016) employ random walk
sampling to generate contextual neighborhood information, which is
then fed into a skip-gram model to generate node representations.
However, these methods mainly focus on modeling network structure
information and cannot infer embeddings for new nodes.

To address these limitations, inductive embedding methods exploit

network structures, node attributes, and the available node labels from
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known graphs to learn more informative node representations (Hamil-
ton et al., 2017; Huang et al., 2017; Kipf & Welling, 2017; Velickovic
et al., 2018; Zhang et al., 2018). The most popular embedding meth-
ods are graph neural networks (GNNs). GCN (Kipf & Welling, 2017)
employs message passing to update and aggregate node representa-
tions from its neighborhood, which achieves great success in various
graph related tasks. GraphSAGE (Hamilton et al., 2017) extends GCN
by introducing various aggregation strategies. GAT (Velickovic et al.,
2018) leverage multi-head-based self-attention mechanisms to selec-
tively attend and weigh the importance of neighbor nodes. Despite
their powerful capability to capture complex node relationships, they
often experience significant performance degeneration when directly
applying them to graphs with different distributions.

2.2. Domain adaptation

Domain adaptation transfers knowledge from labeled source domain
to improve the performance of unlabeled target domain in the presence
of distribution shift (Pan & Yang, 2010; Wang & Deng, 2018). Many
approaches based on deep learning are proposed for domain adaptation
in the field of computer vision (Ganin & Lempitsky, 2015; Tzeng et al.,
2017), which can be roughly categorized into two groups: adversarial
domain discrimination and explicit distribution alignment. Adversar-
ial domain discrimination typically involves a domain classifier that
determines whether a feature representation originated from a source
or target domain. The underlying assumption is that if the domain
classifier is unable to accurately classify the source of the feature
representation, features follow the same underlying distribution across
the domains (Ganin et al., 2016; Long et al., 2017; Pei et al., 2018;
Shen et al., 2018). DANN (Ganin et al., 2016) learns domain-invariant
features by training feature extractor to make the domain classifier
perform poorly. WDGRL (Shen et al., 2018) is a variant of DANN
that learns an approximate Wasserstein distance to replace the domain
classifier.

Instead of performing domain discrimination, explicit distribution
alignment methods aim to reduce the statistic discrepancy across do-
mains to obtain domain-invariant features (Ganin & Lempitsky, 2015;
Long et al., 2015; Pei et al., 2018; Tzeng et al., 2017). TPN (Pan et al.,
2019) matches each target example to the nearest source prototype
and minimizes the distances between the prototypes. CAN (Kang et al.,
2019) employs collaborative learning to generate domain-invariant fea-
tures and selects pseudo-labeled target samples for re-training the entire
framework. SRDC (Tang et al., 2020) enhances target discrimination
through a deep clustering framework and minimizes the KL divergence
to reduce domain discrepancy. UDA (Yue et al., 2021) encodes and
aligns semantic features in the shared embedding space across do-
mains, then a threshold is utilized to determine the robustness of the
prototype. Although these models have obtained satisfied performance
in the fields of computer vision, they are not applicable to other
tasks with non-IID data for the following two reasons: (1) the node’s
representation is highly independent on their neighboring nodes (2) the
distribution shifts between the two graph domains are more complex,
which may come from either graph structures or node attributes.

2.3. Graph domain adaptation

Recently, there exists a branch of research in exploring the knowl-
edge transferability among different graphs in an unsupervised setting.
There are two lines of solutions: one involves minimizing pre-defined
domain discrepancy metrics, while the other employs adversarial learn-
ing techniques (Liu et al., 2024; Zhang et al., 2024). CDNE (Shen
et al., 2021) introduces the concept of minimizing distribution diver-
gence using the Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012) for graph-structured data. MuSDAC (Yang et al., 2020) proposes
a two-level selection strategy to address the unexplored problem of
transferable classification among heterogeneous information networks.
3

GRADE (Wu et al., 2023) explores graph distribution shift by con-
sidering the Weisfeiler–Lehman graph isomorphism test. Rather than
minimizing domain discrepancy in an explicit way, DANE (Zhang
et al., 2019) achieves embedding space alignment and distribution
alignment by employing a shared weight graph convolutional network
and adversarial learning regularization. AdaGCN (Dai et al., 2022)
models the domain adaptation process as a two-player game similar to
GANs (Mirza & Osindero, 2014). ACDNE (Shen et al., 2020) enhances
the end-to-end framework by a domain discriminator equipped with
Gradient Reversal Layer (GRL) (Ganin et al., 2016). UDAGCN (Wu
et al., 2020) and ASN (Zhang et al., 2021) further improve network
embedding with attention mechanisms and feature disentanglement.
SpecReg (You et al., 2023) derives an optimal transport-based domain
adaptation bound closely related to the spectral properties of GNNs
and uses it to regularize these properties for improving model’s trans-
ferability. StruRW (Liu et al., 2023) reduces the conditional shift of
neighborhoods by computing the edge probabilities between different
classes based on the pseudo node labels estimated on the target graphs.
SA-GDA (Pang et al., 2023) proposes a spectral augmentation module
to enhance the node representation learning, which combines the target
domain spectral information with the source domain. DGDA (Cai et al.,
2024) addresses graph domain adaptation in a generative view, which
disentangles the generation process into the semantic latent variables,
the domain latent variables, and the random latent variables. Never-
theless, the existing approaches suffer from distribution misalignment
for neglecting the class from which the samples are drawn. In this
paper, we propose a new framework where semantics information is
considered.

3. Preliminary

3.1. Notation

Let  = ( ,  ,𝐀,𝐗,𝐘) denote a graph, where  =
{

𝑣𝑖
}

𝑖=1,…,𝑁 is
the node set and  =

{

𝑒𝑖,𝑗 =
(

𝑣𝑖, 𝑣𝑗
)}

is the edge set. 𝑁 represents the
number of nodes and the edge 𝑒𝑖,𝑗 indicates the relationship between
node 𝑖 and 𝑗. An adjacency matrix 𝐀 ∈ R𝑁×𝑁 represents the topological
structure of , where 𝐴𝑖,𝑗 = 1 if 𝑒𝑖,𝑗 ∈  and vice versa. Let 𝐗 ∈ R𝑁×𝑓

denote the node attribute matrix, where 𝑓 is the dimension of node
attributes. 𝐘 ∈ R𝑁×𝐶 represents the node label matrix, where 𝐶 is the
number of categories of node labels.

3.2. Cross-domain node classification

In this paper, we focus on a challenging task called cross-domain
node classification. Following Shen et al. (2020), Zhang et al. (2021),
we formally define the problem as follows: Given a fully labeled source
graph 𝑠 = (𝑠, 𝑠,𝐀𝑠,𝐗𝑠,𝐘𝑠) and a completely unlabeled target graph
𝑡 = ( 𝑡,  𝑡,𝐀𝑡,𝐗𝑡), our goal is to predict the node labels of the
target graph using a co-classifier with the help of fully labeled source
graph. Note that, 𝑠 and 𝑡 are assumed to have no common nodes,
but share the same node categories. The setting of cross-domain node
classification is challenging because of graph distribution shift includes
both feature distribution and structure distribution, which means re-
lationships between nodes are different across different domains. The
covariance shift between source graph and target graph can be denoted
as follows: PS(𝑌 |𝐺) = PT(𝑌 |𝐺) and PS(𝐺) ≠ PT(𝐺).

3.3. Graph convolutional networks

Graph neural network (Cui et al., 2019) is adopted as node repre-
sentation learning module to capture both the structural and attribute
information of each node, which has gained remarkable progress in
various graph mining tasks like node classification. For a given graph
, node representations are generated via recursively propagating and

aggregating information from each node’s neighborhoods. Specifically,
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Fig. 2. The overall pipeline of SEPA. The squares denote prototypes and the circles
denote target nodes. The solid lines represent connections with a higher probability,
while the dashed lines represent the opposite. Our model SEPA on the highest level
consists of five steps: ➀ Calculate base target prototypes by representation predicted by
the source domain supervised classifier. ➁ Assign each target node with a soft prototype
according to a transition matrix. ➂ Construct a prototype-based graph and propagate
o update representations. ➃ Update the base prototype and ➄ conduct prototypical
omain alignment. This step allows us to estimate prototypes for the unlabeled target
raph by considering the local structure, leading to improved transfer performance
hrough prototypical domain alignment.

t the 𝑙th layer of graph convolutional network (Kipf & Welling, 2017),
he representation of node 𝑣 is updated as follows:
𝑙
𝑣 = Update𝑙

(

𝒉𝑙−1𝑣 ,Agg𝑙
(

{𝒉𝑙−1𝑢 |𝑢 ∈  (𝑣)}
))

, (1)

where Agg(⋅) denotes an aggregation function that projects a set of
neighborhood representations to an aggregated representation. Update(⋅)
is another function that unifies the node’s current representation and
its aggregated neighborhood representation.

4. The proposed method

4.1. Overview

Our proposed framework SEPA addresses the issue of misalign-
ment by incorporating class-wise alignment through the capture of
semantic information. To achieve this goal, we first estimate prototypes
for unlabeled target graph and then design a method to reduce the
domain differences between the source and target graphs. A straight-
forward method to generate each class’s prototype is averaging latent
node representations in each class. Unfortunately, the target prototypes
calculated in this way is inaccurate due to incorrect pseudo labels
with a high probability under domain shift. Moreover, the existing
unsupervised techniques (Kang et al., 2019; Pan et al., 2019; Tang
et al., 2020; Yue et al., 2021) for obtaining prototypes under domain
shift creates a dilemma: Selecting nodes with high confidence provides
limited information for alignment, while the presence of unreliable
pseudo-labels negatively affects the model’s performance, especially
when a small threshold is used.

Therefore, we aim at calibrating prototypes for unlabeled target
nodes to conduct class-wise alignment and improve the overall perfor-
mance. Fig. 2 illustrates the overview of our proposed SEPA, which
4

v

is a non-parametric method to update the unlabeled target domain
prototypes. First, we take the average representation of a target class
predicted by the source domain supervised classifier as basic target
prototypes. Second, we assign each target node a soft prototype by
a transition matrix based on the base prototypes. Then, a prototype-
based graph is constructed based on the assignment, followed by the
prototype-based feature propagation. Finally, we update base target
prototypes based on the updated soft-assigned prototypes.

The network architecture of SEPA is simple, which consists of two
basic modules: a graph feature encoder 𝐸𝜃(⋅) and a node classifier
𝐹𝜙(⋅). Specifically, graph feature encoder 𝐸𝜃(⋅) is applied to capture
nformative node representations and the classifier 𝐹𝜙(⋅) is employed
o predict the categories of the nodes. These two modules are shared
y the source and target domains, which are jointly trained in an end-
o-end manner. It is worth noting that various architectures can be
ncorporated into this node representation learning module, and the
mpact of different graph neural network architectures will be studied
n the experimental section. In the following sections, we will introduce
he details of different key components.

.2. Transition matrix estimation

Pseudo labels directly obtained from predictions of the source-
rained model often lead to relatively poor transfer performance. This
s primarily due to the large number of incorrectly pseudo-labeled
amples that are used during training (Lee, 2013). Therefore, we utilize
transition matrix 𝑸 ∈ R𝐶×𝐶 to represent the relationships between

he true label and the pseudo label. This matrix serves to explicitly
apture the label uncertainty. Since the ground truth of 𝑸 is unknown,
e leverage the predictions obtained from the source-trained model to
stimate the transition matrix for target graph 𝑡, which is defined as:

=

⎡

⎢

⎢

⎢

⎢

⎣

0 𝑞12 ⋯ 𝑞1𝐶
𝑞21 0 ⋯ 𝑞2𝐶
⋮ ⋮ ⋱ ⋮
𝑞𝐶1 ⋮ 𝑞𝐶(𝐶−1) 0

⎤

⎥

⎥

⎥

⎥

⎦𝐶×𝐶

, (2)

here 𝑸𝑖 = 𝑞𝑖 =
1

|𝑖|
∑

𝑣∈𝑖 𝒑̂𝑣 denotes the average probability distribu-
tion of the 𝑖th class’. 𝒑̂𝑣 = sof tmax(𝐹𝜙(𝒉𝑘𝑣)) is the probability distribution
f target node 𝑣. 𝑖 is the set of target nodes belonging to class 𝑖 based
n pseudo labels. To eliminate the transition probability from a class to
tself, we set the diagonal of 𝑸 as zeros and normalize the non-diagonal
robabilities within each row.

Next, we integrate 𝑸 into each sample’s prediction to estimate the
ransition matrix for target nodes, denoted as 𝑻 ∈ R𝑁 𝑡×𝐶 . The elements
𝑖𝑐 indicate the probabilities of the sample 𝑖 belonging to potentially

class 𝑐, with larger values suggesting a higher likelihood. The 𝑖th row
f the transition matrix 𝑻 can be derived as:

𝑖 = 𝒑̂𝑖 ⊙𝑸𝑐 , (3)

here 𝒑𝑖 is the predicted probability of target node 𝑣𝑖, and 𝑣𝑖’s pseudo
abel belongs to class 𝑐. ⊙ is element-wise multiplication. Note that
𝑖𝑐 = 0 because we have eliminated the transition probability from
class to itself.

.3. Prototype-based graph construction

The structure of the target domain plays a crucial role in encoding
ode attributes, which further impacts domain alignment. To leverage
he personalized structure of the target graph, we construct a prototype-
ased graph. In this graph, the conditionally independent prototypes
re directly mapped to the nodes (Liu et al., 2010; Ruis et al., 2021),
llowing us to effectively capture and represent the characteristics of
he target domain.

Firstly, we initialize each prototype 𝜇𝑐 for target graph as the mean

ector of the corresponding samples predicted to its class. Given the
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basic prototype set {𝜇𝑐}𝐶𝑐=1, a target node 𝑣𝑖 is soft-assigned (Zhu & Ko-
niusz, 2023) to each cluster 𝜇𝑐 , yielding 𝑧𝑖𝑐 . Specifically, soft-assigned
prototypes of target graph are obtained as follows:

𝝁𝑐 =
∑𝑁 𝑡

𝑖=1 I(𝑦̂𝑖 = 𝑐) ⋅ 𝒉𝑖
∑𝑁 𝑡

𝑖=1 I(𝑦̂𝑖 = 𝑐)
, (4)

𝑖𝑐 =
𝐶
∑

𝑗=1
𝑻 𝑖𝑗 ⋅ 𝝁𝑗 , (5)

here 𝑁 𝑡 indicates the number of target nodes. I(⋅) is an indicator func-
ion. 𝒉𝑖 denotes the target node 𝑣𝑖’s representation, which is extracted
rom the output of the node representation learning module 𝐸𝜃(⋅). The
seudo label denoted as 𝑦̂𝑖 = argmax 𝒑̂𝑖 are generated based on the
redictions of 𝐹𝜙(⋅). For different instances, the soft-assigned prototypes
f the same class are different.

Then, we design a adjacency matrix 𝐴′ with pair-wise similarity of
he soft-assigned prototypes, where 𝐴′

𝑖𝑗 captures relation between the
th and 𝑗th samples. This adjacency matrix is often dense, representing

fully connected graph structure. Thus, we integrate it with given
arget graph structure 𝐴. We form the adjacency matrix 𝐴′ as:
′ =

(

𝒁⊤𝒁
)

⊙ 𝐴, (6)

here ⊙ is element-wise multiplication. Thus, we form a prototype-
ased graph ′ = ( ,  ,𝐀′,𝐙), where vertices  are the same as the
arget graph 𝑡 and edges  are weighted by a similarity between
oft-assigned prototypes.

.4. Prototype-based graph propagation

With the prototype-based graph, we further perform propagation
o update soft-assigned prototypes. This propagation step allows us to
efine and improve the representations of the prototypes, taking into
ccount both the structural information within the target graph and the
emantic similarities between nodes (Klicpera et al., 2018). Here, we
hoose a simple and effective way to perform a node-dependent local
moothing of the feature over the constructed prototype-based graph ′:

̃ (𝑟+1) ′ ̃ (𝑟)
5

= (1 − 𝛼)𝐋 𝐙 + 𝛼𝐙, (7) a
here 𝐋′ = 𝐃′− 1
2 𝐀′𝐃′− 1

2 is the corresponding Laplacian matrix of 𝐀′. 𝛼
is a hyper-parameter to control the probability of propagating informa-
tion to its neighbors. We use the power iteration method (Huang et al.,
2020; Klicpera et al., 2018) to accelerate the computation procedure,
which usually converges within several iterations 𝑟. The impact of
different propagation schemes has been shown in Section 5.3.

Then, we integrate the local structure into the prototype-based
graph to obtain 𝑧̃𝑖𝑘, which provides potential candidate prototype for
each target node. By combining the first choice and the candidate
choice, we find finds more representative prototypes for target do-
main and conducts class-wise alignment effectively. The corresponding
experiments is shown in Fig. 3(a).

Finally, the prototypes of each class in target graph can be updated
as follows:

𝝁̃𝑐 = 𝝁𝑐 +
1
𝑁𝑐

𝑁 𝑡
∑

𝑖=1
I(𝑦𝑖 = 𝑐) ⋅ ((𝒑𝑖) ⋅ 𝑧̃𝑖) (8)

here (⋅) denotes the entropy function used to represent the confi-
ence level for each node and 𝑁𝑐 means the number of target nodes
f class 𝑐. A smaller entropy means there is less need to calibrate the
rototype, and vice versa. We call the updated prototypes as structure
nhanced prototypes, which are more representative by combining the
asic prototype and the candidate prototype. The ablation study is
hown in Section 5.3.

.5. Prototypical domain alignment

To explicitly minimize domain discrepancy, we incorporate class-
evel alignment to capture the semantic similarities between classes.
he main objective is to maximize the similarities between the proto-
ypes of each class from the source and target domains, while simulta-
eously minimizing the similarities among the prototypes of different
lasses. This ensures that clusters belonging to the same class in both
omains are brought closer together in the latent space, while clusters
rom different classes and domains are pushed further apart. By opti-
izing this objective, we can effectively reduce the domain discrepancy

t the semantic level.
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We propose class-wise domain alignment in a prototype self-super
vised form: if {𝝁̂𝑡

𝑖,𝝁
𝑠
𝑖 } forms the positive pair, then the prototypes

{𝝁̂𝑡
𝑖,𝝁

𝑠
𝑗≠𝑖} can form 𝐶 − 1 negative pairs, where 𝑗 ≠ 𝑖 denotes the

classes except 𝑖. To encourage the prototype of same class to be more
compact and those of different classes to be more separated, we apply
a separation costs proposed by Chen et al. (2019). The formulation for
class-wise domain alignment is as follows:

𝑡,𝑠
align = −

𝐶
∑

𝑖=1

(

log exp
(

𝝁̂𝑡
𝑖 ⋅ 𝝁

𝑠
𝑖 ∕𝜏

)

− log
𝐶
∑

𝑗≠𝑖
exp

(

𝝁̂𝑡
𝑖 ⋅ 𝝁

𝑠
𝑗∕𝜏

)

)

+
𝐶
∑

𝑖=1

(

log 1
𝐶 − 1

𝐶
∑

𝑗=1
I(𝑗 ≠ 𝑖) ⋅ exp

(

𝝁𝑠
𝑖 ⋅ 𝝁

𝑠
𝑗∕𝜏

)

)

,

(9)

where 𝜏 is the temperature hyper-parameter, which controls the degree
of distinguishing semantically similar prototypes. We discussed the
impact of different values of 𝜏 on the effect in Section 5.4 and compared
the difference between different implementation forms in Section 5.3.

To better learn knowledge transferred from source domain to target
domain, we incorporate a node classification loss for the label-rich
source graph, and an entropy loss for the unlabeled target graph. Ide-
ally, a perfect prediction for target domain should be highly similar to
the one-hot encoding, meanwhile covering diverse classes. To achieve
this goal, we minimize the entropy for each individual sample, and
maximize the entropy for each class (Liang et al., 2020). To summarize,
our proposed SEPA framework has the following overall objectives:

 = 𝑠
cls + 𝜆align ⋅ 

𝑡,𝑠
align + 𝜆ent ⋅ 𝑡

ent , (10)

where 𝑠
cls is the cross-entropy loss for source domain. 𝑡

ent = E𝑖∈𝑁 𝑡

(𝒑𝑡𝑖)] − 
(

E𝑐∈𝐶 [𝒑̂
𝑡
𝑐 ]
)

is the entropy loss, where (𝒑𝑖) = −
∑𝐶

𝑐=1 𝒑𝑖,𝑐
og(𝒑𝑖,𝑐 ) is the entropy function. 𝒑̂𝑐 is mean predictions of class 𝑐. 𝜆align
nd 𝜆ent represent the trade-off parameters to balance different loss
erms. We discussed the effectiveness of each module in Section 5.3.
he whole training procedure is summarized in Algorithm 1.

.6. Time complexity analysis

We analyze the time complexity of our proposed framework in this
ubsection. Suppose the graph has 𝑛 nodes and 𝑚 edges, the node
epresentation dimension is 𝑑 and the number of graph neural network
ayers is 𝐾, the time of graph encoder module 𝐸𝜃(⋅) is (𝐾𝑛𝑑2 +𝐾𝑚𝑑).

The time complexity of class prototype calculation is (𝑛). Although the
calibration of target prototype involves a propagation procedure, the
computation cost is actually very small and it has a time complexity of
𝑂(𝑚) due to the utilization of power iteration. At last, the prototype
alignment has the time complexity of (𝐶). Thus, the overall time
complexity is (𝐾𝑛𝑑2+𝐾𝑚𝑑+𝐶), which is in the same time complexity
scope of vanilla graph neural networks.

Algorithm 1 SEPA’s Training Strategy
Require: Labelled source graph 𝑠 = (𝑠, 𝑠,𝐗𝑠,𝐘𝑠), unlabelled target

graph 𝑡 = ( 𝑡,  𝑡,𝐗𝑡), the number of graph neural network layer
𝐾, the node representation dimension 𝑑

Ensure: Predicted node labels for 𝑡 ∶ {𝑦̂𝑡1, 𝑦̂
𝑡
2,⋯ , 𝑦̂𝑡𝑁 𝑡}

1: Randomly initialize weights for 𝐸𝜃(⋅) and 𝐹𝜙(⋅)
2: while not reaching the maximum epochs do
3: Learn node representations 𝑯𝑠 and 𝑯 𝑡 for source and target

domain by 𝐸𝜃(⋅) via Eq. (1)
4: Calculate base prototypes 𝝁𝑡 for unlabelled target graph and

ground-truth prototypes 𝝁𝑠 for labelled source graph via Eq. (4)
5: Construct prototype-based graph via Eq. (5)–(6)
6: Update target prototype 𝝁𝑡 to 𝝁̂𝑡 via Eq. (7)–(8)
7: Prototypical domain alignment via Eq. (9)
8: Back-propagate loss gradient using Eq. (10)
9: end while
6

5. Experiments

In this section, we conduct extensive experiments on various real-
world graph datasets to demonstrate the effectiveness of the proposed
model SEPA. We aim to answer three research questions as follows:

• RQ1: Is the proposed model effective in the graph domain adap-
tion task?

• RQ2: Are the modules designed in the proposed model effective
and necessary?

• RQ3: Is the proposed model sensitive to the key hyper-parameters?

.1. Datasets and setups

We conduct our experiments on two types of real-world graph
atasets: citation networks1 and social networks.2 The citation networks

consist of three datasets, namely ACMv9, Citationv1, and DBLPv7. In
these datasets, each node represents a paper, and the edges denote
the citations between them, which are obtained from diverse sources
and periods. Among them, ACMv9 (A) comprises papers extracted
from ACM between 2000 and 2010, Citationv1 (C) includes papers
obtained from Microsoft Academic Graph prior to 2008, and DBLPv7
(D) encompasses papers collected from DBLP during the period from
2004 to 2008. We aim to categorize all the papers into five dis-
tinct research topics: ‘‘Databases’’, ‘‘Artificial Intelligence’’, ‘‘Computer
Vision’’, ‘‘Information Security’’ and ‘‘Networking’’.

Regarding social networks, we choose Twitch gamer networks,
which are collected from different regions. Each node within these
networks represent a user, and the connections between nodes indicate
their friendships. We extract node features that encompass details
about the games users play and favor, their geographical location, and
streaming habits, etc. Specifically, we focus on two largest graphs:
Germany (DE) and England (EN). In this scenario, users are classified
into two groups based on whether they employ explicit language. For a
comprehensive overview of these datasets, please refer to Table 1 and
2.

Baselines We compare our proposed SEPA with the following
three categories of baselines: (1) Hypothesis transfer with unsupervised
graph representation learning : DeepWalk (Perozzi et al., 2014), node2vec
(Grover & Leskovec, 2016) and ANRL (Zhang et al., 2018). The node
representations are first learned in an unsupervised manner, and then
target graph node representations are evaluated using a classifier
trained on source graph. (2) Source only graph neural networks: GCN
(Kipf & Welling, 2017), GAT (Velickovic et al., 2018), GraphSAGE
(Hamilton et al., 2017) and GIN (Xu et al., 2018). This group of meth-
ods train graph neural networks on the source graph in a supervised
manner, and then they are directly applied to the target graph for eval-
uation. (3) Graph domain adaptation methods: CDNE (Shen et al., 2021),
DANE (Zhang et al., 2019), AdaGCN (Dai et al., 2022), ACDNE (Shen
et al., 2020), UDAGCN (Wu et al., 2020), ASN (Zhang et al., 2021),
TPN (Pan et al., 2019), GRADE (Wu et al., 2023), StruRW (Liu et al.,
2023), SA-GDA (Pang et al., 2023), SpecReg (You et al., 2023) and
DGDA (Cai et al., 2024). Approaches within this group are strong
baselines that are specifically designed to tackle the distribution shift
problem in graph domain adaptation.

Parameter Settings To ensure a fair comparison, we utilize the
source codes released by the authors and their hyper-parameters are
fine-tuned to the optimal values. The node representation dimension is
uniformly set to 128 across all methods, and identical GCN layers are
employed throughout all methods. Our proposed SEPA is implemented
with Pytorch (Paszke et al., 2019) and the model is trained using the
Adam optimizer (Kingma & Ba, 2015). The temperature parameter 𝜏 is

1 https://github.com/yuntaodu/ASN/tree/main/data
2 http://snap.stanford.edu/data/twitch-social-networks.html

https://github.com/yuntaodu/ASN/tree/main/data
http://snap.stanford.edu/data/twitch-social-networks.html
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Table 1
Statistics of Citation dataset.
Dataset Node Edge Attributes Labels Label distribution (#)

1 2 3 4 5

ACMv9 (A) 9360 15,556
6775 5

25.32 26.02 23.92 7.88 18.72
Citationv1 (C) 8935 15,098 21.66 32.97 23.83 6.05 15.75
DBLPv7 (D) 5484 8117 20.47 30.68 27.24 8.74 19.07
Table 2
Statistics of Social dataset.
Dataset Node Edge Attributes Labels Label distribution (#)

1 2

Germany (DE) 9498 153,138 3170 2 39.55 60.45
England (EN) 7126 35,324 45.44 54.56
Table 3
Unsupervised Cross-Domain Node Classification on the Citation Network. The best result is bold and the second best is underlined.

Models D → A C → A A → D C → D A → C D → C Average

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

DeepWalk 19.83 26.23 19.33 21.94 19.87 25.94 17.51 22.57 17.72 21.05 22.76 29.46 19.50 24.53
node2vec 22.05 28.61 17.99 21.76 19.50 24.54 24.98 28.95 25.84 29.89 16.22 21.16 21.09 25.82
ANRL 19.12 29.56 22.04 31.84 23.33 29.54 22.71 25.90 20.93 30.31 18.25 25.99 21.06 28.86

GAT 43.95 52.93 42.14 50.37 41.36 53.80 45.25 55.85 43.64 57.13 50.04 55.52 44.39 54.27
GraphSAGE 57.31 59.22 64.69 65.22 61.80 64.82 66.86 69.96 69.14 71.40 64.90 67.85 64.12 66.41
GIN 56.50 58.98 59.48 60.46 50.49 59.10 63.48 66.27 62.49 68.61 63.21 69.25 59.27 63.78
GCN 59.42 63.35 70.39 70.58 65.29 69.05 71.37 74.53 74.78 77.38 69.79 74.17 68.49 71.51

TPN 62.10 62.99 67.94 67.93 66.73 69.78 72.07 74.65 72.41 74.56 70.09 72.54 68.56 70.41
DANE 53.15 59.88 55.97 63.15 59.50 66.88 66.22 70.42 64.04 72.94 63.69 73.08 60.43 67.72
CDNE 70.45 69.62 75.06 74.22 69.24 71.58 71.34 74.36 76.83 78.76 77.36 78.88 73.38 74.57
UDAGCN 55.89 58.16 67.22 66.80 64.83 66.95 69.46 71.77 60.33 72.15 61.12 73.28 63.14 68.18
ACDNE 72.64 71.29 74.79 73.59 73.59 76.24 75.74 77.21 80.09 81.75 78.83 80.14 75.95 76.70
ASN 71.49 70.15 73.17 72.74 71.40 73.80 73.98 76.36 77.81 80.64 75.17 78.23 73.84 75.32
AdaGCN 69.47 69.67 70.77 71.67 71.39 75.04 72.34 75.59 76.51 79.32 74.22 78.20 72.45 74.92
StruRW 48.32 57.01 51.96 61.04 45.79 58.64 54.90 66.25 48.09 58.50 53.79 64.90 50.47 61.06
SA-GDA 60.59 63.81 58.38 61.74 61.47 68.28 66.69 71.52 62.62 67.74 55.49 63.11 60.87 66.03
GRADE 59.35 63.72 69.34 69.55 63.03 68.22 70.02 73.95 72.52 76.04 69.32 74.32 67.46 70.97
SpecReg 72.34 71.01 73.15 72.04 73.98 75.93 73.64 75.74 78.83 80.55 77.78 79.04 74.95 75.72
DGDA 51.82 53.19 54.11 55.97 52.65 56.71 56.48 60.55 60.87 64.80 61.24 66.15 56.19 59.56

𝐒𝐄𝐏𝐀 74.85 73.83 75.29 73.88 74.78 76.05 76.97 78.08 81.11 82.46 81.74 82.82 77.39 77.79
set to 1.0 by default and the dropout rate for each layer is set to 0.5.
We search the optimal learning rate and weight decay in the range of
{0.1, 0.01, 1𝑒−3, 1𝑒−4, 5𝑒−4}. The trade-off parameters 𝜆𝑎𝑙𝑖𝑔𝑛 and 𝜆𝑒𝑛𝑡 are
set to 0.1 and 0.2, respectively. In accordance with previous works (Dai
et al., 2022; Shen et al., 2020, 2021), we adopt Micro-F1 (Mi-F1) and
Macro-F1 (Ma-F1) scores as the evaluation metrics. The experiments
are repeated five times and we report their mean performance.

5.2. Main results

Table 3 illustrates the node classification performance on citation
networks. The results demonstrate that our proposed SEPA surpasses all
baselines, exhibiting different gains in terms of Macro-F1. Moreover, it
achieves the second-best performance in 4 out of 6 settings with respect
to Micro-F1. The performance improvement can be attributed to the
integration of semantic information into domain alignment through the
utilization of structure enhanced prototype. This incorporation enables
a more effective alignment strategy, leading to improved results.

We have the following key observations. Firstly, the performance
of source-only graph neural networks outperforms hypothesis transfer
approaches. This is not surprising, since the encoder and classifier are
trained separately in hypothesis transfer methods. Thus, it implies that
it is of great importance to establish a shared representation space
for the source and target domains. Secondly, graph domain adaptation
methods generally achieve superior performance compared to source-
only graph neural networks, with the exception of UDAGCN. This
highlights the benefits of addressing domain distribution shift, which
7

improves the model’s generalization ability. For our proposed SEPA,
we have the following analyses:

• Compared with adversarial-based domain adaptation methods (e.g.,
UDAGCN (Wu et al., 2020), AdaGCN (Dai et al., 2022), ASN (Zhang
et al., 2021)), our proposed SEPA can consistently achieve better per-
formance. The reason is that adversarial-based methods often suffer
an unstable training procedure, and it cannot guarantee class-wise
alignment even the discriminator reaches optimal.

• Our model demonstrates significant improvements compared to the
prototype-based domain adaptation method TPN (Pan et al., 2019)
developed for computer vision. This highlights the limitations of
directly applying existing prototype-based domain adaptation algo-
rithms designed for computer vision to cross-domain node classifica-
tion task. It emphasizes the importance of developing methods that
specifically consider the unique characteristics of graphs in domain
adaptation, due to the inherent complexity of graph data and its
non-IID nature.

• Among all the baselines and SEPA, it can be observed that the Micro-
F1 score tends to be higher than the Macro-F1 score in most cases.
This phenomenon can be attributed to the fact that the Micro-F1 score
may be influenced by larger classes if a method incorrectly classifies a
majority of the data into a few classes. On the other hand, the Macro-
F1 score considers the F1 score within each class and is less influenced
by class imbalances. Interestingly, the SEPA approach has narrowed
the gap between Micro-F1 and Macro-F1, indicating its ability to
improve classification results for individual classes rather than blindly

grouping data into a few predominant classes. This highlights the
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Table 4
Unsupervised Cross-Domain Node Classification on the Social Network. The best result
is bold and the second best is underlined.

Models DE→EN EN→DE Average

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Node2vec 46.96 52.64 50.10 54.61 48.53 53.63
DeepWalk 46.54 52.18 49.97 55.08 48.26 53.63

GAT 49.50 54.84 40.08 43.65 44.79 49.25
GCN 54.55 54.77 51.04 62.03 52.80 58.40
GIN 49.91 52.39 44.26 55.26 47.09 53.83

TPN 42.81 54.42 53.58 53.82 48.20 54.12
DANE 53.13 57.00 57.83 60.65 55.48 58.82
UDAGCN 58.19 59.74 56.35 58.69 57.27 59.22
SpecReg 50.30 56.43 46.13 61.45 48.22 58.94
ACDNE 56.31 58.08 57.92 58.79 57.12 58.44
ASN 51.21 55.45 45.90 60.45 48.56 57.95
AdaGCN 35.30 54.56 31.18 40.22 33.24 47.39
StruRW 50.13 56.06 59.68 60.81 54.91 58.44
SA-GDA 37.59 51.62 40.62 60.09 38.91 55.85
GRADE 56.38 56.40 56.83 61.18 56.61 58.79
SpecReg 50.30 56.43 46.13 61.45 48.22 58.94
DGDA 51.60 57.24 51.85 62.70 51.73 59.97

𝐒𝐄𝐏𝐀 57.44 57.90 58.34 63.58 57.89 60.74

Table 5
Performance contribution of each part in SEPA.

Loss D → A A → C D → C

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

𝑠
𝑐𝑙𝑠 59.52 63.52 70.74 70.63 70.01 74.32
+ 𝑡,𝑠

𝑎𝑙𝑖𝑔𝑛 72.27 70.72 74.67 73.40 78.66 79.74
+ 𝑡

𝑒𝑛𝑡 (SEPA) 74.85 73.83 81.11 82.46 81.74 82.82

Table 6
Comparisons among different propagation schemes.
Propagation schemes Ma-F1 Mi-F1

Simple Propagate 73.57 72.08
Adaptive Propagate 73.53 71.98
PageRank 74.85 73.83

capability of SEPA to better preserve the semantic information during
domain adaptation.

Similar to citation networks, we can draw similar conclusions on
social networks. The results are shown in Table 4. In general, our
proposed SEPA outperforms or shows comparable performance among
all the baselines. More specifically, SEPA obtains the highest scores on
and Micro-F1 for the 𝐸𝑁 → 𝐷𝐸 task, and it ranks second in terms of
Macro-F1 for the 𝐷𝐸 → 𝐸𝑁 task. Additionally, we observe that some
domain adaptation methods are outperformed by source-only graph
neural networks, which is caused by negative transfer. This is attributed
to the heterophilic nature of these social graphs, which poses significant
challenges for domain adaptation tasks. It is worth noting that UDAGCN
performs well in social networks while showing poor performance in
citation networks. One possible reason for this discrepancy is that
they incorporate the PPMI matrix to ensure global consistency, which
mitigates the negative affect of heterogeneity in the graph. Finally,
our proposed SEPA demonstrates effective performance across different
types of graphs, which validates its capability in domain adaptation and
answers RQ1.

.3. Ablation study

To investigate the contributions of different components and losses
n our proposed model, we conducted ablation studies on 𝐷 → 𝐴,
→ 𝐶 and 𝐴 → 𝐶.
8

Table 7
Comparisons among different alignments implementation forms. E-Dist and p-MMD are
two distance-based alignment methods. 𝑆𝐸𝑃𝐴𝑖𝑝 and 𝑆𝐸𝑃𝐴 are two self-supervision
based methods.

Tasks Metric E-Dist p-MMD SEPA𝑖𝑝 SEPA

D → A Ma-F1 55.24 52.49 73.03 74.85
Mi-F1 65.15 62.79 72.14 73.83

D → C Ma-F1 77.03 63.44 81.70 81.74
Mi-F1 62.69 76.30 82.64 82.82

The effectiveness of structure enhanced prototype. To verify
the effectiveness of structure enhanced prototypes, we conduct a com-
parison with a variant of SEPA, where the prototypes are estimated
based on the source graph supervised classifier (Eq. (4)), referred to as
the basic prototypes. As depicted in Fig. 3-(a), without using structure
enhanced prototypes causes 15.24% and 2% decrease in Macro-F1. This
indicates that the prototypes estimated by the source graph supervised
classifier are biased due to the existence of domain distribution shift.
Using biased prototypes could lead to misalignment between source
and target domains, resulting in sub-optimal performance.

Impact of different propagation schemes. To explore the influ-
ence of various propagation schemes on SEPA, we conduct additional
experiments on the 𝐷 → 𝐴 task by replacing the original PageRank with
alternative widely used propagation schemes, namely Simple Propa-
gate (Wu et al., 2019) and Adaptive Propagate (Du et al., 2017) which
propagate information with power and accumulated adjacency matrix
respectively. The results, presented in the Table 6, demonstrate that
the performance of SEPA remains consistent regardless of the chosen
propagation scheme. This robustness indicates that our proposed SEPA
is not significantly affected by different propagation schemes. Further-
more, it confirms the effectiveness of SEPA in capturing class-specific
information from the graph structure.

Discussion on the implementation form of class-wise align-
ment. Given that class-wise domain alignment can be implemented in
various forms, we conduct comparisons with three variants of SEPA:
(i) E-Dist: This variant minimizes the Euclidean distance between pro-
totypes with the same semantics. (ii) p-MMD: This approach measures
the class-level domain discrepancy by computing pairwise Reproducing
Kernel Hilbert Space (RKHS) distance between the prototypes of the
same class from different domains (Pan et al., 2019). (iii) SEPA𝑖𝑝: In
contrast to SEPA, which emphasizes prototype–prototype alignment,
SEPA𝑖𝑝 focuses on modeling positive and negative matching between
instances and prototypes across different classes. Specifically, SEPA𝑖𝑝
aims to maximize the similarities between each node and the corre-
sponding target prototype, while minimizing their similarities among
the remaining class prototypes.

We conduct experiments on the 𝐷 → 𝐴 and 𝐷 → 𝐶 tasks, and
the results are presented in Table 7. As we can see, both SEPA𝑖𝑝 and
SEPA outperform the two distance-based methods, namely E-Dist and
p-MMD. This is because the pre-defined distance metrics might not
be appropriate in these scenarios. While the self-supervision based
methods enforce close proximity between prototypes of the same class
in the embedding space, it could result in consistent representation dis-
tribution across different domains and provides greater flexibility. The
performance of SEPA𝑖𝑝 is comparable to that of SEPA, demonstrating
the effectiveness of various self-supervision based alignment methods.
Overall, the prototypical domain alignment in SEPA proves to be highly
effective.

Effectiveness of different losses. Table 5 demonstrates that the
ddition of each loss contributes to the final results without any per-
ormance degradation. The first line, 𝑐𝑙𝑠𝑠 , only considers the source
omain information and performs poorly, indicating that the model
annot be effectively applied to the target graph in this case. The
econd line incorporates the reduction of domain discrepancy by adding
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Fig. 4. Visualization results on target domain embeddings.

𝑎𝑙𝑖𝑔𝑛𝑡,𝑠 to 𝑐𝑙𝑠𝑠 , highlighting the importance of reducing domain dis-
crepancy. Moreover, the increase in Macro-F1 further improves its
performance across different categories. The third line demonstrates
that the utilization of target predictions through minimizing 𝑒𝑛𝑡 can
further boosts its performance, resulting in the complete version of
our proposed SEPA. Therefore, the overall loss function achieves the
best performance, which validates the effectiveness of combining all
the aforementioned modules and answers RQ2.

5.4. Parameter analysis

We perform a sensitivity analysis of the key hyper-parameters in
our proposed SEPA by varying them at different scales. We focus on
providing a detailed description of the sensitivity analysis results based
on Macro-F1 for Macro-F1 and Micro-F1 have similar trends.

Impact of different GNN architectures. We evaluate the perfor-
mance of three commonly used GNN architectures, namely GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018), and GraphSAGE (Hamil-
ton et al., 2017), with the same network layers. As shown in Fig. 3-(b),
the results demonstrate variations among the architectures within a
reasonable range. Among them, GCN achieves the highest performance,
while GAT performs the poorest. This discrepancy could be attributed
to the sub-optimal calculation of attention weights in the target do-
main caused by distribution shift. These findings further motivate our
investigation into graph domain adaptation.

Impact of dimension d. We examine the impact of different dimen-
sion values by considering a range of scales, including {64, 128, 256, 512,
1024}. In the case of 𝐷 → 𝐴, as depicted in Fig. 3-(c), we observe
that setting 𝑑 = 64 yield superior performance compared to other
values. Conversely, in the scenarios of 𝐷 → 𝐶 and 𝐴 → 𝐶, varying
dimension values does not exhibit significant performance differences.
Our findings indicate that achieving good performance in node clas-
sification tasks does not necessarily require a higher representation
dimension, which is beneficial for efficient learning on target domains.
Additionally, employing a large representation dimension could poten-
tially lead to overfitting, thus it is important to select an appropriate
representation dimension.

Impact of the number of network layers l. We further explore
the impact of the number of layers in graph neural networks. Fig. 3-
(d) illustrates the results. Using a shallow graph neural network may
result in underfitting and lead to a decrease in model performance. On
the other hand, employing a deeper network can improve the model’s
9

performance to some extent. However, we notice a decline in perfor-
mance when the number of network layers became excessively large
(e.g., 𝑙 = 4). This finding aligns with the well-known over-smoothing
problem encountered in graph neural networks.

Sensitivity of trade-off parameters. To assess the sensitivity of the
trade-off parameters, we conduct experiments on tasks 𝐷 → 𝐴 and
𝐷 → 𝐶, as depicted in Fig. 3-(e) and (f). In each case, we fix all the
remaining hyper-parameters to their default values. The results indicate
that our proposed SEPA performs well across a range of 𝜆𝑎𝑙𝑖𝑔𝑛 and 𝜆𝑒𝑛𝑡
values, suggesting its robustness in the optimization process.

Sensitivity of 𝜏. The temperature parameter 𝜏 plays a important
role in the prototypical domain alignment, as demonstrated by the
sensitivity analysis in Fig. 3-(g). We observe that a small value of
𝜏 = 0.05 can break the underlying semantic structure and hinder the
formation of alignment features. In contrast, when 𝜏 is larger than 0.5,
the model’s performance is not significantly affected by this parameter.
Therefore, we conclude that the proposed method SEPA is not highly
sensitive to the parameter 𝜏 when it is larger than 0.5. The above
analysis all answered RQ3.

5.5. Convergence verification.

To verify the convergence of our proposed model SEPA, we perform
an experiment on task 𝐷 → 𝐶 and present the convergence curves
in Fig. 3-(h). From the figure, we can observe that the training loss
consistently decreases over iterations, while both the Macro-F1 and
Micro-F1 metrics steadily increase. This indicates that our proposed
model can converge within a reasonable number of iterations, and
according to the convergence curve, SEPA reaches convergence within
just 100 iterations.

5.6. Visualization

In order to gain deeper insights into the discriminative power of
the learned embeddings in the unsupervised cross-domain node clas-
sification task, we conduct a visualization of the node embeddings in
the target domain for the 𝐷 → 𝐴 scenario. We compare our proposed
SEPA with that of hypothesis transfer (DeepWalk), the source-only
method (GCN), and the strongest graph domain adaptation method
(ACDNE). The node embeddings are projected onto a 2-dimensional
space using t-SNE (Van der Maaten & Hinton, 2008). In this projected
space, nodes with similar semantic tend to be close to each other, while
nodes with different semantic appear more distant. To facilitate visual
analysis, we color the nodes based on their labels. As depicted in Fig. 4,
the visualization results reveal that the embeddings learned by our
proposed SEPA exhibit better separations between different clusters.
Clear boundaries are observed between distinct clusters, indicating
the effectiveness of SEPA in learning discriminative embeddings. In
contrast, the embeddings generated by the other methods do not exhibit
compact clusters and show significant overlapping across clusters.

6. Conclusion

In this paper, we study the problem of unsupervised graph domain
adaptation by overcoming the limitation of existing works in capturing
the class-wise semantic relation under domain shift. We propose a novel
framework named SEPA, which is capable of dynamically adjusting
structure enhanced prototype for target graph to implement class-wise
alignment. To learn structure enhanced prototype, our method con-
structs a prototype-based graph to strike a better balance between the
target structure and supervised signals. Furthermore, we also propose
an explicit domain alignment metric to capture their semantic similar-
ity in a self-supervised manner. Extensive experiments demonstrate the
superiority of SEPA in narrowing domain discrepancy.
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