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 A B S T R A C T

Unsupervised Graph Anomaly Detection (UGAD) seeks to identify abnormal patterns in graphs without relying 
on labeled data. Among existing UGAD methods, Graph Neural Networks (GNNs) have played a critical 
role in learning effective representation for detection by filtering low-frequency graph signals. However, the 
presence of anomalies can shift the frequency band of graph signals toward higher frequencies, thereby 
violating the fundamental assumptions underlying GNNs and anomaly detection frameworks. To address 
this challenge, the design of novel graph filters has garnered significant attention, with recent approaches 
leveraging anomaly labels in a semi-supervised manner. Nonetheless, the absence of anomaly labels in real-
world scenarios has rendered these methods impractical, leaving the question of how to design effective 
filters in an unsupervised manner largely unexplored. To bridge this gap, we propose a novel Frequency 
Self-Adaptation Graph Neural Network for Unsupervised Graph Anomaly Detection (FAGAD). Specifically, 
FAGAD adaptively fuses signals across multiple frequency bands using full-pass signals as a reference. It is 
optimized via a self-supervised learning approach, enabling the generation of effective representations for 
unsupervised graph anomaly detection. Experimental results demonstrate that FAGAD achieves state-of-the-art 
performance on both artificially injected datasets and real-world datasets. The code and datasets are publicly 
available at https://github.com/eaglelab-zju/FAGAD.
1. Introduction

A graph anomaly refers to a deviation from the expected normal 
patterns within a graph, based on its intrinsic properties or structural 
characteristics (Kim, Lee, Shin, & Lim, 2022). Recently, Unsupervised 
Graph Anomaly Detection (UGAD) has attracted significant attention 
in both academic research and industrial applications due to its broad 
applicability in real-world graph data. Key domains include network 
security (Ten, Hong, & Liu, 2011), fraud detection (Ngai, Hu, Wong, 
Chen, & Sun, 2011), and health monitoring (Bao, Tang, Li, & Zhang, 
2019). Graph Neural Networks (GNNs) have been widely adopted in 
UGAD (Liu, Dou, et al., 2022) due to their ability to learn discriminative 
representations, enabling effective anomaly detection.

Despite their successes, most existing Graph Anomaly Detection 
(GAD) methods (Ding, Li, Bhanushali, & Liu, 2019; Fan, Zhang, & Li, 
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2020; Jin, Liu, Zheng, Chi, Li, & Pan, 2021; Zhou, Tan, Xu, Huang, 
& Chung, 2021) rely on traditional GNNs with neural message-passing 
schemas for representation learning, such as Graph Convolutional Net-
works (GCN) (Kipf & Welling, 2016) and Graph Attention Networks 
(GAT) (Veličković, Cucurull, Casanova, Romero, Liò, & Bengio, 2017). 
However, these approaches often overlook the potential impact of 
graph anomalies on these GNNs. From a spectral perspective, GNNs 
employing neural message-passing mechanisms can be interpreted as
low-pass filters. Anomalies, characterized by features distinct from their 
local neighborhoods, can shift the graph signal’s frequency band toward 
the high-frequency region (Tang, Li, Gao, & Li, 2022). Consequently, 
GNNs as low-pass filters may fail to capture high-frequency signals, 
leading to the loss of key characteristics that differentiate anomalous 
nodes. This limitation hinders the ability to distinguish anomalous 
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Fig. 1. Comparison of GNN-based graph anomaly detection methods in handling 
different frequency bands.

nodes from normal ones in the representation space. Hence, devel-
oping novel graph filters and GNNs that yield more discriminative 
representations is crucial for advancing anomaly detection. 

Recent studies (Chai, You, Yang, Pu, Xu, Cai, & Jiang, 2022; Gao, 
Wang, He, Liu, Feng, & Zhang, 2023; Tang et al., 2022) have be-
gun addressing this challenge. Specifically, these approaches employ 
multi-channel filters to capture signals across diverse frequency bands,
utilizing semi-supervised labels, as depicted in Fig.  1-(a). However, ob-
taining anomaly labels in practice is often infeasible, limiting the 
applicability of these methods. This raises a critical and practical ques-
tion: How can we adaptively leverage different frequency bands across the 
entire spectrum in an unsupervised manner to learn effective representations 
for graph anomaly detection? Addressing this question is significantly 
more challenging due to the absence of explicit supervision and remains 
an open research problem.

To bridge this gap, we propose a novel Frequency Self-Adaptation
Graph Neural Network for Unsupervised Graph Anomaly Detection 
(FAGAD). Specifically, FAGAD derives three distinct variants of the 
generalized Laplacian smoothing filter — namely, full-pass, low-pass, 
and high-pass filters. Using the full-pass signals as a reference, FAGAD 
adaptively fuses low- and high-frequency signals through a carefully 
designed self-attentional module, optimizing the process in a self-
supervised manner. To further enhance joint training and anomaly de-
tection, we adopt a bootstrapping strategy. An auxiliary target encoder, 
updated via momentum, provides explicit guidance and iteratively 
bootstraps the training of FAGAD. Fig.  1-(b) illustrates the paradigm of 
the proposed method. We evaluate FAGAD on seven datasets, including 
both artificially injected and real-world datasets, against 15 baseline 
models. Experimental results demonstrate the effectiveness and supe-
riority of FAGAD, achieving state-of-the-art performance. Our main 
contributions are summarized as follows:

• We explore adaptive utilization of different frequency bands in an 
unsupervised manner, facilitating the learning of distinguishable rep-
resentations for both normal and anomalous nodes in graph data.

• We propose a novel Frequency Self-Adaptation Graph Neural Network 
(FAGAD) that effectively fuses signals across the entire frequency 
spectrum using a self-supervised approach with bootstrapping.

• Extensive experiments validate the effectiveness of FAGAD, achiev-
ing state-of-the-art performance on both synthetic and real-world 
datasets.
2 
2. Related work

Graph Neural Networks. Spatial GNNs, such as GCN (Kipf & 
Welling, 2016), GAT (Veličković et al., 2017), and GraphSAGE (Hamil-
ton, Ying, & Leskovec, 2017), employ message passing to aggregate 
local node information, enabling the update of node representations. 
In contrast, spectral GNNs, including ChebyNet (Defferrard, Bresson, 
& Vandergheynst, 2016), BernNet (He, Wei, Xu, et al., 2021), and 
JacobiConv (Wang & Zhang, 2022), utilize graph filters, performing 
convolution in the spectral domain to approximate arbitrary filters. 
In the domain of contrastive learning for graph representation, meth-
ods (Ai, Yan, Wang, & Li, 2024; Chen, Lei, & Wei, 2024; Ekbote, 
Deshpande, Iyer, Sellamanickam, & Bairi, 2023) following the training 
scheme of DGI (Veličković, Fedus, Hamilton, Liò, Bengio, & Hjelm, 
2018) pioneered the approach of maximizing mutual information be-
tween local patches and the global graph summary. This enables the 
capture of global information; however, its reliance on negative sam-
pling leads to significant memory overhead. Inspired by BYOL (Grill, 
Strub, Altché, Tallec, Richemond, Buchatskaya, Doersch, Avila Pires, 
Guo, Gheshlaghi Azar, et al., 2020), BGRL (Thakoor, Tallec, Azar, 
Azabou, Dyer, Munos, Veličković, & Valko, 2021) overcomes this lim-
itation by learning node representations without requiring negative 
samples. For a comprehensive overview of advanced GNN models, we 
refer readers to recent surveys (Wu, Pan, Chen, Long, Zhang, & Philip, 
2020; Zhou, Cui, Hu, Zhang, Yang, Liu, Wang, Li, & Sun, 2020).

Graph Anomaly Detection. Dominant (Ding et al., 2019) was 
the first to utilize a graph autoencoder for Graph Anomaly Detection 
(GAD). This approach encodes the graph using a GCN and reconstructs 
node attributes and structure through independent decoders, assigning 
anomaly scores to nodes based on reconstruction errors. CoLA (Liu, Li, 
Pan, Gong, Zhou, & Karypis, 2021) adopts a node-subgraph contrastive 
learning framework, contrasting a node’s subgraph with both its own 
subgraph and those of other nodes. This method performs anomaly 
detection by leveraging differences between positive and negative sam-
ples. ComGA (Luo, Wu, Beheshti, Yang, Zhang, Wang, & Xue, 2022) 
integrates community information through the modularity matrix, pro-
gressively incorporating it into GCN encoding at each layer. Anomaly 
scores are evaluated in a manner similar to Dominant. Semi-supervised 
GAD methods, such as AMNet (Chai et al., 2022), BWGNN (Tang 
et al., 2022), and GHRN (Gao et al., 2023), enhance anomaly detection 
by designing filters to incorporate multi-band signals. However, their 
reliance on fixed filters constrains their capacity for adaptive learning. 
Although these models have achieved significant progress, the chal-
lenge of adaptively integrating signals across different frequency bands 
in an unsupervised manner remains largely unexplored.

3. Methodology

In this section, we present our proposed method FAGAD in detail as 
depicted in Fig.  2. We introduce frequency self-adaptation graph neural 
network, efficiently integrating multiple frequency bands through self-
attentional adaptation, and propose a self-supervised learning frame-
work via bootstrapping for concurrent graph representation learning 
and anomaly detection.

3.1. Notations

Consider an attribute graph  = { ,  ,𝐗,𝐀}, where  = {𝑣1, 𝑣2,
… , 𝑣𝑁} represents the node set with 𝑁 instances. The node attributes 
are denoted as 𝐗 ∈ R𝑁×𝐷. The edge set  is represented by the 
adjacency matrix 𝐀 ∈ R𝑁×𝑁 , where 𝑎𝑖𝑗 = 1 if (𝑣𝑖, 𝑣𝑗 ) ∈  , and 
𝑎𝑖𝑗 = 0 otherwise. 𝐃 = diag(𝑑1, 𝑑2,… , 𝑑𝑁 ) is the degree matrix of 
𝐀, where 𝑑𝑖 =

∑𝑁
𝑗=1 𝑎𝑖𝑗 . By adopting the renormalization trick (Kipf 

& Welling, 2016) �̃� = 𝐀 + 𝐈, the symmetrically normalized graph 
Laplacian matrix is given by 𝐋 = 𝐈 − �̃�− 1

2 �̃��̃�− 1
2 , where �̃� is the degree 

matrix of �̃�. Its eigendecomposition is expressed as 𝐋 = 𝐔𝜦𝐔⊺, where 
𝜦 = diag(𝜆1, 𝜆2,… , 𝜆𝑁 ) denotes the diagonal matrix of eigenvalues, and 
the columns of 𝐔 = [𝐮1,𝐮2,… ,𝐮𝑁 ] ∈ R𝑁×𝑁  denote the orthonormal 
eigenvectors of 𝐋.
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Fig. 2. Overview of FAGAD. (1) A frequency self-adaptation graph neural network  is proposed to adaptively learn the optimal combination of different frequency bands with the 
guidance of the full-pass signals; (2) An unsupervised strategy via bootstrapping is employed to jointly learn node representations and graph anomaly detection.
̃

3.2. Overview of the fagad pipeline

As showed in Fig.  2, FAGAD consists of two key modules: (1) a 
frequency self-adaptation graph neural network, and (2) a bootstrapped 
self-supervised learning strategy for joint node representation learning 
and anomaly detection.

Frequency Self-Adaptation Graph Neural Network: As discussed 
in the Introduction, traditional GNNs act predominantly as low-pass 
filters, making them prone to overlook high-frequency signals associ-
ated with anomalies. To overcome this, we designed frequency self-
adaptation graph neural networkto derive three generalized Lapla-
cian smoothing filters — full-pass, low-pass, and high-pass — that 
decompose the graph signals across the frequency spectrum. This en-
ables FAGAD to capture and preserve critical anomalous patterns typ-
ically encoded in high-frequency components, while still retaining the 
low-frequency information necessary for modeling the overall graph 
structure.

Self-attentional Frequency Adaptation Module: Simply concate-
nating signals from different bands risks introducing irrelevant informa-
tion and noise. Therefore, we propose a self-attentional fusion module 
that adaptively weighs low- and high-frequency signals with respect 
to the full-pass reference. This design allows FAGAD to dynamically 
emphasize the most informative frequency components for each node, 
rather than relying on fixed or heuristic weighting, thus enhancing the 
expressiveness and anomaly sensitivity.

Self-supervised Learning via Bootstrapping (without data aug-
mentation): Inspired by the success of bootstrapping strategies like 
BYOL, we incorporate a target encoder updated via an Exponential 
Moving Average (EMA) mechanism. This allows the model to gradually 
stabilize its node representations and improve detection robustness. 
Importantly, unlike traditional contrastive learning, we omit data aug-
mentation, as augmentations (e.g., edge dropout, feature masking) can 
introduce artificial anomalies, which are undesirable in unsupervised 
anomaly detection tasks. Removing augmentation preserves the graph’s 
integrity and focuses learning on real anomalies.

Dual Decoder for Attribute and Structure Reconstruction: To 
simultaneously capture anomalies in both node attributes and graph 
structure, we employ dual reconstruction decoders — one for at-
tributes and one for the adjacency matrix. This dual-objective design 
ensures that FAGAD can comprehensively detect diverse anomaly types 
(e.g., nodes with anomalous features, nodes connected inconsistently 
with their local community).

In summary, each architectural choice in FAGAD is carefully moti-
vated by the unique challenges of unsupervised GAD — particularly the 
need to capture multi-pass signals, adaptively weigh signals, stabilize 
representations without supervision, and handle both attribute and 
structural irregularities.
3 
3.3. Frequency self-adaptation graph neural network

According to the graph signal processing theory (Shuman, Narang, 
Frossard, Ortega, & Vandergheynst, 2012), the eigenvectors 𝐔 of the 
graph Laplacian matrix 𝐋 serve as the graph Fourier basis, and the 
eigenvalues 𝜦 are referred to as frequencies. Therefore, signals 𝐱 ∈ R𝑁×1

can be decomposed using the graph Fourier basis 𝐔 = [𝐮1,𝐮2,… ,𝐮𝑁 ]: 

𝐱 = 𝐔𝐩 =
𝑁
∑

𝑖=1
𝑝𝑖𝐮𝑖, (1)

where 𝐩 ∈ R𝑁×1 is the coefficient for the decomposition. Since the 
eigenvectors are orthonormal 𝐔⊺𝐔 = 𝐈, the signals after the graph 
filtering process can be represented as: 
𝐱 = 𝑔𝜃 ⋆ 𝐱 = 𝐔𝑔𝜃(𝜦)𝐔⊺𝐱 = 𝜣𝐱

= 𝐔𝑔𝜃(𝜦)𝐔⊺𝐔𝐩 = 𝐔𝑔𝜃(𝜦)𝐩 =
𝑁
∑

𝑖=1
𝑔𝜃(𝜆𝑖)𝑝𝑖𝐮𝑖,

(2)

where 𝑔𝜃 is a function of the eigenvalues 𝜦, and the matrix 𝜣 =
𝐔𝑔𝜃(𝜦)𝐔⊺ can be seen as the matrix form of the filter. To measure the 
smoothness of the signals, the Rayleigh quotient (Horn & Johnson, 2012) 
over ̃𝐱 is calculated as: 

𝑅(�̃�,𝐋) = �̃�⊺𝐋�̃�
�̃�⊺�̃�

=
∑𝑁

𝑖=1[𝑔𝜃(𝜆𝑖)𝑝𝑖]
2𝜆𝑖

∑𝑁
𝑖=1[𝑔𝜃(𝜆𝑖)𝑝𝑖]2

. (3)

For low-pass filters, the aim is to attain smoother signals by filtering out 
the high-frequency components while preserving low-frequency com-
ponents. In this context, according to (3), [𝑔𝜃(𝜆𝑖)]2 should decrease as 
the frequency 𝜆𝑖 increases. This characteristic ensures the suppression 
of higher frequencies. Conversely, the filter is referred to as a high-pass
filter (Cui, Zhou, Yang, & Liu, 2020).

3.3.1. Multi-pass graph filter
As highlighted in the introduction, a fundamental necessity for 

GNNs in GAD is the ability to effectively capture signals of varying 
frequencies. To address this requirement, we employ three distinct 
types of graph filters, each derived from different variants of the gener-
alized Laplacian smoothing filter (Taubin, 1995), namely the full-pass, 
low-pass, and high-pass filters: 
𝜣𝑓 = 𝐈,𝜣𝑙 = 2𝐈 − 𝐋,𝜣ℎ = 𝐋 (4)

where 𝐈 is an identity matrix. Thus the filtered signals �̃� = 𝜣𝐗 ∈ R𝑁×𝐷

where 𝜣 can be one of 𝜣𝑓 , 𝜣𝑙 and 𝜣ℎ.
It should be noted that 𝜣𝑓  simply passes all the signals without 

applying any filtering to the original features, thus being a full-pass 
filter. Meanwhile, we can prove that 𝜣𝑙 and 𝜣ℎ are low-pass and 
high-pass with the corresponding Rayleigh quotients as shown below: 

𝑅(�̃�,𝜣𝑙) =
∑𝑁

𝑖=1(2 − 𝜆𝑖)2𝑝2𝑖 𝜆𝑖
∑𝑁

𝑖=1(2 − 𝜆𝑖)2𝑝2𝑖
, (5)

𝑅(�̃�,𝜣ℎ) =
∑𝑁

𝑖=1 𝜆
2
𝑖 𝑝

2
𝑖 𝜆𝑖

∑𝑁 2 2
. (6)
𝑖=1 𝜆𝑖 𝑝𝑖
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Proof.  According to (5), [𝑔𝜃(𝜆𝑖)]2 of the filter 𝜣𝑙 is (2−𝜆𝑖)2. Considering 
that the eigenvalues 𝜆𝑖 of 𝐋 fall within the range [0, 2] (Shuman, 
Narang, Frossard, Ortega, & Vandergheynst, 2013), and (2 − 𝜆𝑖)2 de-
creases as 𝜆𝑖 increases within the range, the filter 𝜣𝑙 functions as a 
low-pass filter. Conversely, according to (6), [𝑔𝜃(𝜆𝑖)]2 = 𝜆2𝑖  for 𝜣ℎ
results in an increase as 𝜆𝑖 increases. Therefore, 𝜣ℎ serves as a high-pass 
filter. □

To more effectively capture the distinct high frequencies that are 
closely associated with anomalies, we expand the high-pass filter 𝛩ℎ
into a series of variants, each possessing different high-pass capabilities: 

𝜣(𝑘)
ℎ = 𝐋𝑘, 𝑘 ∈ {1, 2,… , 𝐾}, (7)

where [𝑔𝜃(𝜆𝑖)]2 = (𝜆𝑘𝑖 )
2, and their Rayleigh quotients are: 

𝑅(�̃�,𝜣(𝑘)
ℎ ) =

∑𝑁
𝑖=1 𝜆

2𝑘
𝑖 𝑝2𝑖 𝜆

𝑘
𝑖

∑𝑁
𝑖=1 𝜆

2𝑘
𝑖 𝑝2𝑖

. (8)

By increasing the value of 𝑘, 𝜣(𝑘)
𝑙  will progressively emphasize the 

capture of higher frequencies. This can be observed as 𝜆𝑘𝑖 ≥ 𝜆𝑖 within 
the range of high frequencies 𝜆𝑖 ∈ [1, 2].

3.3.2. Self-attentional frequency adaptation
After capturing signals of different frequencies, the subsequent chal-

lenge lies in selectively integrating these signals in a manner that 
optimally preserves the most relevant information, instead of employ-
ing a simplistic summarization approach. To address this challenge, 
a self-attention mechanism is employed. Prior to that, a multilayer 
perceptron (MLP) is utilized for feature extraction from the filtered 
signals: 𝐇 = �̃�𝐖, where 𝐇 ∈ R𝑁×𝑑 represents the latent embedding, 
and 𝐖 ∈ R𝐷×𝑑 denotes the weight matrix. We refer to the embeddings 
obtained from the full-pass, low-pass, and high-pass signals as 𝐇𝑓 , 𝐇𝑙, 
and 𝐇(𝑘)

ℎ , respectively.
Next, we utilize the full-pass embedding as the query matrix 𝐐 and 

use the low- and high-pass embedding to form the key matrices 𝐊(𝑚)

and value matrices 𝐕(𝑚): 

𝐐 = 𝐇𝑓𝐖qry, (9)

𝐊(𝑚) =

{

𝐇𝑙𝐖key,  if 𝑚 = 0,
𝐇(𝑘)

ℎ 𝐖key,  if 𝑚 = 𝑘 ∈ {1, 2,… , 𝐾},
(10)

𝐕(𝑚) =

{

𝐇𝑙𝐖val,  if 𝑚 = 0,
𝐇(𝑘)

ℎ 𝐖val,  if 𝑚 = 𝑘 ∈ {1, 2,… , 𝐾},
(11)

where 𝐖qry, 𝐖key, 𝐖val ∈ R𝑑×𝑑′  are the weight matrices. The value 𝐾
represents the maximum power of the high-pass filters defined in (8). 
Each row 𝐪𝑖, 𝐤(𝑚)𝑖 , and 𝐯(𝑚)𝑖  of 𝐐, 𝐊(𝑚), and 𝐕(𝑚) denotes the query, key 
and value embedding of node 𝑣𝑖, respectively.

Subsequently, the self-attention score 𝛼(𝑚)𝑖  of node 𝑣𝑖 with the 𝑚th 
key 𝐤(𝑚)𝑖  can be calculated as follows: 

𝛼(𝑚)𝑖 =
exp(𝑤(𝑚)

𝑖 )
∑𝐾

𝑚=0 exp(𝑤
(𝑚)
𝑖 )

, 𝑤(𝑚)
𝑖 =

𝐪𝑖𝐤
(𝑚)
𝑖

√

𝑑𝑖
, (12)

where 𝑑𝑖 is the dimension of node embedding. Finally, by combining 
the value vectors 𝐯𝑖 with the obtained attention weights, the embedding 
𝐳𝑖 can be obtained by: 

𝐳𝑖 =
𝐾
∑

𝑚=0
𝛼(𝑚)𝑖 𝐯(𝑚)𝑖 . (13)

In this self-attention mechanism, the keys associated with the largest 
attention weights tend to preserve the most information from the 
signals, as they exhibit the highest similarity to the full-pass signals.
4 
Therefore, this characteristic enables the final embedding 𝐳𝑖 to adaptively 
learn the optimal combination of different frequency bands.

3.4. Self-supervised learning via bootstrapping

With the adaptive capture of different frequency bands, the chal-
lenge of jointly learning node representations and anomaly detection 
arises. Here, we employ the bootstrapping strategy for self-supervised 
training, drawing inspiration from BYOL (Grill et al., 2020). However, 
we have implemented a crucial modification by excluding data aug-
mentation from the strategy, which aims to prevent the introduction of 
additional anomalous information during the training process.

3.4.1. Self-supervised graph representation learning
To begin with, we utilize two frequency self-adaptation graph neural 

networks followed by a projection head as encoders with different pa-
rameter sets to obtain node representations, namely an online encoder 
𝜃 and a target encoder 𝜙: 

𝐙𝑜 = 𝑓𝜃(𝜃(𝐗,𝐀)), 𝐙𝑡 = 𝑓𝜙(𝜙(𝐗,𝐀)), (14)

where 𝜃 and 𝜙 represent the encoder and projection head parameters. 
The online representation 𝐙𝑜 is then fed into a node-level predictor 𝑝𝜃 , 
which outputs a prediction of the target representation: 

�̃�𝑜 = 𝑝𝜃(𝐙𝑜). (15)

Updating the online encoder 𝜃 . The parameters 𝜃 of the online en-
coder are updated by minimizing the mean squared error loss between 
the online prediction representation �̃�𝑜 and target representation 𝐙𝑡. 
By applying normalization, the loss can be simplified into a cosine 
similarity-related loss: 

𝑠𝑖𝑚 = ‖�̃�𝑜 − 𝐙𝑡‖
2
2 = 2𝑁 − 2

𝑁

𝑁−1
∑

𝑖=0

�̃�𝑜,𝑖 ⋅ 𝐙𝑡,𝑖

‖�̃�𝑜,𝑖‖2 ⋅ ‖𝐙𝑡,𝑖‖2
. (16)

The Adam optimizer is used to optimize the 𝜃 parameter with a learning 
rate 𝜂: 𝜃 ← optimize

(

𝜃, 𝜂, 𝜕𝜃𝑠𝑖𝑚
)

.
Updating the target encoder 𝜙. The parameters 𝜙 of the target 

encoder are updated using momentum (Haynes, Corns, & Venayag-
amoorthy, 2012) with an exponential moving average (EMA) of 𝜃 in 
the online encoder: 

𝜙 ← 𝜏𝜙 + (1 − 𝜏)𝜃, (17)

where 𝜏 is the decay rate.

3.4.2. Anomaly detection
In our approach, we follow the approach of Dominant (Ding et al., 

2019) for anomaly scoring, based on graph structure and node attribute 
reconstruction: 

𝑅𝑠 = ‖𝐀 − �̂�‖22, 𝑅𝑎 = ‖𝐗 − �̂�‖22, (18)

where �̂� = 𝛿(𝐙𝑜𝐙
⊺
𝑜) and �̂� = 𝜎 (𝐙𝑜,𝐀). 𝛿 is the sigmoid function, 

and 𝜎 stands for a decoder that shares the same architecture as the 
encoders. Then the objective function of our anomaly detection module 
is expressed as: 

𝑟𝑒𝑐 = (1 − 𝛼)𝑅𝑠 + 𝛼𝑅𝑎, (19)

where 𝛼 controls the balance between the two reconstructions. Finally, 
the anomaly score 𝐬𝑖 is defined as: 

𝐬𝑖 = (1 − 𝛼) ‖
‖

𝐚𝑖 − �̂�𝑖‖‖2 + 𝛼 ‖
‖

𝐱𝑖 − �̂�𝑖‖‖2 , (20)

where higher scores indicate greater anomalousness.
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3.4.3. Joint optimization
We jointly optimize each component of the FAGAD model as fol-

lows: 
 = 𝛽𝑠𝑖𝑚 + (1 − 𝛽)𝑟𝑒𝑐 , (21)

where 𝛽 controls the balance between the impacts of reconstruction loss 
and bootstrapping loss.

As the self-supervised learning progresses, the target encoder adapts 
to the evolving representations of the online encoder according to 
the momentum update in (17), which in turn enhances the anomaly 
detection module’s ability in the online encoder with 𝑠𝑖𝑚 to identify 
anomalous nodes based on the learned target representations.

3.5. Parameter count and complexity analysis

3.5.1. Parameter count analysis
Self-attentional Frequency Adaptation Module (Encoder). The 

self-attentional frequency adaptation module mainly introduces learn-
able parameters through multilayer perceptrons (MLPs) and attention-
related transformations. (1) Feature Projection MLP: Given the input 
filtered signal �̃� ∈ R𝑁×𝐷, a one-layer MLP projects it into a latent space: 
𝐇 = �̃�𝐖, where 𝐖 ∈ R𝐷×𝑑 is the trainable weight matrix. Parameter 
count: 𝐷×𝑑. (2) Attention Transformation: For computing the query, 
key, and value embeddings, the following learnable matrices are intro-
duced: 𝐖qry,𝐖key,𝐖val ∈ R𝑑×𝑑′ . Parameter count: 3 × (𝑑 × 𝑑′). Thus, 
the total number of parameters in this module is: P1 = 𝐷×𝑑+3×(𝑑×𝑑′).

Self-supervised Learning via Bootstrapping. The self-supervised 
framework contains two encoders (online and target), each compris-
ing: (1) Decoder (i.e., frequency self-adaptation graph neural net-
work): The decoder consists of the same architecture of the encoder: 
Paramsde = 𝑑′ × 𝑑 + 3 × (𝑑 × 𝐷). (2) Projection Head 𝑓𝜃 and 𝑓𝜙: The 
projection head is: 𝑓 ∶ R𝑑′ → R𝑑𝑝 , with parameter count: 𝑑′ × 𝑑𝑝.
(3) Predictor 𝑝𝜃: Similarly, the predictor is: 𝑝𝜃 ∶ R𝑑′ → R𝑑𝑝 , with 
parameter count: 𝑑′ × 𝑑𝑝. Since the target encoder 𝜙 is updated via 
EMA and not directly optimized, we only count parameters once for 
the online branch. Thus, the total number of parameters in this module 
is: P2 = 𝑑′ × 𝑑 + 3 × (𝑑 ×𝐷) + 2(𝑑′ × 𝑑𝑝).

Therefore, the total parameter count of FAGAD is: 
ParamsTotal = 𝑃1 + 𝑃2 = 4(𝐷𝑑 + 𝑑𝑑′) + 2(𝑑′𝑑𝑝). (22)

3.5.2. Complexity analysis
Multi-pass Graph Filtering: Each graph filter requires multiplying 

the graph Laplacian 𝐋𝑘 with node features 𝐗, which takes 𝑂(𝑁2𝐷) per 
filter. With 𝐾 high-pass filters and one low-pass filter, the total cost is 
𝑂1 = 𝑂((𝐾 + 1)𝑁2𝐷).

Frequency Self-Adaptation Graph Neural Network: First, the cost 
of the feature extraction from the filtered signals before frequency self-
adaptation graph neural network is 𝑂((𝐾 +1)𝑁𝐷𝑑). Second, projecting 
filtered features into queries, keys, and values requires 𝑂(𝑁𝑑𝑑′) for 
each projection. The attention computation across 𝐾 + 1 frequency 
bands takes 𝑂(𝑁(𝐾 + 1)𝑑′). Combined, this stage costs 𝑂2 = 𝑂((𝐾 +
1)𝑁𝐷𝑑 +𝑁𝑑𝑑′ +𝑁(𝐾 + 1)𝑑′).

Self-supervised Learning: Adjacency reconstruction incurs 𝑂(𝑁2𝑑′)
while attribute reconstruction with a decoder of the same architecture 
as the encoders adds 𝑂((𝐾 + 1)𝑁𝑑′𝑑 + 𝑁𝑑𝐷 + 𝑁(𝐾 + 1)𝐷). The boot-
strapping loss 𝑠𝑖𝑚 contributes 𝑂(𝑁𝑑′𝑑𝑝) for projections. Combined, 
this stage costs 𝑂3 = 𝑂(𝑁2𝑑′+(𝐾+1)𝑁𝑑′𝑑+𝑁𝑑𝐷+𝑁(𝐾+1)𝐷+𝑁𝑑′𝑑𝑝).

The overall time complexity per iteration is dominated by: 
𝑂total =𝑂1 + 𝑂2 + 𝑂3

=𝑁2 [(𝐾 + 1)𝐷 + 𝑑′
]

+

𝑁
[

(𝐾 + 1)(𝐷𝑑 + 𝑑′ + 𝑑′𝑑 +𝐷) + 𝑑𝑑′ + 𝑑′𝑑𝑝 +𝐷𝑑
]

.

(23)

The quadratic terms 𝑂(𝑁2(𝐾 + 1)𝐷) and 𝑂(𝑁2𝑑′) arise from dense 
graph filtering and adjacency reconstruction, which can be optimized 
via sparse matrix operations for real-world graphs. The linear terms 
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𝑂(𝑁) ensures scalability to large node sets. Compared to standard GCNs 
(𝑂(||𝐷𝑑)), FAGAD trades spatial complexity for enhanced frequency 
awareness, justified by its anomaly detection gains. Efficiency evaluation 
compared to various baselines across different datasets in Section 4.7 also 
showed the competitive efficiency of FAGAD.

4. Experiments

In this section, we present extensive experiments to evaluate the 
effectiveness of the proposed FAGAD method.

4.1. Datasets and baselines

We conduct a series of experiments encompassing two artificially 
injected social network datasets, namely Flickr and BlogCatalog (Tang 
& Liu, 2009), along with six real-world datasets: Amazon (Sánchez, 
Müller, Laforet, Keller, & Böhm, 2013), Enron (Sánchez et al., 2013), 
Reddit, Wiki (Kumar, Zhang, & Leskovec, 2019), and Facebook (Xu, 
Huang, Zhao, Dong, & Li, 2022). For the statistics information regard-
ing these datasets, please refer to Table  2. In the case of the injected 
datasets, we adhere to the injection methodology outlined in Ding et al. 
(2019).

We compare FAGAD with 15 state-of-the-art unsupervised base-
lines, categorized into four groups: (1) Autoencoder-based UGAD meth-
ods: Dominant (Ding et al., 2019), AnomalyDAE (Fan et al., 2020), 
GUIDE (Yuan, Zhou, Yu, Huang, Chen, & Xia, 2021), DONE (Bandy-
opadhyay, Lokesh, Vivek, & Murty, 2020), DMGD (Bandyopadhyay, 
Vishal Vivek, & Murty, 2020) and GADNR (Roy, Shu, Li, Yang, Elshocht, 
Smeets, & Li, 2024). (2) Contrastive Learning-based UGAD methods:
CoLA (Liu et al., 2021), SL-GAD (Zheng, Jin, Liu, Chi, Phan, & Chen, 
2021), ANEMONE (Jin et al., 2021), and CONAD (Xu et al., 2022). 
(3)Other UGAD methods: ComGA (Luo et al., 2022), AAGNN (Zhou 
et al., 2021), GAAN (Chen, Liu, Wang, Dai, Lv, & Bo, 2020), TAM (Qiao 
& Pang, 2023), and OCGNN (Wang, Jin, Du, Cui, Tan, & Yang, 2021).

4.2. Experimental settings and implementation details

We adopted the Area Under the Curve (AUC) as our performance 
measurement. To ensure the reliability of the outcomes, we conducted 
each experiment five times using different seeds. The results are pre-
sented as the mean and standard deviation, as depicted in Table  2. 
Hyperparameter settings are detailed in Table  1. The source code 
and datasets are publicly available at https://github.com/eaglelab-zju/
FAGAD. To provide a comprehensive understanding of our framework, 
we elaborate here on the architecture and hyperparameter settings used 
in our experiments as follows.

Detailed Pipeline Architecture: (1) Encoder Structure: The encoder 
is a frequency self-adaptation graph neural network. The hidden di-
mension ℎ varies per dataset, as detailed in Table  1, ranging from 
128 (Reddit) to 2048 (Enron and Facebook). (2) Attribute Decoder:
The same architecture as the encoder is employed to reconstruct node 
attributes 𝐗. (3) Structure Decoder: Node embeddings are used to ap-
proximate the adjacency matrix via inner products. (4) Predictor 𝜃 :
MLPs with batch normalization (BN) and ReLU activation project the 
online encoder outputs before computing the bootstrapping loss. (5)
Loss Functions: The model jointly minimizes the reconstruction loss rec
and the bootstrapping loss sim, balanced by a coefficient 𝛽.

Detailed Architecture of the Frequency Self-adaptation Graph 
Neural Network: (1) Multi-pass Graph Filters: The input embeddings are 
filtered into multiple frequency bands: low-pass (𝐻𝑙), full-pass (𝐻𝑓 ), 
and multiple high-pass (𝐻 (𝑘)

ℎ ) frequencies. The maximum order 𝐾 of 
high-pass filters is dataset-specific (e.g., 𝐾 = 5 for BlogCatalog, 𝐾 =
2 for Wiki). (2) Self-attentional Frequency Adaptation: Multi-frequency 
features are first transformed by matrices 𝐖𝑞𝑟𝑦, 𝐖𝑘𝑒𝑦, and 𝐖𝑣𝑎𝑙. The 
query-key attention computes similarity scores across different fre-
quency components, normalized via scale and softmax operations. The 

https://github.com/eaglelab-zju/FAGAD
https://github.com/eaglelab-zju/FAGAD
https://github.com/eaglelab-zju/FAGAD
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Table 1
Hyperparameter Settings. Blog. is short for BlogCatalog. ℎ is the dimension of the encoder output, while 𝜏 denotes the decay rate of updating the target encoder. K represents the 
maximum order of the high-pass Laplacian filters, and lr is short for learning rate. 𝛼 denotes the rate to control the balance between structure and attribute reconstruction. 𝛽 is 
the rate to control the balance between reconstruction loss and bootstrapping loss.
 Flickr Blog. Amazon Reddit Wiki Enron Facebook 
 ℎ 512 1024 512 128 1024 2048 2048  
 𝜏 0.9 0.9999 0.99 0.99 0.999 0.9999 0.99  
 K 2 5 1 3 2 2 8  
 lr 1e−3 1e−3 1e−3 1e−4 1e−5 1e−3 1e−3  
 𝛼 0.99 0.99 0.2 0.99 0.001 0.99 0.1  
 𝛽 0.9 0.1 0.9 0.5 0.9 0.5 0.9  
Table 2
AUC (%) of All Baselines. The best results are in bold , and the second-best results are underlined. A.R. denotes the anomaly rates. 
 

Da
ta
se
t

Injected anomaly Ground-truth anomaly
 Flickr BlogCatalog Amazon Reddit Wiki Enron Facebook

Av
g.
 Ra

nk

 
 #nodes 7575 5196 1418 10,984 8227 13,533 1081  
 #edges 239,738 171,743 7390 168,016 752,879 353,974 55,104  
 #feats 12,047 8189 21 64 64 18 576  
 #A.R. 5.94% 5.77% 1.97% 3.33% 2.64% 0.04% 2.31%  
 

 U
ns
up
er
vi
se
d M

et
ho
ds

DOMINANT 61.70 ± 0.69 57.80 ± 1.30 48.33 ± 5.62 55.99 ± 0.09 49.30 ± 0.12 71.59 ± 0.35 48.02 ± 0.18 12.43  
 AnomalyDAE 73.37 ± 0.55 63.19 ± 0.44 53.56 ± 1.64 55.81 ± 0.30 52.38 ± 0.61 57.77 ± 1.79 83.13 ± 1.89 9.0  
 ComGA 65.93 ± 0.57 62.86 ± 1.24 55.06 ± 3.58 55.26 ± 0.21 51.92 ± 0.42 61.19 ± 0.91 82.03 ± 0.38 10.0  
 CoLA 59.03 ± 0.15 62.43 ± 1.02 46.45 ± 3.83 55.14 ± 1.55 56.23 ± 0.24 52.67 ± 1.68 96.73 ± 0.55 10.14  
 SLGAD 73.11 ± 0.33 71.63 ± 0.27 46.74 ± 9.93 60.02 ± 0.87 52.97 ± 0.47 57.87 ± 1.00 84.62 ± 7.52 7.86  
 ANEMONE 49.60 ± 1.59 49.67 ± 2.26 48.92 ± 2.04 52.85 ± 0.99 54.50 ± 0.58 50.84 ± 9.81 92.86 ± 1.55 11.71  
 AAGNN 75.26 ± 0.76 73.76 ± 1.33 38.50 ± 8.19 54.31 ± 0.86 43.80 ± 0.60 49.79 ± 9.42 63.72 ± 3.32 11.86  
 GUIDE 74.07 ± 0.44 74.81 ± 1.16 53.94 ± 0.21 56.18 ± 0.44 51.18 ± 0.12 49.19 ± 0.06 54.34 ± 0.74 9.86  
 DONE 73.22 ± 0.97 74.69 ± 1.04 57.98 ± 3.84 56.28 ± 1.13 48.72 ± 0.73 73.36 ± 0.05 91.09 ± 0.21 6.57  
 CONAD 76.39 ± 0.69 78.03 ± 0.15 55.12 ± 4.49 57.08 ± 3.59 47.32 ± 1.99 73.84 ± 1.04 59.42 ± 12.95 6.57  
 GAAN 63.47 ± 7.72 56.35 ± 10.71 58.83 ± 2.21 56.21 ± 1.07 53.24 ± 0.99 73.11 ± 0.00 58.20 ± 5.63 9.14  
 DMGD 57.69 ± 1.37 58.17 ± 1.93 54.18 ± 3.52 58.88 ± 2.48 52.12 ± 1.09 71.95 ± 2.55 66.83 ± 10.66 9.71  
 OCGNN 66.36 ± 0.35 59.58 ± 0.54 63.03 ± 1.74 55.67 ± 6.89 58.16 ± 1.95 77.27 ± 3.91 90.44 ± 0.82 6.57  
 TAM 68.78 ± 4.66 75.37 ± 0.03 56.15 ± 2.55 60.20 ± 0.3 53.90 ± 0.49 56.60 ± 4.31 93.33 ± 1.60 5.29  
 GADNR 67.88 ± 1.16 66.00 ± 1.31 53.04 ± 2.06 56.95 ± 2.62 52.59 ± 2.73 73.56 ± 1.52 76.21 ± 7.26 8.0  
 FAGAD (Ours) 76.82 ± 0.07 79.03 ± 0.29 70.22 ± 0.30 63.97 ± 0.37 63.77 ± 0.01 78.41 ± 0.06 93.08 ± 0.01 1.29  
 
s 
attention weights are applied to value vectors and aggregated by sum 
pooling. (3) Final Prediction Layer: An MLP layer maps the aggregated 
representation to the task-specific output.

Training: (1) Optimizer: Adam optimizer is used throughout with a 
learning rate (lr) specified per dataset (e.g., 1e−3 for Flickr, 1e−5 for 
Wiki). Weight decays are set to 0 for most datasets, except for Reddit 
and Amazon with 0.00001 as specified. (2) Dropout: A dropout rate of 
0.1 or 0.2 is applied in the predictor MLP as indicated in the training 
scripts. (3) Number of Layers: Encoder and predictor MLPs each consist 
of two linear layers. The attention module utilizes one-layer attention 
heads over frequency-filtered features.

The complete list of hyperparameters per dataset, including the 
dimension of hidden features ℎ, the EMA decay rate 𝜏, filter order 𝐾, 
learning rates lr and balance factors 𝛼 and 𝛽, is provided in Table  1.

4.3. Performance analysis

In this subsection, we evaluate the performance of the proposed FA-
GAD, with the results summarized in Table  2. Several key observations 
can be drawn from the analysis.

First, FAGAD demonstrates consistent performance across the ma-
jority of datasets, achieving an average ranking of 1.29, significantly 
outperforming the second-best method, which achieves an average 
ranking of 5.29. Specifically, in graphs with injected anomaly labels, 
FAGAD surpasses all baseline methods, highlighting its ability to effec-
tively identify nodes with manually injected structural and attribute 
anomalies. Furthermore, FAGAD exhibits substantial improvements 
over state-of-the-art methods on most real-world datasets, demonstrat-
ing its capability to detect unknown types of anomalous nodes within 
graphs. Notably, on the Amazon dataset, FAGAD achieves an AUC 
of 70.22%, outperforming the second-best method (OCGNN, 63.03%) 
by 11.4%. Similarly, on the Wiki dataset, FAGAD achieves an AUC 
6 
of 63.77%, representing a significant improvement of 9.6% over the 
next-best method (58.16%). This stability is particularly pronounced in 
datasets with varying anomaly rates (A.R.), underscoring the robustness 
of FAGAD’s multi-pass signal integration architecture.

In contrast, baseline methods exhibit inconsistent performance across
injected and real-world anomaly datasets. For example, CONAD achieve
strong results on the BlogCatalog dataset with an AUC of 78.03%, but 
its performance declines significantly on real-world datasets. Similarly, 
while CoLA and DMGD excel on the real-world Facebook datasets, 
achieving top-tier AUCs, they struggle on injected datasets such as 
Flickr and BlogCatalog. In comparison, FAGAD consistently adapts 
to both injected and real-world anomaly datasets, emphasizing its 
balanced and versatile capabilities.

A key differentiating factor of FAGAD lies in its use of multi-
pass signal fusion, which sets it apart from existing graph anomaly 
detection methods. By effectively aggregating and integrating informa-
tion across multiple channels, FAGAD captures complex neighborhood 
relationships that other models fail to exploit. This ability to lever-
age multi-pass signals enables FAGAD to uncover subtle anomalies 
and ensures generalizability across diverse graph structures, making it 
particularly well-suited for graph anomaly detection tasks.

4.4. Visualization of attention distribution

We conducted an analysis of attention weight distribution on the 
Reddit dataset. This analysis aims to confirm whether the model can 
effectively combine multiple frequency bands to capture comprehen-
sive information regarding anomalies. As depicted in Fig.  3, as the 
filter leans toward high-pass, the attention weights of anomalous nodes 
progressively surpass those of normal nodes. This signifies our model’s 
ability to adaptively harness signals from various frequency bands, 
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Table 3
AUC (%) of Ablation Studies for Filter Designs on Different Datasets. The best results are in bold, and the second-best results are underlined.
 Dataset Injected anomaly Ground-truth anomaly
 Flickr BlogCatalog Amazon Reddit Wiki Enron  
 FAGAD-GCN 75.76 ± 0.34 75.45 ± 0.75 53.60 ± 1.01 46.49 ± 0.93 49.25 ± 0.21 72.22 ±  7.35 
 FAGAD-GAT 76.13 ± 0.00 76.02 ± 0.00 49.68 ± 0.50 57.32 ± 0.01 52.32 ± 0.04 60.04 ± 0.83  
 FAGAD-Cheb 76.09 ± 0.00 76.02 ±  0.00 65.14 ±  0.00 57.78 ±  0.01 48.11 ± 0.01 47.53 ± 10.60 
 FAGAD-Bern 76.35 ±  0.03 75.40 ± 0.14 38.01 ± 0.42 55.47 ± 0.11 53.57 ±  0.05 27.91 ± 0.51  
 FAGAD 𝟕𝟕.𝟎𝟐 ± 𝟎.𝟎𝟎 𝟕𝟖.𝟑𝟒 ± 𝟎.𝟎𝟓 𝟕𝟎.𝟖𝟔 ± 𝟎.𝟎𝟏 𝟔𝟒.𝟑𝟔 ± 𝟎.𝟑𝟗 𝟔𝟑.𝟕𝟕 ± 𝟎.𝟎𝟏 𝟕𝟖.𝟑𝟗 ± 𝟎.𝟐𝟐  
 

Fig. 3. Analysis of attention distribution on Reddit.

Fig. 4. AUC(%) of low- and high-pass filters.

tailoring its learning to different nodes and thereby enhancing its 
anomaly detection proficiency.

The observed trends align with the understanding that normal nodes 
favor low-frequency signals, while anomalies exhibit higher weights 
in the high-frequency range. These results affirm FAGAD’s ability to 
capture intricate patterns across frequency domains.

4.5. Ablation studies

Effectiveness of Frequency Self-Adaptation Graph Neural Net-
work. To validate the efficacy of our proposed frequency self-adaptation
graph neural network , we compare it to four variants, including 
GCN, GAT, ChebyNet (Cheb), and BernNet (Bern), across two injected 
datasets and four real-world datasets. As presented in Table  3, our 
proposed gnn consistently outperforms the other variants across all 
datasets. The diminished performance of GCN and GAT methods can 
be attributed to their inclination toward low-frequency signals, which 
proves detrimental to accurate anomaly detection. Although ChebyNet 
and BernNet can capture both high and low frequencies, they still 
fall short of achieving results comparable to our model. This is due 
to the constrained nature of their fixed polynomial filters, which 
restricts the flexibility and expressive capacity in effectively selecting 
diverse frequencies of critical information. In contrast, our model excels 
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Table 4
AUC values(%) of ablation studies for the effectiveness of bootstrapping.
 Dataset w/o bootstrapping w/ bootstrapping 
 BlogCatalog 76.70 ± 0.02 𝟕𝟖.𝟑𝟒 ± 𝟎.𝟎𝟓  
 Reddit 63.92 ± 0.03 𝟔𝟒.𝟑𝟔 ± 𝟎.𝟑𝟗  
 Wiki 63.25 ± 0.01 𝟔𝟒.𝟕𝟕 ± 𝟎.𝟎𝟏  

Table 5
AUC (%) with Different Data Augmentation. FAGAD-AE,FAGAD-MF, and FAGAD-RN 
denote the model with adding edges, masking node features and removing nodes.
 Augmentation BlogCatalog Reddit Wiki  
 FAGAD-AE 76.60 ±  0.34 51.41 ± 0.52 63.39 ± 0.01  
 FAGAD-MF 64.19 ± 4.00 40.83 ± 1.64 62.13 ± 1.17  
 FAGAD-RN 75.15 ± 0.72 54.46 ±  3.99 63.58 ±  0.09 
 FAGAD (Ours) 𝟕𝟖.𝟑𝟒 ± 𝟎.𝟎𝟓 𝟔𝟒.𝟑𝟔 ± 𝟎.𝟑𝟗 𝟔𝟑.𝟕𝟕 ± 𝟎.𝟎𝟏  

in adaptively capturing the most pertinent information from various 
frequency bands for each individual node.

Moreover, we perform experiments comparing our approach with 
pure high-pass and low-pass filters. The outcome depicted in Fig.  4 
highlights that our model adeptly learns node representations in an 
adaptive manner, tailored to the unique input data characteristics 
of different frequency bands. This adaptability contributes to notable 
improvements in graph anomaly detection.

Effectiveness of Self-supervised Learning via Bootstrapping. We 
conduct experiments by removing the self-supervised learning via boot-
strapping module to verify the necessity of it. The outcomes are illus-
trated in Table  4. Module removal leads to a significant AUC reduction 
on some datasets. This decline serves as an indication that the inclusion 
of the bootstrapping strategy contributes to the model’s efficacy. The 
effectiveness of the bootstrapping strategy stems from its utilization of 
exponential moving averages, which bootstraps the target encoder to 
obtain more stable and anomaly-discernible node representations. As a 
result, these enhanced target node representations provide improved 
guidance to the online encoder. Consequently, this synergistic effect 
leads to notable performance improvements.

The impact of refining the bootstrapping strategy. BYOL (Grill 
et al., 2020) employs a data augmentation strategy within the boot-
strapping strategy, while FAGAD excludes the data augmentation mod-
ule to prevent the introduction of additional noisy information. To 
assess the impact, we conducted a comparative analysis involving three 
variant models that incorporated the data augmentation module. We 
report the AUC values on an injected anomalous dataset, BlogCatalog, 
and a real-world dataset, Reddit (see Table  5). Removing the data 
augmentation module resulted in optimal performance compared to 
variants using it. This indicates that the data augmentation module may 
introduce additional anomalous information, diminishing overall model 
performance.

4.6. Sensitivity of hyperparameters

In this section, we delve into the impact of parameters within 
FAGAD. Fig.  5 illustrates all experimental results. First, on the Flickr, 
BlogCatalog, and Wiki datasets, using 4-th or 5-th order Laplacian 
matrices yields superior results. For the Amazon and Enron datasets, 
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Table 6
Average Training Time (in Seconds) Over 10 Epochs. The best are in bold with the second best underlined. A.R. denotes average rank.
 Dataset FAGAD DONE TAM OCGNN SLGAD CONAD  
 Reddit 0.82 ± 0.56 16.98 ± 1.96 41.56 ± 0.72 0.48 ± 0.06 433.79 ± 2.78 0.76 ± 0.36 
 Flickr 15.44 ± 0.79 7.70 ± 0.86 34.79 ± 0.29 0.92 ± 0.21 386.75 ± 7.40 2.60 ± 0.26 
 A.R. 3.5 3.5 5 1 6 2  
optimal performance occurs when the parameter 𝑘 is 1 or 2. The vary-
ing optimal 𝑘 underscores dataset characteristics, influencing suitable 
frequency band combinations. Second, experimental results for 𝛽 show 
most datasets have consistent effects across different 𝛽 values, except 
Enron and Reddit. Optimal results for them happen around 𝛽 = 0.5. As 
𝛽 increases, AUC performance declines due to higher dependency on 
reconstruction loss. Third, the FAGAD excels on Flickr, BlogCatalog, 
Enron, and Reddit datasets, with 𝛼 = 0.99 prioritizing node attribute 
reconstruction. For Amazon, performance stays stable with 𝛼 ≤ 0.7 but 
declines when 𝛼 > 0.7, emphasizing the need to balance graph structure 
and attribute reconstruction. Finally, MLP predictor 𝑝𝜃 in FAGAD im-
pacts anomaly detection by predicting target encoder representations, 
influencing signal fusion across frequency bands. Experimental results 
for the Reddit dataset show FAGAD achieves optimal results with a 
smaller embedding dimension ℎ, suggesting fewer parameters required.

4.7. Efficiency evaluation

To evaluate the efficiency of the proposed method, we report the 
average training time (in seconds) over 10 epochs and 3 independent 
runs across two representative datasets: Reddit (real-world) and Flickr 
(synthetic). The results, shown in Table  6, include comparisons with 
five state-of-the-art baseline models achieving top 5 average ranks in 
Table  2: TAM, DONE, CONAD, OCGNN, and SLGAD. The best and 
second-best results are highlighted in bold and underlined, respectively.

Among all methods, SLGAD incurs the highest training cost due to 
its combined generative and contrastive discrimination mechanisms, 
which are inherently resource-intensive. TAM ranks as the second most 
time-consuming method across both datasets, largely because of its 
complex node distance preprocessing steps. DONE also exhibits high 
training times, particularly as the number of nodes increases.

In contrast, our proposed method, FAGAD, demonstrates strong 
efficiency characteristics. It ranks third in average training time across 
datasets, exhibiting low training cost on sparse graphs such as Reddit. 
On denser graphs like Flickr, the training time is moderately higher due 
to the use of high-order Laplacian-based filters, which can introduce 
additional computational overhead as the matrix sparsity decreases.

Overall, FAGAD achieves a favorable balance between effectiveness 
and efficiency, offering scalable performance with competitive training 
times.

5. Discussion of limitation and future work

While the proposed FAGAD framework demonstrates strong per-
formance across a wide range of datasets, we acknowledge several 
limitations that suggest promising directions for future research.

Limitations: First, FAGAD relies on the availability of meaning-
ful graph signal information. In cases where the graph structure or 
node attributes are extremely noisy or sparse, the effectiveness of 
multi-frequency signal integration may be reduced, potentially affect-
ing anomaly detection performance.

Second, although FAGAD shows robust results on medium-to-large 
graphs such as Reddit, applying the model to extremely large-scale 
graphs (e.g., graphs with hundreds of millions of nodes) could intro-
duce computational challenges. The multi-pass graph filtering and self-
attentional frequency adaptation steps, while effective, may increase 
memory and computation costs in such scenarios.

Third, while our hyperparameter sensitivity analysis indicates that 
FAGAD is generally robust, the model’s performance still benefits from 
8 
Fig. 5. Parameter analysis for anomaly detection.

careful tuning of hyperparameters such as the Laplacian filter order 
𝐾 and the balance coefficients 𝛼 and 𝛽. In some settings, suboptimal 
hyperparameter choices could lead to performance degradation.

Future Work: To address these limitations, future research could 
explore several promising directions:

• Robust Signal Extraction: Designing more robust pre-processing, 
structure learning techniques or noise-resilient graph filters to 
better handle highly noisy or incomplete graphs (Fatemi, El Asri, 
& Kazemi, 2021; Gu, Yang, Zhou, Ma, Chen, Tan, Liu, & Bu, 2023; 
Liu, Zheng, et al., 2022).

• Scalability Improvements: Developing scalable variants of FAGAD 
through techniques such as pre-computing, graph sampling, mini-
batch training, or sparse frequency attention to enable efficient 
processing of ultra-large graphs (Chang, Rong, Xu, Huang, So-
joudi, Huang, & Zhu, 2021; Liu, Ren, & Chen, 2025).

• Automated Hyperparameter Tuning: Investigating meta-learning 
or self-tuning strategies to automatically adapt hyperparame-
ters to different datasets without the need for extensive manual 
search (Spinelli, Scardapane, & Uncini, 2022; Zhu, Tao, Li, & Li, 
2021).

• Broader Applications: Extending FAGAD to anomaly detection in 
dynamic graphs, heterogeneous graphs, or heterophilic graphs, 
which present even richer structures and challenges (Gu, Zheng, 
Zhou, Liu, Chen, Qiao, Li, & Bu, 2024; Luan, Hua, Lu, Zhu, Zhao, 
Zhang, Chang, & Precup, 2022).

Through these efforts, we aim to further enhance the robustness, 
scalability, and versatility of FAGAD for broader real-world deploy-
ments.

6. Conclusion

In this work, we have addressed the crucial challenges in the context 
of unsupervised graph anomaly detection based on GNNs. Specifically, 
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existing works either have disregarded the reciprocal influence of 
anomalies, which results in the distortion of high-frequency signals, 
or have captured high-frequency signals through a semi-supervised 
approach, leaving the unsupervised setting largely unexplored. Our so-
lution involves a frequency self-adaptation graph neural network  that 
aptly fuses signals across multiple frequency bands under the guidance 
of the full-pass signals. We also harness self-supervised learning via 
bootstrapping to optimize this fusion process effectively. The results 
show the prowess of the FAGAD, which outperforms prevailing meth-
ods on both injected and real-world datasets. In future work, we will 
further refine filters to better capture various signals. Subsequently, 
we have plans to integrate community structure analysis with graph 
anomaly detection, enhancing the detection of anomalous groups for 
practical industrial use.
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