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ABSTRACT
Attributed network embedding focuses on learning low-dimensional

latent representations of nodes which can well preserve the orig-

inal topological and node attributed proximity at the same time.

Existing works usually assume that nodes with similar topology or

similar attributes should also be close in the embedding space. This

assumption ignores the phenomenon of partial correlation between

network topological and node attributed similarities i.e. nodes with

similar topology may be dissimilar in their attributes and vice versa.

Partial correlation between the two information sources should be

considered especially when there exist fraudulent edges (i.e., infor-

mation from one source is vague) or unbalanced data distributions

(i.e, topology structure similarity and node attribute similarity have

different distributions). However, it is very challenging to consider

the partial correlation between topology and attributes due to the

heterogeneity of these two information sources. In this paper, we

take partial correlation between topology and attributes into ac-

count and propose the Personalized Relation Ranking Embedding

(PRRE) method for attributed networks which is capable of exploit-

ing the partial correlation between node topology and attributes.

The proposed PRREmodel utilizes two thresholds to define different

node relations and employs the Expectation-Maximization (EM)

algorithm to learn these thresholds as well as other embedding

parameters. Extensive experiments results on multiple real-world

datasets show that the proposed PRRE model significantly outper-

forms the state-of-the-art methods in terms of various evaluation

metrics.
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1 INTRODUCTION
Network embedding has become an important research topic aim-

ing to learn a low-dimensional latent representation of each node

in a network for various learning tasks including link prediction,

node classification and clustering [8, 25, 29, 35]. As more and more

information becomes available, nodes in real-world networks are

often associated with attributed features: people on social networks

are often annotated by personal profiles including education, orga-

nization and location, etc. Papers on bibliographic networks such as

DBLP usually belong to a journal/conference and have a publishing

year, research topic, etc. Such networks with extra attribute infor-

mation are known as attributed networks [26]. Recently, mining

attributed networks has attracted lots of research interests includ-

ing community detection [11, 40], network alignment [43] and

network embedding [8, 25, 29]. Compared with vanilla network

embedding, embedding in attributed networks focuses on capturing

node relationships in terms of both topology and node attributes

[14, 17, 24].

Existing attributed network embedding methods either learn

node embedding for network topology and node attributes in an

independent way [14, 42] or pass feature vectors into matrix fac-

torization/deep neural networks to predict the network topology

[15, 24, 36]. Some works also define a parametric function of the

feature vectors to mine the network topology [17]. A critical yet

common issue faced by these methods is that node attributes and

network topology may be only weakly correlated to each other

— nodes sharing similar attributes may actually lie far away from

each other in the network and vice versa. We call this phenomenon

partial correlation between network topology and node attributes.

For instance, people living in the same block may share similar

attributes such as addresses, schools and IP addresses etc, while

there may be no direct connections between them in reality and

they may even be not aware of each other. Take a bibliographic

https://doi.org/10.1145/3269206.3271741
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network as another example, two papers with citation relationship

(one cites another) may focus on different topics and share only a

small number of common attributes. Another problem for partial

correlation is sparsity and noisiness of data. Real-world social net-

works are always large and sparse, and the observed relationships

in an online social network may only reveal partial social circles of

users.

In this paper, we present an attributed network embedding

method which takes partial correlation between topology and at-

tributes into account. Before discussing the details of the model,

several challenges need to be addressed:

(1) Due to partial correlation, node proximity of the topology

may be different from node proximity of attributes. Preserving node

proximity for these two information sources may produce totally

different embedding results.

(2) Some existing attributed network embedding methods simply

employ a linear combination of the two information sources or

treat topology and attributes independently, which may result in

information loss especially when the network is sparse or its node

attributes are noisy.

To tackle the above challenges, we propose the PRRE method

which is capable of recognizing the partial correlation between

topology and attributes. More concretely, we divide the relations

in attributed networks into three groups:

(1) Positive relations are node pairs that are close to each other

in terms of both topology and attributes.

(2) Ambiguous relations are node pairs that are close to each

other in terms of topology but far away from each other in terms

of attributes, or close to each other in terms of attributes but far in

terms of topology structure.

(3) Negative relations are node pairs that are far away from each

other in terms of both topology and attributes.

The Bayesian Personalized Ranking (BPR) framework [27] is a

pairwise ranking method for recommender systems. The core idea

of BPR is to learn a personalized ranking of items for each user, and

the basic assumption is that a user prefers an observed item over all

non-observed items. Inspired by the BPR framework, we develop a

personalized ranking function for network embedding. Instead of

directly preserving the proximities between nodes, the proposed

PRRE model aims at fitting the ranking of above relations among

the nodes such that the partial correlation between topology and

node attributes can be handled. We utilize two thresholds that best

separate the ‘far away from’ and ‘close to’ relations to categorize

different relationships among nodes and employ the EM algorithm

to learn these thresholds as well as other embedding parameters

iteratively.

To summarize, we make the following contributions.

(1) We observe the partial correlation phenomenon between

topology and attributes which affects the actual proximity among

nodes in the embedding space.

(2) We propose the Personalized Relation Ranking Embedding

(PRRE) model to embed attributed networks considering the phe-

nomenon of partial correlation.

(3)We propose an EM-style iterative algorithm to simultaneously

learn the best embedding parameters and the optimal thresholds

separating different types of relations in a given network.

(4) We carry out extensive experiments on various real-world

datasets. The results show that the PRREmodel significantly outper-

forms state-of-the-art methods in terms of both node classification,

link prediction and network visualization.

2 RELATEDWORK
Some earlier works such as Local Linear Embedding (LLE) [28],

ISOMAP [3] and Laplacian Eigenmap [4] generate low-dimensional

manifolds which can model the nonlinear geometry of data. These

approaches are part of dimensionality reduction techniques and

can be regarded as the pioneer of network embedding.

Recent works focus more on embedding an existing network into

a low-dimensional vector space to facilitate a better understanding

of semantic relationships among nodes. Among them, DeepWalk

[25] employs a truncated random walk to generate node sequences,

which is treated as sentences in language models and fed to the

Skip-gram model to learn the embeddings. Node2Vec [8] further

advances the random walk based embedding algorithms by adding

flexibility in exploiting neighborhoods. LINE [29] is proposed for

large scale network, which preserves both first-order and second-

order proximities to learn network representations. GraRep [6] can

be regarded as an extension of LINE which considers high-order

proximity. SDNE [34] incorporates graph structure into deep auto-

encoder to preserve the highly non-linear first order and second

order proximities.

All the above mentioned approaches, however, are limited to

dealing with non-attributed networks. Attributed network analysis

is then put forward due to the fact that numerous networks are often

associated with abundant content describing attributes of each node.

Some existing algorithms have investigated the possibility of jointly

embedding these two information sources into a unified space to

improve the performance of network embedding[44]. For example,

TADW [39] extends DeepWalk by assuming that each node is asso-

ciated with rich texts and incorporate text features into the matrix

factorization framework. AANE [10] is a distributed embedding

approach that jointly learns node representations by decomposing

attribute affinity matrix and penalizing the embedding difference

between connected nodes with network lasso regularization. SNE

[17] generates embeddings by leveraging an end-to-end neural

network model to capture the complex interrelations between net-

work structure and node attribute information. GraphSAGE [9] is

an inductive framework that leverages node feature information

and network topology to efficiently generate node embeddings for

previously unseen data. While associating network topology and

node attribute, none of the above methods considers the partial

correlation between two information sources.

There have also been semi-supervised approaches for attributed

network embedding. TriDNR [24] uses information from three

parties including node structure, node content, and node labels to

jointly learn node representations. Planetoid [41] develops both

transductive and inductive methods to jointly predict the class label

and neighborhood context in the graph. SEANO [16] takes the input

form the aggregation of input sample attributes and its average

neighborhood attributes to mitigate the negative effect of outliers in

the representation learning procedure. However, in real world data



sets, labels of nodes are often unknown which limit the application

of these methods.

3 THE PROPOSED PRRE METHOD
3.1 Preliminaries
Notations Let G = {V, E,A} be an attributed network, where

V = {v1,v2...vn } denotes the set of n nodes in the network and E

denotes the set of edges between nodes. A ∈ Rn×m represents the

attribute information of nodes, wherem is the dimension of feature

vectors and Ai is the feature vector corresponding to node vi .

Definition 1. Attributed network embedding Given an at-
tributed networkG = {V, E,A}, attributed network embedding aims
at learning a low-dimension representation hi ∈ Rd for each node
vi so that the learned representations can preserve both the network
topology and node attribute proximities. d is the dimension of the
learned representation and d ≪m.

In the original network, the relationships among the nodes are

represented by edges in network topology or distances between fea-

ture vectors. In the embedding space, the relationships are captured

only by the distances between nodes in the latent vector space. The

main challenge of attributed network embedding is to capture the

two proximities into a unified vector space.

3.2 Personalized Relation Ranking in
Attributed Networks

In attributed networks, proximities between nodes are related to

two information sources: network topology and node attributes.

For each information source, proximity can be measured by a simi-

larity function: for attributes, cosine similarity of attribute vectors

is widely used and other popular measures include the kernels,

euclidean distance and manhattan distances [2]. For network topol-

ogy, first order proximity is measured by the edges between nodes,

second order proximity is determined by the neighbors of nodes

through Jaccard’s coefficient [22] or Adamic-Adar similarity [1],

and high order proximity can be captured by random walk based

methods such as Rooted PageRank [7] and PPMI [13]. We will dis-

cuss and experiment with the selection of these similarity measures

in section 4.6.

Given the proximities between nodes, existing methods aim at

preserving such proximities so that given a node vi , nodes with
higher proximities are closer in the embedding vector space. In-

spired by the BPR model which models user’s preference on ob-

served items and non-observed items, proximities in networks can

also be understood as personalized preferences: nodes with higher

proximities are preferred with higher ranking. We use a personal-

ized relation ranking function to define the preservation of proxim-

ities.

Definition 2. Personalized Relation Ranking: Given a node
vi and another two nodes vj and vk in the network, if vj has higher
proximity with vi compared to vk , we define that the ranking of
relation (vi ,vj ) is higher than relation (vi ,vk ) and denote j ≥i k to
represent such ranking of relations.

For all the triplets in the network, relation ranking has to meet

the properties of a total order [27]:

(1) Totality: ∀vi ,vj ,vk ∈ V : j , k ⇒ j ≥i k ∨ k ≥i j
(2) Antisymmetry: ∀vi ,vj ,vk ∈ V : j ≥i k ∧ k ≥i j ⇒ j = k
(3) Transitivity: ∀vi ,vj ,vk ,vl ∈ V : j ≥i k ∧k ≥i l ⇒ j ≥i l

Network embedding that aims at preserving the proximities be-

tween nodes is then viewed as fitting the relation ranking function:

for each triplet {vi ,vj ,vk } that satisfies the relation ranking j ≥i k ,
in the embedding space, node vj are closer to node vi compared

with node vk . For two nodes vi ,vj ∈ V , their closeness in the

embedding space is defined as:

σi j = σ (hTi hj ) =
1

1 + e−h
T
i hj
, (1)

where hi ,hj are the embedding vectors of nodes vi ,vj , σ (x ) is
the logistic sigmoid function which smooths the dot product of

embedding vectors.

Fitting the relation ranking is equal to maximizing the following

objective function: ∏
{i, j,k }∈V

P (j ≥i k ). (2)

We expect network embeddings to fit the relation ranking function

for all the triplets {vi ,vj ,vk } in the network. However, capturing

all the relation ranking has the following weakness:

(1) Time Complexity It is time consuming to fit all the relation

rankings in the network, since there exist n3 triplets in the network.

Also, many real world networks are sparse and proximities based

on network topology in such data is also sparse which means fitting

all relation ranking will not provide useful information.

(2) Noise for Embedding Fitting all the relation ranking may

also bring noise to the embedding. For example, the topology based

similarities are usually small in large scale networks. As a result, a

large amount of proximities between nodes is small or even zero.

Fitting such a relation ranking is too strict and may overfit to noise.

Some existing methods have noticed this problem and negative

sampling (NS) is one of the popular solutions. In NS, only partial

negative samples are used. In the PRRE model, instead of consid-

ering all the ranking pairs, we first use thresholds to divide the

relations into groups and then sample relations from each group

for ranking. Given node vi ,vj , if their similarity is larger than θ , it
is defined as positive relation and otherwise, it is defined as negative
relation and we name it as discrete relation ranking. It is worth

noting that different thresholds will separate the relations into dif-

ferent groups, which will further affect the relation ranking and

the embedding results. Thus the threshold should be learned from

the data instead of pre-defined. With discrete relation ranking, we

are able to learn a latent representation so that for each node vi ,
nodes in groups with higher ranking are closer to vi than nodes in

groups with lower ranking in the embedding space.

Quality of thresholdAs discussed above, threshold selection is

critical in the embedding process. We use the degree of separation

[37, 38] between positive relations and negative relations imposed

by threshold θ as the quantitative measure for the network topology

as well as node attributes:

д(θT ) =(S
P
T − θT ) (θT − S

N
T ),

д(θA ) =(S
P
A − θA ) (θA − S

N
A ),

д(θT ,θA ) = (SPT − θT ) (θT − S
N
T ) + (SPA − θA ) (θA − S

N
A ),

(3)



Figure 1: Personalized Relation Ranking Embedding in attributed networks. Green blocks and white blocks represent posi-
tive and negative relations based on single information source. Blue blocks, yellow blocks and red blocks represent positive,
ambiguous and negative relations based on two information sources.

where θT ,θA are the thresholds corresponding to network topol-

ogy and node attributes, SST , S
S
A are the average similarities of all

pairs with positive relations based on network topology and node

attributes, SNT , S
N
A are the average similarities of all pairs with neg-

ative relations based on network topology and node attribute.

Data likelihood To incorporate the threshold into the objective

function so that the model is able to learn it in a principled manner,

we use an exponential formulation for the likelihood, which can be

written as: ∏
{i, j,k }∈V

P (j ≥i k |θ ,H ) =

[
σi j − σik + 1

2

] 1

1+д (θ )
, (4)

where the formulation of (σi j −σik +1)/2 keeps values in the range

of [0, 1]. The exponential form is used to keep the monotonicity

of both the quality of threshold and the relation ranking. We add

denominator in the power for smoothness. Maximizing this likeli-

hood can be reached by fitting relation ranking and improving the

quality of threshold.

3.3 PRRE model
In this subsection, we first introduce the application of relation

ranking embedding for single information source and then take the

partial correlation into consideration.

From the network topology aspect, we first employ graph based

similarity measure to calculate the similarity between feature vec-

tors. Given node vi and topology similarity threshold θT , if similar-

ity between node vi and vj is larger than threshold θT , the relation
between them is defined as positive in network, denoted as PT ;
else the relation is defined as negative in network, denoted as

NT :

RT (vi ,vj ) =

{
PT , ST (vi ,vj ) > θT ,
NT , else,

(5)

where RT is the network topology only relation and ST is the net-

work topology based similarity. PRRE for network topology (PRRE-

N) aims at maximizing the likelihood:

J (H ,θT ) =
∏

(i, j,k )

P (j ≥i k |θT ,H ). (6)

From the node attribute aspect, we first employ cosine similarity

to measure the similarity between feature vectors. Given node vi
and attribute similarity threshold θA, if similarity between node

vi and vj is larger than threshold θA, the relation between them is

defined as positive in attribute, denoted as PA, else the relation
is defined as negative in attribute, denoted as NA:

RA (vi ,vj ) =

{
PA SA (vi ,vj ) > θA,
NA else,

(7)

where RA is the attribute only relation and SA is the attribute based

similarity. PRRE for node attributes (PRRE-A) aims at maximizing

the likelihood:

J (H ,θA ) =
∏

(i, j,k )

P (j ≥i k |θA,H ). (8)

The skip-gram model with negative sampling (SGNS) [21] is pop-

ular node embedding method, it models the conditional neighbor

distribution of nodes and preserve the proximity between nodes.

The objective function of SGNS can be written as:

JSGNS = loдσ (h
T
j hi ) +

k∑
i=1

Ej′ ∈Pn (i )[loдσ (−h
T
j′
hi )], (9)

where nodevj is in the window of nodevi and nodevj′ is generated

by negative sampling. Compared with PRRE-N, it is interesting to

observe that they have the similar mathematical formulation. In fact,

SGNS can be viewed as a special case of PRRE-N by assuming that



Figure 2: Relationships in attributed networks based on at-
tribute and network topology

node in the window of vi has the positive relation in network and

node from negative sampling has the negative relation in network.

Given the definitions of relations based on topology and at-

tributes, we have positive and negative relations on both sources of

information. However the relatedness does not always correlated

to each other as discussed in section 1: node pairs that positive

in attribute may be negative in network and vice versa. We use

Fig. 2 to illustrate such a phenomenon, for each node vi ∈ V ,

relations between vi and the rest nodes can be put into such a two-

dimension space. The horizontal coordinate refers to the strength

of network topology proximity and the vertical coordinate refers to

the strength of node attribute proximity, the x and y axis is defined

by threshold θT and θA respectively. The thresholds separate the

relation space into four parts and we further define the relation in

attributed networks.

Definition 3. Positive(P), Ambiguous(A), Negative(N) rela-
tions: for node vi in attributed network G, if relations between node
vi andvj are positive in both the network topology and node attributes
aspect, the relation is defined as Positive(P) relation; if relations are
negative in both aspects, the relation is defined as Negative(N) rela-
tion. if relation on only one information aspect is positive and another
is negative, the relation is defined as Ambiguous(A) relation.

R (vi ,vj ) =



P RT = PT , RA = PA,
A RT = PT /NT ,RA = NA/PA,
N RT = NT , RA = NA .

(10)

Based on the definition of above relations in attributed net-

works, for node vi ∈ V , relations between other nodes and vi
are expected to have the following personalized ranking: Posi-

tive(P)>Ambiguous(A)>Negative(N). The reason is straight forward

that for node vi ∈ V , nodes with both positive relation in network

topology and node attributes are supposed to be more similar with

node vi compared with nodes with one positive relation and one

negative relation in network topology and node attribute. Nodes

with both negative relation in network topology and node attributes

are expected to have the lowest ranking. Preserving such relation

ranking in the embedding space can be more flexible when the

network and attribute information are partial correlated.

Loss function Concerning the relationships defined in attrib-

uted networks, a good embedding in such network should satisfy

the relation ranking. The likelihood function is written as:

J (H ,θT ,θA ) =
∏
i ∈V

( ∏
p∈P

∏
a∈A

P (p ≥i a |θA,θT ,H )

∏
a∈A

∏
n∈N

P (a ≥i n |θA,θT ,H )

)
.

(11)

where P is the set of nodes with positive relations, A is the set

of nodes with ambiguous relations and N is the set of nodes with

negative relations.

3.3.1 Joint learning of embedding and parameters. Our goal
is to learn representations for nodes of the attributed networks

and parameters that satisfy the relation rankings. The likelihood

function to maximize is:

J (H ,θT ,θA ) = lnJ (H ,θT ,θA ) − λh
∑
i ∈V

| |hi | |
2

=
∑
i ∈V

( ∑
p∈P

∑
a∈A

1

1 + д(θT ,θA )
ln
σip − σia + 1

2

+

∑
a∈A

∑
n∈N

1

1 + д(θT ,θA )
ln[

σia − σin + 1

2

]

)
− λh

∑
i ∈V

| |hi | |
2

(12)

Figure 1 illustrates the framework of PRRE in attributed networks.

Input network topology and node attribute information, the similar-

ity measure and corresponding threshold are employed to define the

positive and negative relation in single information source. Green

blocks and white blocks represent positive and negative relation

based on single information source. Then the single thresholding re-

sult is combined into the final relation: positive relation represented

by blue blocks, ambiguous relation represents by yellow blocks and

negative relation represented by red blocks. Finally, these relations

guide the network embedding to best satisfy the relation ranking.

3.4 Updating algorithm
We employ the EM algorithm as well as mini-batch gradient ascent

to learn the embedding vectors H and the thresholds θA,θT . In the

EM algorithm, the hidden parameters are the similarity thresholds

θA,θT which should be learned from the data.

E-step In each iteration t, given the thresholds θA,θT , we first
calculate average similarity of node pairs and separate all the re-

lations into positive, ambiguous and negative groups. Then, we

draw a node vi uniformly at random from V and draw a node

from each relation group of node vi . When the relation group is

empty, we just skip it and the model only need to satisfy the partial

ranking. All samples are drawn independently until the batch size

s is reached. Gradients are computed using the following partial

derivative formulas.

∂J

∂hi
=

1

1 + д(θT ,θA )

[ ∑
(i,p,a)

σip (1 − σip )hp − σia (1 − σia )ha

σip − σia + 1

+
∑

(i,a,n)

σia (1 − σia )ha − σin (1 − σin )hn
σia − σin + 1

]
− λhhi ,

(13)



∂J

∂hp
=

1

1 + д(θT ,θA )

∑
(i,p,a)

σip (1 − σip )hi

σip − σia + 1
− λhhp , (14)

∂J

∂ha
=

1

1 + д(θT ,θA )

[ ∑
(i,p,a)

−σia (1 − σia )hi
σip − σia + 1

+

∑
(i,a,n)

σia (1 − σia )hi
σia − σin + 1

]
− λhha ,

(15)

∂J

∂hn
=

1

1 + д(θT ,θA )

∑
(i,a,n)

−σin (1 − σin )hi
σia − σin + 1

− λhhn , (16)

M-step After updating the embedding vectors, we update the

threshold θT ,θA, the derivate can be computed as follows:

∂J

∂θT
= −

SPT + S
N
T − 2θT

[1 + д(θ )]2

[ ∑
(i,p,a)

ln
σip − σia + 1

2

+
∑

(i,a,n)

ln
σia − σin + 1

2

]
− λθθT ,

(17)

∂J

∂θA
= −

SPA + S
N
A − 2θA

[1 + д(θ )]2

[ ∑
(i,p,a)

ln
σip − σia + 1

2

+
∑

(i,a,n)

ln
σia − σin + 1

2

]
− λθθA .

(18)

Gradient Ascent Update To maximize the likelihood, we use

standard gradient ascent to update the parameters:

x (t+1) = x (t ) + η
∂J

∂x (t )
, (19)

where x refers to any parameter to be updated, t is the iteration
number and η denotes the updating step size. The algorithm ter-

minates when the absolute difference between the losses in two

consecutive iterations is less than 10
−5
. The pseudocode of the

learning algorithm is presented in Algorithm 1.

3.4.1 Computational Complexity Analysis. In E-step, we update

embedding H for all nodes in the network. The frequency of update

is related to the triplets in the batch, as a result, the complexity of

E-step isO(nds) where n is the number of nodes, d is the dimension

of embedding vector and s is number of sampled triplets of each

node. In M-step, we update threshold θT ,θA. The complexity of

M-step is O(nds) where s is the size of batch. Overall, the time

complexity of PRRE is tO(nds) where t is the number of iterations.

4 EXPERIMENTAL EVALUATION
In this section, we report the experimental results on real world

datasets to answer the following questions:

(1) Does partial correlation between topology and node attributes

exist in real-world attributed networks?

(2) Can PRRE learn better node representations compared to

state-of-the-art network embedding methods?

(3) How does similarity measures affect PRRE model and how to

select the similarity for different datasets?

Algorithm 1 PRRE for attributed networks

Input: G = {V,E,A},d
Output: H ∈ Rn×d

1: Compute similarity matrix SA ∈ Rn×n and ST ∈ Rn×n using

selected similarity measure

2: Initialize θA,θT and H ∼ U (0, 1)
3: while t < max_iter and △J < ϵ do
4: Sample batch B with size s ,
5: for vi ∈ V do
6: Compute Positive/Ambiguous/Negative pairs using cur-

rent thresholds θT ,θA
7: end for
8: Compute the gradients for hi ,hp ,ha ,hn by Equation [13],

[14], [15], [16].

9: Update H by Equation [19]

10: Compute the gradients for θT ,θA by Equation [17],[18].

11: Update θT ,θA by Equation [19]

12: end while

4.1 Datasets
We conduct node classification, link prediction and network visual-

ization experiments on several real-world datasets and the details of

datasets are described as follows with dataset statistics summarized

in Table 1:

Citation Graphs Cora, Citeseer and Pubmed are three available

public datasets consisting of bibliographic data that have been

widely used in evaluating network embedding [18, 20, 32]. Nodes

represent the published paper and edges represent that if paper

cites or is cited by other papers. Each published paper is associated

with a word vector, in which the 0/1-valued elements represent the

absence/presence of the corresponding word from the dictionary.

Labels indicate the research categories that each paper belongs to.

Social Networks BlogCatalog is an online blogger community,

where users follow each other and form a network. Nodes represent

the users in the community and edges represent the following rela-

tionship between users.GraphSAGE Users are allowed to generate

keywords as a short description of their blogs which are severed

as node attributes. Labels indicate the predefined categories where

users register their blogs to.

4.2 Baselines
We compare the PRRE model with several state-of-the-art network

embedding methods and the variants of PRRE, which can be divided

into the following 4 groups:

(1) Attributes Only: This group of algorithms only consider

node attributes and transform the attribute vectors to low dimen-

sional representations. We compare with these methods to reveal

the effectiveness of attributes in node classification and choose

SVM and AutoEncoder [33] as baseline methods in this group.

(2) Network Only: This group of algorithms leverage network

topology information but ignores node attributes. Representative

works include DeepWalk [25] and Node2Vec [8], which use trun-

cated random walks to generate node sequences and employ skip-

gram model for node representation learning. LINE [29] is one of

the state-of-the-art embedding algorithms for large-scale networks.



# node # edge # feature # label

Citeseer 3264 4714 3668 6

Cora 2708 5429 1433 7

Pubmed 19717 44338 500 3

Blogcatalog 5196 171743 8189 6

Table 1: Datasets statistics

Figure 3: Distribution of types of relations in real-world
datasets.
It preserves both first and second-order proximities between the

nodes. GraRep [6] extends to high-order proximity and uses the

SVD to train the model. It also directly concatenates the represen-

tations of first and high orders.

(3) Attributes and Networks: This group of algorithms try to

preserve both node attributes and network topology proximities

and are most closely related to our work.We choose the state-of-the-

art methods as baseline methods, including AANE[10], SNE[17],

GraphSAGE[9] and TADW[39]. The details of these methods have

been described in section 2.

(4) PRRE and variants: This group of algorithms include PRRE

and its variants: PRRE-A and PRRE-N. PRRE-A and PRRE-N are vari-

ants of PRRE that only use node attributes and network topology

and their purpose is to preserve the personalized relation rank-

ing based on attributes or topology only. We compare PRRE-A

and PRRE-N with attributes only and network only baselines to

show that personalized relation ranking framework can capture the

relationships between nodes. Finally, all these variants show the

advantage of preserving positive, ambiguous and negative relation

ranking for network embedding.

For all baselines, we used the open source codes released by

the original authors. The parameters for baselines are tuned to be

optimal by greedy search. The code of our proposed method can

be found in
1
.

4.3 Exploring Relations in Attributed Network
In this subsection, we study the partial correlated relations in real-

world attributed networks. We use the average similarity of all node

pairs as the Relations in attributed networks have been defined in

section 3. For attributes similarity, we calculate cosine similarity on

the feature vectors. For topology similarity, we select RPR similarity

to capture first, second and high order proximities in network topol-

ogy. Figure 3 illustrates the distributions of positive, ambiguous

and negative relations in four real-world datasets. From the figure,

we get the following observations:

(1) There exist partial correlated (ambiguous) relations between

nodes in attributed network, which refers to the yellow sector

1
https://github.com/zhoushengisnoob/PRRE

in each fan diagram. An even more interesting finding is that the

percentage of ambiguous relations is larger than the percentage pos-

itive relations. This confirms that in attribute network embedding,

missing the partial correlated relations may lose much information.

(2) In most of the datasets, negative relations have the biggest

percentage. This is reasonable since in real-world networks, a node

shares only a limit number of attributes with other nodes and most

pairs of nodes are far from each other in network. Especially, in

pubmed and blogcatalog datasets, over half of the relations are

negative since these two networks are large and sparse.

4.4 Node classification
Node classification has been widely used in literature to evaluate

network embeddings [25, 30]. In this subsection, we report the

experimental results of node classification on labeled datasets. Fol-

lowing the experimental procedure of existing works [6, 8], for

each method, we first train models on the training sets to obtain

node representations. Then we randomly sample 30% labeled nodes

to train a SVM classifier and the rest of the nodes are used to test

the model. We repeat this process 10 times, and report the average

performance in terms of both Macro-F1 and Micro-F1 [12]. The

detailed results are shown in Table 2. To summarize, we have the

following observations:

(1) Among these competitors, methods using both node attribute

information and network topology information have better perfor-

mances compared to methods using single information source. This

shows that in attributed network embedding, preserving proximity

from both information sources can learn better latent representa-

tions of nodes. Another interesting observation is that attribute
only methods gain better results compared with network only meth-

ods in most of the datasets. This can be explained since network

topology alone provides very limited information (compared to

node attributes) especially when the network is large and sparse.

(2) Among methods using single information source, our relation

ranking methods PRRE-A, PRRE-N achieves the best performance.

This result proves the framework of personalized relation ranking

can capture the relationships among nodes on both graph topology

and node attribute. In the attribute only group, we observe that SVM

performs better than Autoencoder in all datasets, which suggests

that dimension reduction may lose useful attribute information. In

network only group, we observe that GraRep outperforms the other

baselines, likely since GreRep preserves high order proximities in

network.

(3) Among methods using both node attribute information and

graph topology, PRRE achieves better performance than the base-

line methods. This confirms the usefulness of considering partially

correlated relations in attributed network. Also, comparing PRRE

and its variants PRRE-A, PRRE-N, we also observe significantly

improvements, which indicates that under the framework of re-

lation ranking, considering partial correlation phenomenon can

significantly improve the performance of network embedding.

4.5 Link Prediction
In this subsection, we evaluate the network embedding results

via link prediction. Following the same experimental procedure in

many exiting works [8, 31, 34], we randomly hold out part of the

https://github.com/zhoushengisnoob/PRRE


Group Algorithm

Citeseer Cora Pubmed Blogcatalog

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Atribute

Only

SVM 0.7068 0.6353 0.6959 0.6746 0.8074 0.7987 0.8185 0.8174

AutoEncoder 0.6946 0.6299 0.6787 0.6518 0.7873 0.7769 0.7989 0.7954

Network

Only

DeepWalk 0.6811 0.6236 0.7770 0.7621 0.7439 0.7149 6459 0.6395

Node2Vec 0.6909 0.6407 0.7925 0.7721 0.7585 0.7233 0.6507 0.6451

LINE 0.6127 0.5467 0.7275 0.7078 0.7278 0.7032 0.6498 0.6421

GraRep 0.7142 0.6452 0.7954 0.7722 0.7681 0.7208 0.7399 0.7359

Attribute

+

Network

SNE 0.7356 0.6678 0.8017 0.7834 0.8221 0.8529 0.8740 0.8721

GraphSAGE 0.7119 0.6377 0.7917 0.7782 0.8141 0.8045 0.8289 0.8204

AANE 0.7014 0.6245 0.7201 0.6844 0.8202 0.8136 0.8560 0.8558

TADW 0.7435 0.6862 0.8304 0.8164 0.8337 0.8197 0.8908 0.8895

RRNE

variant

PRRE-A 0.7081 0.6357 0.7436 0.7113 0.8026 0.8023 0.8271 0.8239

PRRE-N 0.7230 0.6493 0.8166 0.7920 0.8054 0.7912 0.7042 0.6761

PRRE 0.7637 0.6935 0.8521 0.8283 0.8406 0.8235 0.9189 0.9171
Table 2: Classification performance in different datasets. We use bold font to highlight the winners.

existing links as positive instances in test set and randomly sample

the same amount of non-existing links as negative instances. The

residual network is used to train the network embedding models.

After obtaining the latent representations of each node, we eval-

uate link prediction in the labeled edge dataset. Specifically, we

rank both positive and negative instances according to the cosine

similarity function. To judge the ranking quality, we employ the

AUC
2
to evaluate the ranking list and a higher value indicates a

better performance.

We only compare methods that use both topology and attributes

information here and baselines use single information source are

not included. The reason is that there is no decrease trend for at-

tribute only baselines with different training percent and network

only methods are observed poor performance on the residual net-

work. Figure 4 presents the link prediction results on four datasets

and we have the following observations:

(1) With decreasing percentage of training edges, the perfor-

mances of all methods decreases. This is reasonable since with

fewer training edges, networks become sparser and the topology

is less reliable. Also, different methods have different speed of de-

creasing which tells the robustness of the methods when network

topology becomes noisy. We observe that the proposed proposed

method PRRE and baseline method TADW decrease slower than

other baseline methods.

(2) Among methods that use both network topology and node at-

tribute, PRRE achieves the best performance. This demonstrates that

considering partial correlated relations including the uncorrelated

relations can capture more information among nodes. Network em-

bedding that satisfy such personalized relation ranking can better

represent the nodes in the latent space.

4.6 Comparison of similarity measures
There exist many candidate similarity measures based on network

topology and different measures further influence the ranking of re-

lations. To study the difference between them, we evaluate network

only PRRE-N with different similarity measures on link prediction.

According to previous work [13, 22, 23], the selected similarity

measure can be formulated as:

2
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

(1) Rooted Page Rank (RPR) [7] describes the probability of a

random walk from start nodes locating at end node in the steady

state.

SRPR = (I − αP )−1 · (1 − α )I , (20)

where S is the similarity matrix, I is the identity matrix, α ∈ [0, 1)
is the probability to randomly walk to a neighbor and P is the

probability transition matrix satisfying that

∑N
i=1 Pi j = 1.

(2) Adamic-Adar similarity (AA) [1] is a variant of common

neighbors that assign each neighbor a weight based on the degree.

SAA = I−1 · A · D · A, (21)

where D is the diagonal matrix and A is the adjacent matrix.

(3) Jaccard’s coefficient (Jaccard) [22] is a similarity based on the

neighborhood of nodes.

S Jaccard (i, j ) =
|Ni ∩ Nj |

|Ni ∪ Nj |
, (22)

where Ni is the set of neighbors of node vi .
(4) Positive Pointwise Mutual Information (PPMI) [13] is related

to the statistic of graph context generated by random walk.

SPPMI (i, j ) =max (0, loд
#(i, j ) · |C |

#(i ) · #(j )
), (23)

where #(i, j ) is the number of occurrence in the graph context, #i
is the number of occurrence of node vi and C is the collections of

observed node pairs.

Figure 5 presents the performance of different similarity mea-

sures on link prediction. According to the experiment results, we

have the following observations:

(1) The basic observation is that RPR and PPMI, Jaccard and AA

have the similar results in four datasets. This is reasonable since RPR

and PPMI are random walk based similarity measure that capture

high order proximities, Jaccard and AA are neighborhood based

similarity measures that capture first and second order proximities.

(2) In the blogcatalog dataset, the network is denser than in

other datasets and the neighborhood based similarity achieves bet-

ter performance. However, in other three datasets, the networks

are sparse, capturing only first and second order proximities may

lose information, and PPMI and RPR gain better performance than

neighborhood based similarities.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


(a) Citeseer (b) Cora (c) Pubmed

Figure 4: AUC score of link prediction on citeseer, cora and pubmed.

Figure 5: Comparisons of similaritymeasures in link predic-
tion task on four datasets.

(a) AANE (b) GraphSAGE

(c) SNE (d) PRRE

Figure 6: Network visualization results on cora dataset.
Nodes are mapped into the 2-D space using the t-SNE pack-
age with learned embeddings. Color indicates the class label.
Best viewed on screen.

4.7 Network Visualization
Network visualization is a key application of network embedding

which supports tasks such as data exploration and understanding.

Following the experimental setting of existing works [5, 24, 29],

we first learn a low dimensional representation for each node and

then map those representations into the 2-D space with t-SNE [19].

Figure 6 illustrates the network visualization results on cora dataset.

Each dot denotes a node in the network and each color represent

denotes label of a class. A good embedding method is expected to

make nodes with same label close to each other in the embedding

space.

As observed in Fig 6, three baselines that use both attributes and

network topology do not perform as well as PRRE and different

colors of nodes are not separated well. The visualization results of

PRRE are quite clear since most of nodes with same label (color)

are close to each other and nodes with different labels(colors) are

far from each other. This further verifies the effectiveness of the

proposed PRRE method.

5 CONCLUSIONS
In this paper, we have proposed the PRRE model for embedding

attributed networks. Based on the observation of partial corre-

lation between topology and attributes, we adopt a personalized

relation ranking framework to exploit the partial correlation. Exper-

imental results of node classification, link prediction and network

visualization on four real-world datasets demonstrate the superior

performance of PRRE compared to several state-of-the-art network

embedding methods.

This paper suggests several potential future directions of re-

search. First, thresholding the similarity can reduce complexity cost

but may also bring noise to the ranking, a potential solution is to

develop a strategy to sample the ranking pairs. Another possible

direction is to learn the confidence for topology and node attributes

so that when one information source is not reliable, we are able

to reduce its influence. Last, it would be interesting to explore a

semi-supervised methods so that it can make use of labeled data.
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