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User recommendation aims at recommending users with potential interests in the social network. Previous

works have mainly focused on the undirected social networks with symmetric relationship such as friendship,

while recent advances have been made on the asymmetric relationship such as the following and followed

by relationship. Among the few existing direction-aware user recommendation methods, the random walk

strategy has been widely adopted to extract the asymmetric proximity between users. However, according to

our analysis on real-world directed social networks, we argue that the asymmetric proximity captured by

existing random walk based methods are insufficient due to the inbalance in-degree and out-degree of nodes.

To tackle this challenge, we propose InfoWalk , a novel informative walk strategy to efficiently capture

the asymmetric proximity solely based on random walks. By transferring the direction information into the

weigts of each step, InfoWalk is able to overcome the limitation of edges while infiedly maintain both the

direction and proximity. Based on the asymmetric proximity captured by InfoWalk , we further propose the

qualitative (DNE-L) and quantitative (DNE-T) directed network embedding methods, capable of preserving

the two properties in the embedding space. Extensive experiments conducted on six real-world benchmark

datasets demonstrate the superiority of the proposed DNE model over several state-of-the-art approaches in

various tasks.
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1 INTRODUCTION
Recent years have witnessed the explosive growth of social networks, like Facebook

1
, Twitter

2
,

and Flicker
3
. These social network platforms allow users to build connections with each other

throughout the world, i.e., making online friends. One crucial challenge is how to help users

to discover their possible target users efficiently and accurately, which is also known as user

recommendation[19, 49]. Traditional recommendation algorithms such as similarity or “the friends

of a friend are likely to be friends” might not satisfy the users’ demand since the rich network

structure information is not fully explored. Hence, in this paper, we investigate the social network

structures’ intrinsic properties and devise a novel network embedding method to facilitate the

recommendation procedure. More specifically, we address the user recommendation task from the

perspective of link prediction in the network data, which will benefit from network embedding

techniques.

Network embedding aims at learning low dimensional representations of nodes so that the

proximity between nodes in the original graph can be well preserved in the embedding space.

Tasks such as link prediction [51, 66] or recommendation [13, 60], node classification [20, 27]

and community detection [4, 54] can all greatly benefit from the learned node representations.

Although network embedding has been widely investigated in graph analysis literature, it is non-

trivial to directly apply them in the recommendation scenario because most existing network

embedding methods have primarily focused on undirected networks. However, there are still many

directed networks in real-world applications, including social networks, gene-protein networks,

author-paper citation networks, etc. Obtaining a good embedding for directed networks is able

to help in many research fields including social recommendation[7], network evaluation[21] and

knowledge base interpretation[14]. Thus, our goal is to design a general method for effective node

representation learning in directed networks applicable in recommendation scenarios.

The primary characteristics of the directed social network is the asymmetric proximity between

users, which is desired to be preserved in the latent embedidng space. Given two users 𝑢, 𝑣 in a

directed social network, the probability of user 𝑢 reaching user 𝑣 is different from the probability

of user 𝑣 reaching user 𝑢 due to the differences in node degree distributions and the number of

directed paths between them. It is critical for user recommendation to consider the asymmetric

proximity,especially when the relationships between users are with single direction. For example,

the user 𝑢 may have followed the user 𝑣 while the user 𝑣 does not follow user 𝑢. Only preserve

the proximity between users will make bi-direction recommendation which is not satisfied in the

real-world scenario.

Although some existing methods have made attempts to preserve the asymmetric proximity in

the directed networks, we argue that the asymmetric proximity they captured is ill-defined. Early

works [37] directly utilize deterministic metric such as Katz [23] score defined on the directed

network to capture the asymmetric proximity, which relies on matrix multiplication and can not

scale to large datasets. [45] removes cycles from the network and then infers hierarchy on the

resulting incomplete network. Unfortunately, cycles widely exist in real-world networks and carry

valuable relational information among nodes. Inferring the incomplete network without cycles

will lose crucial relational information and result in suboptimal outcomes. Recent works [25, 64]

extend the random walk strategy from undirected networks to directed networks by requiring the

random walk to follow the direction of edges[64] or alternate between following and reversing

the direction of edges[25]. However, according to our statistics on real-world datasets (see Figure

1
https://www.facebook.com/

2
https://twitter.com/

3
https://www.flickr.com/
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Fig. 1. An example of the random walk on a directed social network. The blue line denotes random walk
successfully follows the direction of edges. The red dot line denotes random walk failed to follow the direction
of edges. Dangling nodes are nodes without out-edges. Best viewed on screen.

1 for a toy example and section 3.3 for detailed analysis), we argue that these random walk’s

reachability suffers from the nodes (a.k.a dangling nodes) without any outgoing edges and the

absence of directed paths between nodes. Therefore, capturing the asymmetric proximity and

effectively preserving them into embedding space demonstrate significant challenges for user

recommendation in directed social networks while existing methods fail to do so.

To tackle the above challenges, in this paper, we first propose a novel informative walk strategy

named InfoWalk to capture the asymmetric proximity in the directed social network. Intuitively,

users that follow the same user will have similar interests, e.g. node 𝐷 and node 𝐺 in Figure 1.

The followers of one user are usually interested in the users that he follow. The InfoWalk captures

the above properties by enabling the reachability between users in the directed social network

with allowing the walk on the network to visit nodes from all directions, which overcomes the

limitations raised by the dangling nodes. During each step of the walk, the direction and proximity

information are stored in a weight on the step. As a result, InfoWalk outputs a weighted node

sequence where the asymmetric proximity can be easily inferred from it.

Given the asymmetric proximity between userd captured by InfoWalk , we further propose

a directed network embedding method DNE with two variants: qualitative directed network

embedding (DNE-L) that preserves the discrete asymmetric proximity between nodes, quantitative

directed network embedding (DNE-T) that preserves the continuous asymmetric proximity for

embedding learning. Two independent embeddings are learned for each node by maximizing the

likelihood of observing directed graph context, which will be defined in the following section.

To evaluate the performance of our proposed directed network embedding method, we conduct

extensive experiments on six real-world datasets and compare DNE with several state-of-the-

arts baseline methods. The experimental results of tasks, including node classification and link

prediction, demonstrate the effectiveness of our proposed DNE method against existing algorithms.

We summarize the contributions of our paper as follows:

(1) We develop a novel informative random walk strategy InfoWalk to efficiently capture the

asymmetric proximity between users in the directed social network for user recommendation.

(2) We propose directed network embedding method DNE with two variants, qualitative and

quantitative directed network embedding (DNE-L and DNE-T), to simultaneously preserve

the asymmetric proximity in the latent embedding space.

(3) We conduct extensive experiments on real-world networks to illustrate the advantages of

our DNE method against state-of-the-art baselines.
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The rest of this paper is organized as follows. We first briefly review the most related user

recommendation and network embedding works in Section 2. Then we use a dataset analysis to

give the problem definition and background in Section 3. The proposed direction-aware random

walk strategy InfoWalk and user recommendation method DNE-L, DNE-T are introduced in Section

4.4. The experimental results and discussions are presented in Section 5.7. Finally, we conclude the

paper and present some directions for future work in Section 6.

2 RELATEDWORK
In this section, we will briefly review the related works of our proposed method, namely the user

recommendation and the network embedding.

2.1 User Recommendation
Recommendation techniques have been extensively studied in the last decades. Here, we will give

a simple review of different social recommendation methods.

Incorporating social relations has recently drawn massive attention in both academic [56, 57]

and industrial communities. Some traditional methods [17, 30] utilize content similarity (e.g., text

similarity or visual similarity) or popularity to perform follower/followee recommendation. [33]

is a factorization method, which shares a common latent space by ratings and social relations.

[58] factorizes the social trust network and maps users into truster and trustee space for the

recommendation. [12] unifies probabilistic matrix factorization with neural network for social

relation recommendation. More details of this category algorithms could be found in the referred

survey [46]. Another category approaches model the recommendation task as a ranking prob-

lem. For example, [11] employs a bayesian personalized ranking deep neural network to make

user recommendations. [40] investigates location-based social recommendation via deep pairwise

learning. [55] designs neural social collaborative ranking recommender system. More recently, the

graph-based recommendation has attracted researchers’ interest[6, 8, 50], and lots of models have

been proposed. Among them, [44] uses a genetic algorithm to design a graph-based user recom-

mendation system. [31] proposes a weighted minimum-message ratio algorithm for personalized

user recommendation. [13] utilizes graph neural networks [16] to jointly model the interaction

of user-item graph. [56] divides the social relations into strong ties and weak ties to facilitate the

recommendation. [22] proposes a random walk model for combining trust-based and item-based

recommendation. [7] models users’ exposure to social knowledge and consumption influence for

the recommendation. [10] conducts social recommendation with an informative sampling strategy.

[9] performs social recommendations based on users’ attention and preference. [1] utilizes a graph

autoencoder invariant to extract embeddings from the user-item interaction graph. [60] proposes

an efficient graph convolutional neural network to learn node representations for the web-scale

recommendation. [36] employs GNNs to learn representations for users and items, and then a

diffusion process is conducted with recurrent neural networks [18]. Unlike the methods mentioned

above, our proposed model focuses on investigating the directed network’s inherent properties to

promote the recommendation procedure, which is rarely studied in the literature.

2.2 Network Embedding
Network embedding methods focus on embedding the nodes in an existing network into a low-

dimensional vector space to understand semantic relationships between nodes better.

The proximity preserved in existing network embeddings comes from one of the two buckets,

deterministic metric, and random walk results. LINE[47] is proposed for the large scale network,

which preserves both first-order and second-order proximities to learn network representations.

GraRep[2] can be regarded as an extension of LINE, which considers higher-order proximity.
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DNGR [3] utilizes denoising stacked autoencoder to learn nonlinear network representations with

high-order proximities preservation. SDNE[51] and DGE [65] incorporates graph structure into

deep auto-encoder to preserve the highly nonlinear first order and second order proximities. The

proximity preserved in the above methods relies on the matrix multiplication of the adjacent matrix,

which is not scalable in large real-world datasets. To effectively calculate the proximity between

nodes, random walks on graphs have been widely used to apply on network data. Among them,

DeepWalk[38] and Node2Vec[15] employs a truncated random walk to generate node sequences,

which is treated as sentences in language models and fed to the Skip-gram model to learn the

embeddings. In CARE[24], a customed community aware random walk is proposed to consider

both first and higher-order proximities as well as community membership information for each

node. The random walk results are also fed into the skip-gram model to learn node embedding.

All the approachesmentioned above, however, are limited to dealingwith undirected networks. To

embed directed networks, one straightforward solution is ignoring the direction of edges and apply

the above undirected network embedding methods on the transformed network, which may cause

information loss and the learned embedding method is faulty. Directed network embedding is then

put forward since edges in real-networks are often associated with directions. Random walk based

network embedding methods, including Node2Vec [15] and DeepWalk [38] can be applied to the

directed network by guiding the walk with the directed edges. However, the asymmetric proximity

between nodes cannot be preserved by the skip-grammodel. APP [64] is then proposed by implicitly

preserving the Rooted PageRank (RPR), another higher-order proximity feature, in the embedding

space. Each node is assigned with source embedding and target embedding to preserve the observed

random walk based graph context. HOPE [37] is proposed to approximate asymmetric transitivity

based on high-order proximity features (e.g., Adamic Adar (AA), Katz Index (KI), CommonNeighbors

(CN)) with source and target embedding. However, factorizing the asymmetric proximity matrix is

unscalable. The above methods are also undermined by the cycles in the directed network, and

ATP[45] is then proposed to incorporate both graph hierarchy and reachability information by

constructing a novel asymmetric matrix. In NERD[25], an alternating random walk strategy is

proposed to walk alternately along and reverse the direction of edges. Although such a strategy

can walk along the inverse direction, the visited nodes are limited, and the proximity captured

is incomplete. Unlike the above methods that preserve the high-order proximities, inspired by

Newton’s theory of universal gravitation, [42] is recently proposed to learn node embedding by

reconstructing asymmetric relationships. Some other network embedding methods also incorporate

side information like node attributes[16, 27, 48, 66], signs of edgesc[26, 53, 61] and heterogeneous

relationships[5] which also motivates the development of embedding complex networks. Another

branch of research that closely related to directed network embedding is the signed network

embedding[52, 61]. Although both two types of networks have special type of edges, the difference

lies in the information contained in the edge. More specifically, the directed edge denotes the

asymmetric proximity between nodes in the network, the signed edge denotes the edge type

between nodes which is not necessary to be asymmetric. As a result, such asymmetric proximity is

the key characteristics of the directed which should be preserved by the embedding method.

3 PRELIMINARIES
In this section, we first introduce some backgrounds of random walk based embedding methods,

then we analysis the drawback of vanilla random walk on real-world networks which motivate our

proposed method. Finally, we definite the problem we studied in this paper.
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3.1 Background
RandomWalk is a popular method of deriving the relationship between nodes on network. Given

a start node, it first selects a neighbor of node at random, and move to this neighbor then keep

selecting neighborhood of node and move to it until visit predefined number of nodes. The sequence

of nodes selected this way is a random walk on the graph. Skip-Gram model is originated from

language model and recently extended to network data for embedding learning. Given a sequence of

nodes 𝑣1, 𝑣2, ..., 𝑣𝑇 , the objective of the Skip-gram model is to maximize the average log probability:

|V |∑
𝑢=1

∑
−𝑐≤ 𝑗≤𝑐,𝑗≠0

log 𝑝 (𝑣𝑢+𝑗 |𝑣𝑢) (1)

where 𝑐 is predefined size of the training context which is the distance on the node sequence

generated by random walk. The probability of observing the context node depends on their latent

embedding:

𝑝 (𝑣𝑢+𝑗 |𝑣𝑢) =
exp(ℎ𝑢 · ℎ𝑢+𝑗 )∑
𝑤∈V exp(ℎ𝑢 · ℎ𝑤)

(2)

where ℎ𝑢 is the embedding of node 𝑢.𝑤 are nodes outside the window which is randomly sampled

from the node set. Above all, it is easy to find that the sequence generated by random walk plays

central role in embedding learning as the target is predicting the co-occurrence of nodes on the

sequence.

3.2 Definitions
Definition 1. Directed Network A directed network is defined as G = {V,E}, where V =

{𝑣1, 𝑣2, ..., 𝑣𝑁 } denotes a set of nodes and N is the number of nodes. E is a set of direct edges between
nodes, E𝑖 𝑗 = 1 if there exists a direct edge from node 𝑣𝑖 to node 𝑣 𝑗 , otherwise, E𝑖 𝑗 = 0, 𝑀 = |E| is
the number of edges. The neighbor of node 𝑣𝑖 can be grouped into two sets named in-neighbor N 𝑖𝑛

𝑖

and out-neighbor N𝑜𝑢𝑡
𝑖 where ∀𝑣 𝑗 ∈ N 𝑖𝑛

𝑖 ,E𝑗𝑖 = 1 and ∀𝑣 𝑗 ∈ N𝑜𝑢𝑡
𝑖 ,E𝑖 𝑗 = 1. In-degree of node 𝑣𝑖 is

defined as 𝑑𝑖𝑛𝑖 = |N 𝑖𝑛
𝑖 | and out-degree of node 𝑣𝑖 is defined as 𝑑𝑜𝑢𝑡𝑖 = |N𝑜𝑢𝑡

𝑖 |.

Definition 2. Directed Network Embedding Given a direct network G = {V,E}, we aim at
learning two independent lower-dimensional embedding named source embedding h𝑠𝑖 ∈ 𝑅𝐿 and
target embedding h𝑡𝑖 ∈ 𝑅𝐿 for each node 𝑣𝑖 ∈ V to preserve the asymmetric proximity and hierarchy
in the embedding space. The source embedding and target embedding represents the preference of
sending and receiving edges for the node. 𝐿 is the embedding dimension which satisfies 𝐿 ≪ 𝑁 .

3.3 Dataset Analysis
In this subsection, we conduct thorough analysis on five real-world directed networks to better

understand the drawback of vanilla random walk on directed networks. For each node in the

network, we perform random walk start from this node and the random walk stops when 40 nodes

(if possible) are visited by it. We repeat this for 10 times and conduct statistic analysis on the visisted

nodes and random walk length.

Figure 2 illustrates the number of nodes that visited by random walk on five real-world directed

networks.

Although it satisfy the power-law distribution, we can observe a considerable number of nodes

(marked as ’Failed Random Walk’) are visited 10 times in the random walk which means they are

visited only once in the random walk starts from them and terminate immediately. This refers to

the dangling nodes without any out-neighbors, random walk fails to explore the neighborhood

information of these nodes and further affect the embedding of other nodes. The right sub-figure

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Fig. 2. Number of nodes that visited by random walk on five real-world directed networks.
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Fig. 3. Statistics of the length of vanilla random walk performed on five real-world directed networks.

Table 1. Notations used in this paper.

Notations Explainations

R𝑣𝑖 Random walk start from node 𝑣𝑖
h𝑠𝑖 Source embedding of node 𝑣𝑖
h𝑡𝑖 Target embedding of node 𝑣𝑖

N𝑜𝑢𝑡
𝑖 Number of out-neighbor nodes

N 𝑖𝑛
𝑖 Number of in-neighbor nodes

𝑟𝑖,𝑖+1 Direction-aware step weight in step 𝑖

𝑠𝑖 𝑗 Direction-aware score of between 𝑖-th and 𝑗-th node in the random walk

𝜙𝑢,𝑣 Direction-aware weight between node 𝑢 and node 𝑣

𝐷𝐶𝑢 Direction-aware context of node 𝑢

illustrates the length of random walk from all nodes. We can observe that many random walk can

not walk to predefined walk length 40 and only 37.8% of nodes can walk to 40 nodes. In other

words, many random walk can not well explore the local topology structure due to the absence of

directed path between nodes.

Above all, we observe many dangling nodes without out-degree exist in the directed network.

These nodes and the absence of directed path between nodes limits the ability of visiting nodes by

random walk. It is necessary to overcome the limitation to capture the proximity between nodes

without directed paths and further improve the quality of embedding.

4 PROPOSED METHOD
In this section, we first develop an informative random walk strategy InfoWalk to capture the

asymmetric proximity between nodes in the directed network. We propose two unified methods

named qualitative directed network embedding (DNE-L) and quantitative directed network em-

bedding (DNE-T) to embed the asymmetric proximity into the embedding space. The notations

used in this section and the explanations are denoted in table 1.
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4.1 InfoWalk Strategy
As we have discussed in Section 1, the vanilla random walk on the directed network suffers from

the absence of the directed path between nodes and the limitation of dangling nodes. To overcome

the limitation, we propose our informative random walk strategy InfoWalk in this subsection. The

basic idea of InfoWalk is first to ignore the direction of edges and allow the random walk to visit

nodes from all directions. During each step of the random walk, the direction and asymmetric

proximity are stored in a carefully designed weight on the step. After the random walk reaches

the specified length, we get a step weighted node sequence that expresses asymmetric proximity

between nodes, which can be used for directed embedding learning.

Given a directed networkG, we denote a randomwalk started fromnode 𝑣𝑖 asR𝑣𝑖 : 𝑣𝑖−→𝑣 𝑗 · · · −→𝑣𝑘

which is a sequence of visited nodes, R𝑘
𝑣𝑖
denotes the node visited in 𝑘-th step in random walk R𝑣𝑖 .

Suppose in the 𝑘-th step, the random walk arrives at node 𝑣𝑎 : R𝑘
𝑣𝑖
= 𝑎, in the (𝑘 + 1)-th step the

random walk will uniformly walk to in-neighbor N 𝑖𝑛
𝑎 or out-neighbor N𝑜𝑢𝑡

𝑎 of node 𝑣𝑎 :

𝑃 (R𝑘+1
𝑣𝑖

= 𝑏 |R𝑘
𝑣𝑖
= 𝑎) =

{
1

𝑑𝑜𝑢𝑡𝑎 +𝑑𝑖𝑛𝑎
E𝑎𝑏 = 1 orE𝑏𝑎 = 1

0 otherwise

(3)

Such a random walk can be viewed as walking on an undirected network that ignores the direction

of edges in G. By compromising the direction, the walk can reach nodes without a path in the

directed network and capture the asymmetric proximity. In order to capture the mixture of direction

and proximity between nodes, we further introduce a direction-aware step weight 𝑟𝑖,𝑖+1 on each

step 𝑣𝑖 , 𝑣𝑖+1 with the following rules:

𝑟𝑖,𝑖+1 =


1 ifE𝑖,𝑖+1 = 1 andE𝑖+1,𝑖 = 0

−1 ifE𝑖,𝑖+1 = 0 andE𝑖+1,𝑖 = 1

0 ifE𝑖,𝑖+1 = 1 andE𝑖+1,𝑖 = 1

(4)

where 𝑟𝑖,𝑖+1 = 1 denotes the random walk follows the direction of edge, 𝑟𝑖,𝑖+1 = −1 denotes the

random walk step reverses the direction of edge, 𝑟𝑖,𝑖+1 = 0 denotes there exists directed edges in

both directions between node 𝑣𝑖 and 𝑣𝑖+1. The motivation behind this is that the indicator 𝑟𝑖,𝑖+1
stores the direction transformation caused by each random walk step on the directed network,

which can be further used for inferring the direction of unobserved edges. For weighted directed

network, 𝑟𝑖,𝑖+1 can be set by further multiplying the observed weight on edge, and we leave it in

future work.

Given the weight 𝑟𝑖,𝑖+1 on each step, the result of InfoWalk can be represented as a edge weighted

node sequence: R𝑣𝑖 : 𝑣𝑖
𝑟𝑖,𝑗−→ 𝑣 𝑗

𝑟 𝑗,𝑗+1−→ · · ·
𝑟𝑘−1,𝑘−→ 𝑣𝑘 . Based on the step weighted node sequence, we

define a score 𝑠𝑖,𝑖+𝑘 of nodes 𝑣𝑖 and 𝑣𝑖+𝑘 on the sequence as the sum of indicators 𝑟 of each step

between them:

𝑠𝑖,𝑖+𝑘 =
1

𝑘

𝑖+𝑘−1∑
𝑗=𝑖

𝑟 𝑗, 𝑗+1 (5)

where 𝑟 𝑗, 𝑗+1 is step weight 𝑗 , 1/𝑘 is used to normalize the impact from number of steps. Since nodes

far from current can not provide useful information for embedding learning and calculating scores

for these nodes is time-consuming, we follow the vanilla random walk strategy and only calculate

𝑠𝑖,𝑖+𝑘 with a small 𝑘 . From the results of InfoWalk , the following desired properties of a directed

network for embedding learning can be inferred:

(1) Direction Transition: Since each step weight 𝑟 stores the random walk step follows or

reverses the edge’s direction, each step’s direction transition is also stored. As a result, the

sign of 𝑠𝑖,𝑖+𝑘 denotes the direction between nodes: 𝑠𝑖,𝑖+𝑘 > 0 denotes observing node 𝑣𝑖
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Fig. 4. Example of InfoWalk on directed network. Red arrows denote steps that reverse the direction of edges.
Blue arrows denote steps that follow the direction of edges.

tend to form directed edge to node 𝑣𝑖+𝑘 , 𝑠𝑖,𝑖+𝑘 < 0 denotes observing node 𝑣𝑖+𝑘 tend to form

directed edge to node 𝑣𝑖 , 𝑠𝑖,𝑖+𝑘 = 0 denotes observing node 𝑣𝑖 tend to form bi-direction edge

to node 𝑣𝑖+𝑘 . Figure 4 illustrates some typical examples of asymmetric proximity captured by

InfoWalk .

(2) Asymmetric Proximity: InfoWalk can easily capture the asymmetric proximity since In-

foWalk walks on the network by ignoring the direction of edges, nodes with higher in-degree

and out-degree will be visited more frequently. As a result, such nodes have a higher chance

of occurring in the window of other nodes.

4.2 Directed Network Embedding
In this subsection, we first define the directed graph context to clarify the target of embedding

learning. We propose both qualitative directed network embedding (DNE-L) and quantitative

directed network embedding (DNE-T). For each variant, two independent embeddings named

source embedding ℎ𝑠 and target embedding ℎ𝑡 are learned to preserve the asymmetric proximity.

The difference between variants lies in how to preserve the asymmetric proximity. Figure 5 illustrates

the basic structure of DNE-L and DNE-T.

Definition 3. Directed Graph Context Given informative random walk results R on directed
networkG, we define the directed graph context as follows: source context, Target context, and Ambigu-
ous context. The source context refers to nodes reached by the DNE method and has a potential direct
link to it. The target context refers to nodes reached by the DNE method and has a potential direct link
from it; The ambiguous context refers to nodes reached by the DNE method, but the direction between
them is ambiguous.
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Source

Context

Target 

Context

Target 

Context

Ambiguous 

Context

… …

Fig. 5. Overall framework of the DNE method. Given the direction-aware random walk on the directed
network, sequence of nodes are generated. The directed graph context is then defined based on the score 𝑠𝑖 𝑗 .
The directed relationship between nodes is preserved by the source embedding and target embedding of each
node.

4.2.1 Qualitative Directed Network Embedding. The qualitative directed network embedding meth-

ods preserve the asymmetric proximity by maximizing the likelihood of observing the directed

graph context node.

maxH𝑠 ,H𝑡

∑
𝑢∈V

∑
𝑣∈𝐷𝐶𝑢

log 𝑃 (𝑣 |𝑢, 𝑠𝑢,𝑣) (6)

where DC𝑢 is the directed context of node 𝑢, 𝑠𝑢,𝑣 is calculated by the DNE method. 𝑃 (𝑣 |𝑢, 𝑠𝑢,𝑣) is
the probability of observing node 𝑣 in the directed context of node 𝑢 with score 𝑠𝑢,𝑣 , which can be

formulated as:

𝑃
(
𝑣 |𝑢, 𝑠𝑢,𝑣 > 0

)
=

exp
(
ℎ𝑠𝑢 · ℎ𝑡𝑣

)∑
𝑘∈𝑉 exp(ℎ𝑠𝑢 · ℎ𝑡𝑣)

(7)

𝑃
(
𝑣 |𝑢, 𝑠𝑢,𝑣 < 0

)
=

exp
(
ℎ𝑠𝑣 · ℎ𝑡𝑢

)∑
𝑘∈𝑉 exp(ℎ𝑠𝑣 · ℎ𝑡𝑢)

(8)

𝑃
(
𝑣 |𝑢, 𝑠𝑢,𝑣 = 0

)
=

exp
(
ℎ𝑠𝑣 · ℎ𝑡𝑢 + ℎ𝑠𝑢 · ℎ𝑡𝑣

)∑
𝑘∈𝑉 exp

(
ℎ𝑠𝑣 · ℎ𝑡𝑢 + ℎ𝑠𝑢 · ℎ𝑡𝑣

) (9)

where ℎ𝑠 is the source embedding and ℎ𝑡 is the target embedding. The probability of observing the

score is the dot product between source embedding of the node 𝑢 and target embedding of the node

𝑣 . When the score 𝑠𝑢,𝑣 = 0, node 𝑢 and node 𝑣 tend to form directed edges from both directions

between them. As a result, the probability is the sum of producing embedding from both directions.

4.2.2 Quantitative Directed Network Embedding. Intuitively, the directed graph context nodes have

different probability to be visited by InfoWalk from the centering node. Thus, it is reasonable to

weight the importance of contextual nodes based on their relative score 𝑠𝑢,𝑣 to the current node.

However, directly apply the score 𝑠𝑢,𝑣 to weight the importance is suboptimal due to the following

reasons:

(1) The weight of context nodes with score 𝑠𝑢,𝑣 = 0 should have a positive weight instead of

zero.

(2) The weight of context nodes with score 𝑠𝑢,𝑣 = 0 but different random walk length should

have different weights.
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To overcome the above limitations, we have to first reformulate the score score 𝑠𝑢,𝑣 for weighted

training. The weighting function should obey the following properties:

(1) 𝜋0 > 0
(2) ∀𝑚 > 𝑛, 𝜋𝑚 > 𝜋𝑛

(3) ∀𝑖 > 𝑗, 𝜋𝑖
𝑚 < 𝜋

𝑗
𝑚

where 𝜋𝑖
𝑚 denotes the transformed weight of score 𝑚 with length 𝑖 . In this paper, we use the

following transformation from score to weight:

𝜋𝑢,𝑣 = log( 𝑠𝑢,𝑣 + 1

𝑣 − 𝑢
+ 𝑏) (10)

where 𝑠𝑢,𝑣 is the score calculated in Equation 5, 𝑏 > 0 is a bias to ensure the weight is positive. The

transformation ensures the following properties of the score:

(1) Nodes with larger score 𝑠𝑢,𝑣 will have larger weight 𝜋𝑢,𝑣
(2) Nodes with longer distance on the random walk will have smaller weight 𝜋𝑢,𝑣

The source and target embedding can be learned by a weighted Skip-Gram optimization:

maxH𝑠 ,H𝑡

∑
𝑢∈V

∑
𝑣∈𝐷𝐶𝑢

log 𝑃
(
𝑣 |𝑢, 𝜋𝑢,𝑣

)
=log

𝜋𝑢,𝑣 · exp
(
ℎ𝑠𝑢 · ℎ𝑡𝑣

)∑
𝑘∈𝑉 exp(ℎ𝑠𝑢 · ℎ𝑡𝑣)

(11)

4.2.3 Model Optimization. To improve the training efficiency, the Negative Sampling and stochastic

gradient descent is used and the opjective can be formulatted as:

L𝐷𝑁𝐸−𝐿 = log𝜎 (ℎ𝑠𝑢 · ℎ𝑡𝑣) +
𝑘∑
𝑖=1

E𝑤∼𝑃𝑛 (𝑣)
[
log𝜎 (−ℎ𝑠𝑢 · ℎ𝑡𝑤)

]
(12)

L𝐷𝑁𝐸−𝑇 = 𝜋𝑢,𝑣 log𝜎 (ℎ𝑠𝑢 · ℎ𝑡𝑣) +
𝑘∑
𝑖=1

E𝑤∼𝑃𝑛 (𝑣)
[
log𝜎 (−ℎ𝑠𝑢 · ℎ𝑡𝑤)

]
(13)

4.3 Theoretical analysis
In this subsection, we give a theoretical analysis of the asymmetric proximity captured by the

InfoWalk method. Given directed network G, we use Ĝ to represent the undirected network that

ignores the direction of edges in directed network G.

Let A be the adjacent matrix of directed network G, Â be the adjacent matrix of Ĝ which can be

formulated by:

Â = A +A𝑇 −A ◦A𝑇
(14)

where ◦ is the Hadamard product. The transition probability matrix P can be formulated as:

P = D̂−1Â where D̂ is the diognal degree matrix of undirected network 𝐺 . The weight function

of each random walk step can be written asW = A −A𝑇
. Since the score 𝑠𝑢,𝑣 is sum of the edge

weights of all the steps taken by the random walk, we first write the scorein the iterative matrix

form as:

S1 = P ◦W (15)

S𝑘 = D̂−1S𝑘−1 + D̂−1P𝑘−1W (16)
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The formulation can be understood as adding weights from each neighborhood visited by last step

(denoted as D̂−1S𝑘−1) with the weights by the next step (denoted as D̂−1P𝑘−1W). The expectation

of score between nodes that reach in after K steps can be written as:

S𝑘 =

𝑘∑
𝑖=1

P𝑖−1 (D̂−1W)P𝑘−𝑖
(17)

where S is the score matrix, A is the transmission matrix, ◦ is the Hadamard product. As the

proximity between nodes decreases with the randomwalk goes deeper, we introduce the attenuation

coefficient
1
𝑘
with respect to the random walk length 𝑘 . The overall asymmetric proximity between

nodes in directed network can be written as:

S =

𝑇∑
𝑘=1

1

𝑘
S𝑘 (18)

The above equation shows the matrix form of the asymmetric proximity captured by InfoWalk ,

which can be used to analysis the relationship with existing random walk based methods and we

leave it in our future work.

Algorithm 1 InfoWalk Strategy and DNE Algorithm

Input: Directed network G = {V,E}, embedding dimension 𝑑 , walks per node 𝑟 , walk length 𝑙 ,

window size 𝑘 .

Output: Source embedding H𝑠
and target embedding H𝑡

Initialize H𝑠 ,H𝑡
. Walks={}

for k=1 to r do
for 𝑣𝑖 ∈ V do

Perform informative random walk of length 𝑙 start from node 𝑣𝑖 ;

Modify the step weight 𝑟 on each step and append weighted sequence R𝑣𝑖 : 𝑣𝑖
𝑟𝑖,𝑖+1−→

𝑣𝑖+1−→ · · ·
𝑟𝑙−1,𝑙−→ 𝑣𝑙 to Walks;

end for
end for
for walk ∈ walks do

for node pair (i,j) within window size 𝑘 in walk do
Calculate the score 𝑠𝑖 𝑗 ;

Randomly sample negative pairs (𝑖, 𝑘);
Update H𝑠 ,H𝑡

with equation 7,8, 9 and 11;

end for
end for
Return H𝑠

, H𝑡
.

4.4 Complexity and Scalability
Given a directed network 𝐺 = {V,E}, we only need 𝑂 ( |𝑉 |𝑑) space since we employ the stochastic

gradient update on the directed graph contexts generated by directed random walk. The time

complexity of the DNE method method is 𝑂 ( |𝑉 |𝑑𝑟𝑙𝑘) where |𝑉 | is the number of nodes, 𝑑 is the

dimension of embedding, 𝑟 is the number of walks per node, 𝑙 is the walk length and 𝑘 is the

number of iterations. Our proposed DNE method is efficient in both space and time, which can be

applied on large scale datasets.
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5 EXPERIMENTAL EVALUATION
In this section, we conduct extensive experiments on several real-world network datasets to evaluate

the performance of our proposed DNE method. We particularly consider the motivation and impact

of directed edges in social networks and design direction aware user recommendation experiment

Through empirical evaluation, we aim to answer the following research questions:

RQ1 How does the DNE method perform compared with state-of-the-art methods on user recom-

mendation tasks?

RQ2 Is it beneficial to overcome the limination of non-existing path and dangling nodes by

InfoWalk ?

RQ3 How do the hyperparameters affect the performance of the DNE method?

5.1 Experimental Settings
5.1.1 Dataset. We conduct experiments on several real-world social network datasets and biblio-

graphic networks with labels for each node. The social networks with directed edges are used for

evaluating user recommendations, while the bibliographic networks are used for user profiling. It

is worth noting that since collecting large scale social networks with ground truth labels is hard,

we take the bibliographic network with directed edges instead. The statistics of datasets used in

our experiments are summarized in Table 2.

• Slashdot Networks: Slashdot is a technology-related news website that user can tag each

other as friends or foes. There are 77,360 users and 905,468 "friend/foe" relationship between

users in the dataset[29]. This dataset has been widely used for social network analysis and

user recommendation.

• Epinions Network: Epinions is a who-trust-whom online social network of a general

consumer review site Epinions.com. This dataset contains the "trust" relationship between

users. There are 75,879 users and 508,837 "trust" relationship in the dataset[41]. This dataset

has been widely used for trust user recommendation and social recommendation.

• Twitter Network: Twitter is one of the most popular social network platforms globally. This

dataset contains the "following" relationship among users crawled from the network. There

are 90,908 users in the network and 443,399 "following" relationships in the dataset[32]. This

dataset has been widely used for network analysis and social recommendation.

• LastFM Network: Last.FM is a streaming radio service provider where users can search

for music and get a personalized recommendation. There are 136,420 users and 1,685,524

"following" links among the users in the dataset[62]. This dataset has been widely used for

music recommendations.

• Wiki-Vote NetworkWikipedia is a free encyclopedia written collaboratively by volunteers

around the world. The users can vote for another to promote adminship, and this dataset

contains the vote data among users. There are 7,115 users and 103,689 "voting" relationship

from one user to another. This dataset [28] has been widely used for analyzing the "trust"

relationship in the online community.

• CoCit andPubmedNetworks: CoCit and Pubmed [43] are two public bibliographic datasets.

Nodes represent the published paper, and edges represent the citation relationship between

them. Labels indicate the research categories that each paper belongs to. We conduct a

node classification experiment on these two directed networks to simulate the user profiling

experiments in social networks.

5.1.2 Baseline methods. We compare our proposed method with several state-of-the-art directed

network embedding methods and user recommendation methods to evaluate our proposed DNE
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Table 2. Statistic of network datasets used in the experiments.

Dataset # Nodes # Edges # Labels % Dangling Node % Bi-directional Edges

Wiki 7,115 103,689 - 0.141 0.0565

Epinions 75,879 508,837 - 0.204 0.4052

Slashdot 77,360 905,468 - 0.271 0.8783

Twitter 90,908 443,399 - 0.087 0.6066

LastFM 136,409 1,685,524 - 0.439 0.0009

Pubmed 19,717 44,338 3 0.803 0.0001

CoCit 44,034 195,361 15 0.451 0.0001

method. It is worth noting that we do not compare with the social network based user-item recom-

mendation method as we focus on evaluating the performance of learned user/node embedding in

the directed graph.

• DeepWalk[38] andNode2Vec [15] are two popular random walk based network embedding

methods and can be used for modeling the relationship among users. However, these methods

ignore the direction of edges and could only preserve the proximity among nodes.We compare

these methods to demonstrate the importance of considering the direction of edges.

• APP [64] andNERD [25] are two randomwalk basedmethods designed for directed networks.

In APP, the random walk follows the direction of edges to capture the direction of edges.

However, such a strategy can not deal with the dangling nodes and only preserve the ill-

defined asymmetric proximity. In NERD, the random walk alternates the direction between

steps. This strategy can somehow deal with dangling nodes, but the transitivity of direction

is ignored. We compare these two random walk-based methods to show the advantage of the

strategy used in the DNE method.

• LINE [47], HOPE [37] and GraRep [2] are matrix factorization based graph embedding

methods. These methods first generate the proximity matrix in different ways, then utilize

matrix factorization to get the low-dimensional representation. More specifically, LINE
combines the first and second order proximity, HOPE utilize Katz distance [23] as the

proximity metric. GraRep employs the PPMI matrix between nodes as the proximity matrix

and uses SVD to learn node embeddings.

• ATP [45] is a three-step graph embedding framework that includes removing cycles in the

network, inferring the incomplete hierarchy on the reduced network, embedding learning

with SVD. Previous work [39] has proved that the skip-gram based method can be treated as

variants of the matrix factorization method. We compare with the above matrix factorization

based methods to show the advantage of capturing the asymmetric proximity.

• GraphSAGE [16] and GAT [48] are two popular graph neural network methods and widely

used for graph embedding. These methods learn node embedding by aggregating informa-

tion from neighbored nodes. In directed networks, information can be aggregated from

in-neighbors.

• Gravity [42] is another directed network embedding method inspired by Newton’s theory

of universal gravitation. It learns an additional parameter of mass for each node, and di-

rected edges are formed from both mass and distance. However, during the aggregation of

these methods, asymmetric proximity are missed. We compare with the above graph neural

networks to demonstrate the effectiveness of our proposed method.

• GREED[34] and ShortWalk[63] are two random walk based directed network embedding

method. Although they have tried to capture the asymmetric proximity between nodes in the
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network, they fail to consider the dangling nodes which results in the incomplete proximity

preserved in the embedding.

5.1.3 Parameter Setting of Baseline Methods. Among baseline methods, Node2Vec, DeepWalk,

APP, NERD are random walk based methods. To make a fair comparison, we set the random walk

parameters in these methods as same as our proposed DNE method. More specifically, we set the

length of random walk 𝑙 = 10, window size 𝑘 = 4, and the number of walkers per node 𝑟 = 10. For
the Node2Vec method, the probability of Breadth-first Sampling(BFS) is set as 0.25, the probability

of Depth-first Sampling (DFS) is set as 0.5. We use the inner product of the embedded vectors

to estimate the proximity between nodes. The APP, ATP, NERD and HOPE methods preserve

the asymmetric proximity by learning two independent source embedding and target embedding.

For tasks like node classification, we test the performance with both embeddings and report the

best results. LINE learns two embeddings for each node, namely context embedding and node

embedding. We also test both of them and report the best result. We use the open-source code from

the authors and fine-tune them with gradient search for all the baseline methods. We implement

the proposed DNE method with Pytorch and Tensorflow. The model parameters are randomly

initialized with a Xavier initializer, and an Adam optimizer is employed for optimization. We set

the learning rate to 0.0005 and the batch size to 512. The vector dimension of all the methods is

128. The detailed parameter setting of baseline methods is listed in Table 3. All the experiments are

conducted on a Linux server with one NVIDIA Titan XP GPU and a 24 core Intel Xeon E5-2690

CPU. We have provided the Pytorch and Tensorflow implmentation of DNE in Github
4
.

Table 3. Parameter Setting of baseline methods.

Method Parameter Setting

Node2Vec

walk_length=10,number_of_walks=10,window_size=4

p=0.25,q=2

DeepWalk walk_length=80,number_of_walks=10,window_size=4

LINE negative-ratio=5,order=first+second

GraRep K-step=4

Hope Similarity=Katz

APP

walk_length=80,number_of_walks=10,window_size=4

Negative=5, jump factor=0.15,alpha=0.0025

NERD

walk_length=80,number_of_walks=10,

Negative=5, rho=0.025,joint=1

ATP Rank=64, strategy=linear

Gravity epsilon=0.01(cora,citeseer2)/10(pubmed)

DNE num_walks=10,walk_length=10,window_size=10

5.1.4 Detailed Evaluation Metric. In this subsection, we provide the details of the evaluation metric

used in our experiments. For classification task, Micro-F1 and Macro-F1 are used which can be

defined as follows:

Precision =

∑
𝐴∈𝐶 𝑇𝑃 (𝐴)∑

𝐴∈𝐶 (𝑇𝑃 (𝐴) + 𝐹𝑃 (𝐴)) (19)

Recall =

∑
𝐴∈𝐶 𝑇𝑃 (𝐴)∑

𝐴∈𝐶 (𝑇𝑃 (𝐴) + 𝐹𝑁 (𝐴)) (20)

4
https://github.com/zhoushengisnoob/DNE
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Table 4. Vanilla user recommendation on real-world dataset with respect to the AUC score and Mean average
precision. Negative links contains the reverse direction of positive edges. NA denotes the methods can not
run on our hardware setup. † indicates that the result of a paired difference test is significant at 𝑝 < 0.05

Dataset Wiki Epinions Slashdot Twitter LastFM

Metric AUC MAP AUC MAP AUC MAP AUC MAP AUC MAP

Node2Vec 0.855 0.805 0.853 0.84 0.738 0.740 0.874 0.910 0.923 0.933

DeepWalk 0.69 0.638 0.585 0.584 0.390 0.4155 0.852 0.892 0.825 0.838

GraRep 0.905 0.893 NA NA NA NA NA NA NA NA

LINE 0.913 0.917 0.857 0.894 0.764 0.7909 0.791 0.8375 0.898 0.923

HOPE 0.93 0.948 0.889 0.924 0.777 0.8524 0.801 0.8417 NA NA

APP 0.919 0.907 0.898 0.928 0.868 0.8877 0.873 0.918 0.926 0.935

ATP 0.85 0.779 NA NA NA NA NA NA NA NA

Gravity 0.955 0.927 NA NA NA NA NA NA NA NA

NERD 0.517 0.565 0.818 0.872 0.832 0.8767 0.694 0.742 0.744 0.773

GraphSAGE 0.938 0.917 0.930 0.942 0.886 0.895 0.849 0.8875 0.948 0.950

GAT 0.839 0.785 0.786 0.776 0.631 0.569 0.821 0.862 0.909 0.914

GREED 0.793 0.725 0.633 0.543 0.720 0.712 0.650 0.666 0.826 0.828

ShortWalk 0.708 0.673 0.787 0.805 0.638 0.660 0.889 0.920 0.899 0.913

DNE-L 0.960 0.955 0.926 0.939 0.863 0.899 0.899 0.928 0.951 0.956
DNE-T 0.968 0.963 0.929 0.941 0.857 0.896 0.889 0.921 0.946 0.951

Impv% †0.8% †0.8% - - - †0.4% †2.9% †1.0% †0.3% †0.6%

Micro-F1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(21)

Macro-F1 =

∑
𝐴∈𝐶 𝑀𝑖𝑐𝑟𝑜 − 𝐹1(𝐴)

|𝐶 | (22)

In the formulas mentioned above, TP(A), FP(A), and FN(A) is the number of true positives, false

positives, and false negatives in the instances which are predicted as A, respectively. Suppose C is

the overall label set. Micro-f1(A) is the Micro-f1 measure for label A.

5.2 Vanilla User Recommendation (RQ1)
In this subsection, we conduct experiments on real-world social network datasets concerning

vanilla user recommendation tasks to evaluate the proposed DNE method. As we have discussed

in section 1, most of the existing methods only preserve the proximity among nodes while fail to

preserve the direction of edges. However, our proposed method DNE preserves both the proximity

and direction between nodes in a unified framework. To evaluate the performance of preserving

the proximity between nodes, we first conduct vanilla user recommendations that only predict

edges between nodes and ignore the direction of edges. We will test the performance of predicting

edge direction in the next subsection.

5.2.1 Experiment Setup. Following the same experimental procedure in many existing works [66],

we randomly hold out 30% of the existing links as positive instances in the test set and randomly

sample the same amount of non-existing links as negative instances. The residual network is

used to train the network embedding methods. We evaluate the user recommendation task in

the edge labeled dataset after learning the node embedding for each node/user in the network.
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Table 5. Direction aware recommendation on real-world dataset with respect to the AUC score and Mean
average precision. Negative links contains the reverse direction of positive edges. NA denotes the methods
can not run on our hardware setup. † indicates that the result of a paired difference test is significant at
𝑝 < 0.05

Dataset Wiki Epinions Slashdot Twitter LastFM

Metric AUC MAP AUC MAP AUC MAP AUC MAP AUC MAP

Node2Vec 0.692 0.470 0.759 0.646 0.714 0.690 0.807 0.749 0.712 0.481

DeepWalk 0.603 0.403 0.574 0.478 0.400 0.401 0.788 0.74 0.662 0.452

GraRep 0.727 0.522 NA NA NA NA NA NA NA NA

LINE 0.722 0.512 0.761 0.672 0.744 0.740 0.739 0.690 0.698 0.477

HOPE 0.746 0.546 0.772 0.662 0.7546 0.789 0.807 0.740 NA NA

GraphSAGE 0.724 0.4763 0.806 0.687 0.854 0.829 0.789 0.739 0.696 0.444

GAT 0.677 0.4610 0.713 0.591 0.703 0.638 0.783 0.737 0.713 0.471

APP 0.698 0.449 0.803 0.711 0.833 0.813 0.807 0.762 0.614 0.369

ATP 0.863 0.698 NA NA NA NA NA NA NA NA

Gravity 0.812 0.603 NA NA NA NA NA NA NA NA

NERD 0.430 0.304 0.709 0.597 0.795 0.796 0.640 0.592 0.525 0.322

GREED 0.675 0.474 0.663 0.479 0.683 0.640 0.676 0.612 0.771 0.742

ShortWalk 0.628 0.430 0.711 0.615 0.624 0.617 0.814 0.753 0.699 0.475

DNE-L 0.849 0.678 0.816 0.694 0.837 0.837 0.842 0.812 0.864 0.732

DNE-T 0.887 0.751 0.826 0.714 0.832 0.837 0.839 0.816 0.872 0.732
Impv% †2.7% †7.5% †2.4% †0.4% - †0.9% †4.3% †8.9% †22.4% †52.1%

Specifically, we rank both positive and negative instances according to node/user embeddings’

cosine similarity. To judge the ranking quality, we employ the AUC score[35] and MAP score to

evaluate the ranking list, and a higher value indicates a better performance. The train/test split is

conducted independently for 5 times and we report the mean of results as the final output.

5.2.2 Experimental results and analysis. Table 4 shows the vanilla user recommendation results in

five real-world social network datasets. We use ’NA’ to denote the situation that can not run on

our hardware setup due to memory limitation or runtime over one week.

To summarize, we have the following observations from the experimental results:

(1) The basic observation is that our proposed DNE method and two variants DNE-L achieve

better performance than the existing methods in most network datasets, which demonstrates

the effectiveness of capturing the asymmetric proximity in directed social networks.

(2) Among the baseline methods, some matrix factorization based methods can not run on

our experimental settings. This is explainable since the matrix factorization is both time-

consuming and memory-consuming, which can not scale to large scale datasets.

(3) Another interesting observation is that graph neural network based methods achieve better

performance than random walk based baseline methods in preserving proximity. This is

explainable since the neighbored nodes play different roles in embedding learning for graph

neural network based methods, while the random walk based methods fail to do so.

5.3 Direction Aware User Recommendation (RQ1)
We further evaluate the direction aware user recommendation task to simulate the real-world

scenario where the recommendation direction should be considered. Given the social networks

with directed edges, recommending users to "follow/trust" is one of the critical applications in the
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Fig. 6. User profiling experiment on Cocit dataset with respect to Micro-F1 score and Macro-F1 score.

real world. The vanilla user recommendation task only predicts the existence of edges, which can

not guarantee the direction is also well predicted. For example, there exists directed edge from 𝑣𝑖 to

𝑣 𝑗 but no edge from 𝑣 𝑗 to 𝑣𝑖 , methods that predict edges from both directions can muddle through

the metric as the positive link 𝐸𝑖 𝑗 is already corrected predicted. However, the reverse direction

edge 𝐸 𝑗𝑖 may not be sampled as a negative link to penalize the reverse direction. Following the

experimental setting of existing methods, we also test the performance of the direction aware
user recommendation task. 30% of links are randomly sampled from the original network as the

positive links. The negative links contain two parts: randomly sampled from non-existence edges

in the original network, the non-existing reverse edges (if exists) of positive edges. Following the

evaluation strategy of existing work [59], we use the AUC score
5
and mean average precision to

evaluate the performance. The train/test split is conducted independently for 5 times and we report

the mean of results as the final output. Table 5 illustrates the performance of direction aware user

recommendation and classic user recommendation on six real-world datasets.

To summarize, we have the following observations:

(1) Among all the evaluated methods, our proposed DNE-L and DNE-T achieve the best perfor-

mance on all datasets with respect to two evaluation metrics, and we observe a significant

improvement over existing methods.

(2) Compare the same method in Table 4 and 5, we can observe all methods has a decreased

performance on direction aware user recommendation. Further, methods that learn single

embedding perform worse than those captures the asymmetric proximity. This demonstrates

the necessity of considering the direction of edges and asymmetric proximity.

(3) Compare DNE-L with DNE-T, we can observe improvement in both two tasks. Interestingly,

in direction-aware user recommendations, the improvement is more significant than in classic

user recommendations. This further indicates the importance of considering the impact of

direction in predicting the directed links between nodes.

5.4 User profiling(RQ1)
User profiling is another important task of user modeling, especially in directed social networks.

The target of user profiling is to find the group of users that belong to, which is the same as the

classic node classification task. Following the same experimental procedure in [2, 15], we randomly

5
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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sample a portion of labeled nodes (30%) for training and use the rest nodes for testing. The learned

embeddings are fed into the same SVM classifier, and we use Micro-F1 and Macro-F1 scores to

evaluate the performance. For methods that learn two independent embeddings for each node, we

concatenate the embedding for evaluation.

Figure 6 illustrates the results on real-world datasets. To summarize, we have the following

observations:

(1) The basic observation is similar to the user recommendation task that our proposed DNE

method achieves better performance than existing methods with respect to two evaluation

metrics.

(2) We found that the undirected network embedding methods gain considerable performance

in classification tasks compared with directed network embedding methods.

(3) The DNE-T does not gain too much improvement over DNE-L. This is explainable since the

classification task is not very sensitive to the direction of edges.
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0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AU
C 

Sc
or

e

(a) Ablation Study

3.50 3.75 4.00 4.25 4.50 4.75
log10Nodes

1.0

1.5

2.0

2.5

3.0

lo
g 1

0T
im

e

Random Walk
Walk + Train

(b) Scalability

Fig. 7. Ablation Study and Scalability analysis of the proposed method. DR-DNE denotes DNE with a directed
random walk. NH-DNE denotes DNE that without direction.

5.5 Ablation Study (RQ2)
We further design a detailed ablation study to answer question RQ2. That is, we remove different

components at a time and compare the DNE method with its special cases: DNE-R, DNE-H. Here,

DNE-R denotes we force the random walk to follow the direction of edges, and we try to prove

the importance of visiting nodes from all directions. DNE-H denotes the score of all direct context

nodes are the same, and we try to prove the importance of the direction. DNE-T and DNE-L are two

variants of DNE. Figure 7-(a) illustrates the results of ablation study. We observe that the method

with integrated asymmetric proximity outperforms DNE-R and DNE-H, proving the benefits of

capturing the asymmetric proximity.

5.6 Scalability (RQ3)
According to our theoretically, in section 4.4, DNE scales linearly with the number of nodes. To

verify the scalability of the DNE method, we report the time of node representation learning on

a different scale of real-world networks. Figure 7-(b) illustrates the results on the dataset. We

empirically observe that the DNE method scales linearly with an increase in the number of nodes.
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Fig. 8. Hyper parameter tuning of DNE method.

5.7 Parameter Sensitivity (RQ4)
In this subsection, we examine how different choices of parameters affect the performance of

the DNE method. For network embedding methods, the fundamental parameter to tune is the

dimension of learned embedding. We examine three hyperparameters for our random walk strategy:

windows size, number of walks per node, and walk length. Figure 8 illustrates the parameter tuning

results of the AUC score of direction aware user recommendation task on six datasets. We observe

that the performance has minor changes on different windows size and walk the directed random

walk length, which shows the DNE method is not very sensitive to these parameters. We observe

that performance tends to saturate once the representations’ dimension reaches around 64, which

shows that the DNE method is not very sensitive to the dimension of source/target embedding.

6 CONCLUSION
In this paper, we explore to utilize the directed network structure information for user recom-

mendation. Specifically, we transform the user recommendation problem into link prediction task

and address it with network embedding techniques. We propose a novel random walk strategy

InfoWalk to efficiently capture the hierarchy and proximity between nodes in directed network.

Two directed network embedding methods DNE-L and DNE-T are proposed for embedding learning.

Experiments on real-world social and citation networks show that our proposed method is superior

to the existing embedding methods in tasks including link prediction and node classification.
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