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Implicit feedback (e.g., user clicks) is widely used in building recommender systems (RS). However, the inherent
notorious exposure bias significantly affects recommendation performance. Exposure bias refers a phenomenon
that implicit feedback is influenced by user exposure and does not precisely reflect user preference. Current
methods for addressing exposure bias primarily reduce confidence in unclicked data, employ exposure models,
or leverage propensity scores. Regrettably, these approaches often lead to biased estimations or elevated model
variance, yielding sub-optimal results.

To overcome these limitations, we propose a new method ReCRec that Reasons the Causes behind the
implicit feedback for debiased Recommendation. ReCRec identifies three scenarios behind unclicked
data—i.e., unexposed, dislike, or a combination of both. A reasoning module is employed to infer the category
to which each instance pertains. Consequently, the model is capable of extracting reliable positive and negative
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signals from unclicked data, thereby facilitating more accurate learning of user preferences. We also conduct
thorough theoretical analyses to demonstrate the debiased nature and low variance of ReCRec. Extensive
experiments on both semi-synthetic and real-world datasets validate its superiority over state-of-the-art
methods.
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1 Introduction
Being able to provide personalized suggestions, Recommender System (RS) has been widely
applied in many online services [19, 67, 73]. Modern RS is usually built on the implicit feedback
data1 (e.g., user clicks), which are natural byproducts of user behavior and more abundant than the
explicit counterpart (e.g., ratings) [50]. However, handling implicit feedback is more challenging due
to the inherent notorious exposure bias [5]. Implicit feedback is a consequence of both preference
and exposure, as opposed to purely signifying user preference. Blindly fitting data without tackling
exposure bias will result in inferior performance.

Recent years have witnessed a multitude of studies on addressing exposure bias, which can
generally be categorized into three types:

—Weighted Matrix Factorization (WMF) [28] simply considers all unclicked data as negative
while downweighing their contributions. But in fact, unclicked data does not always mean a
user dislikes an item. It may be simply because the user is unexposed to the item, while he is
actually fond of it instead.

—Exposure-basedModels (ExposureMF (ExpoMF)) [38] deduce how likely a user is exposed
to an item, and learn a recommendation model on the exposed data (i.e., the data where an
item is exposed). However, since items are not always evenly exposed in practical, the exposed
data may show skewed patterns of user preference, e.g., a tendency toward popular items.
Bias issue remains unresolved for ExpoMF.

—Propensity-based Models (Inverse Probability Weighting (IPW)) [34, 35, 48, 52, 53, 76]
treat unclicked data as negative as usual but leverage a subtle propensity strategy to offset its
negative effect. Despite theoretical unbiasedness, this strategy incurs high model variance.
Additionally, finding the proper propensity is itself a challenging problem.

In summary, we argue that existing methods do not fully exploit unclicked data. In fact, as shown
in Figure 1(a), unclicked data are a mixture of the following three cases: (1) a user likes but does
not know an item (positive); (2) a user knows but dislikes an item (negative); (3) a user neither
likes nor knows an item (negative). Both positive and negative signals are contained in unclicked
data, while positive signals are always overlooked by existing methods—they either discard positive
cases (e.g., ExpoMF) or erroneously treat positive as negative (e.g., WMF, IPW). To overcome this

1In this work, we simply use the term “click” as a placeholder of implicit feedback for better description, while it can be
replaced by other forms of implicit feedback.
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Fig. 1. Illustrating how ideal loss, WMF, ExpoMF, IPW, and ReCRec treat four cases, where ~ ∈ {0, 1} denotes
the implicit feedback, and > ∈ {0, 1} (or A ∈ {0, 1}) indicates whether a user is exposed to (or fond of) an item.
The grid in red, blue, or white reflects the case is treated as positive, negative, or be overlooked, respectively.
The red line denotes cases that have been incorrectly handled by the method.

problem and for extracting reliable positive and negative signals, it is essential to deduce the cases
that each instance belongs to.

Toward this end, this work proposes a new method named ReCRec that Reasons the Causes
behind implicit feedback for unbiased Recommendation. ReCRec contains three modules: (1)
Preference Module (PM) for capturing user preference; (2) Exposure Module (EM) for inferring
user exposure; and (3)ReasoningModule (RM) targeting at reasoning to which case each instance
belongs. An Expectation-Maximization (E-M) algorithm is developed to update the modules
iteratively and alternatively. The learning of user preference and exposure can benefit from the
reliable signals processed by the RM, while the RM can reversely utilize the knowledge from PM and
EM. We further conduct theoretical analyses on ReCRec, proving that ReCRec achieves unbiased
estimation and has relatively lower variance compared with IPW.

To summarize, this work makes the following contributions:

—Positioning unclicked data in three cases and revealing the intrinsic flaws of existing methods—
they fail to extract reliable positive and negative signals from unclicked data.

—Proposing a new method ReCRec for addressing exposure bias, which explicitly reasons the
causes behind implicit feedback with sound theoretical foundation.

—Conducting extensive experiments on both semi-synthetic and real-world datasets to demon-
strate the superiority of ReCRec over state-of-the-art.

The remainder of this article is organized as follows: Section 2 provides the analyses of existing
methods addressing exposure bias.The proposedmethod ReCRec is introduced in Section 4. Section 5
presents our experimental results and subsequent discussions. Related work is reviewed in Section 6.
Finally, we conclude the article and present some future directions in Section 7.
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Table 1. Notations in This Article

Notations Descriptions

D a user in the user setU
8 an item in the item set I
D a set of all user–item pairs
~D8 whether the user D clicks the item 8

AD8 whether the user D is interested in the item 8

>D8 whether the user D is exposed to the item 8

GD, G8 features of the user D and item 8

bD8 the ground-truth preference level for the user–item pair (D, 8)
b̂D8 the model prediction on the preference for the pair (D, 8)
\D8 the ground-truth exposure probability for the pair (D, 8)
\̂D8 the model prediction on the exposure for the pair (D, 8)
X
(A )
D8

the loss between the prediction b̂D8 and the label A
ΦD8 predicted distribution over four cases for the user–item pair (D, 8)
i
(01 )
D8

predicted probability of each case for the pair (D, 8), i.e., i (01 )
D8

= %̃ (AD8 = 0, >D8 = 1 |~D8 )
!ideal (b̂) the ideal loss for training a recommendation (preference) model
!PM (b̂) the loss for training the PM in ReCRec
!EM (\̂ ) the loss for training the EM in ReCRec

2 Preliminaries
In this section, we first formulate the task of unbiased recommendation from implicit feedback and
then briefly revisit existing methods on this problem. Table 1 summarizes the notations involved in
this article.

2.1 Recommendation with Implicit Feedback
Suppose we have a RS with a user set U and an item set I. Let D ∈ U (or 8 ∈ I) be a user (or
an item) and D = U × I be a set of all user–item pairs. Users’ historical interactions with items
can be expressed as a matrix Y ∈ {0, 1} |U |× |I | , whose element ~D8 represents whether a user D
has interacted with an item 8 (~D8 = 1) or not (~D8 = 0). There are numerous types of interactions
in implicit feedback, such as clicks, purchases, and so on. For the sake of convenience, in this
work, we simply use the term “click” as a typical representative for further description. In implicit
recommendation, click (~D8 ) is considered as the consequence of user exposure and preference. Here,
we refer to recent work [53, 69] and introduce two latent Bernoulli variables for better description:
(1) >D8 representing whether the user is exposed to the item and (2) AD8 representing whether the
user is actually interested in the item. Existing studies [53] often make the following assumption:

~D8 = >D8 · AD8 . (1)

That is, a user clicks an item only when he is both aware and fond of the item. Equation (1) clearly
reveals exposure bias inherent in the implicit feedback data—i.e., click does not fully represent
like, as the absence of click may be due to lack of exposure rather than disinterest. The task of
unbiased implicit recommendation can be stated as follows: learning a preference model from .

for predicting user–item preference accurately.
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The ideal loss for training or evaluating a recommendation model is defined as follows2 [53]:

!ideal (b̂) =
1
|D|

∑
(D,8 ) ∈D

(
bD8X

(1) (b̂D8 ) + (1 − bD8 ) X (0) (b̂D8 )
)
, (2)

where bD8 denotes the ground-truth preference level, characterizing how likely a user D likes
an item 8 (i.e., bD8 = % (AD8 = 1)); b̂D8 denotes the prediction from the recommendation model; and
X (A ) (b̂D8 ) measures the difference between the prediction (b̂D8 ) and the label (A ∈ {0, 1}). X can be
appropriately chosen for recovering most point-wise loss function, e.g., X (A ) (b̂D8 ) = −A log(b̂D8 ) −
(1 − A ) log(1 − b̂D8 ) for cross-entropy loss and X (A ) (ÂD8 ) = (ÂD8 − A )2 for RMSE loss. In this article,
we usually simplify the notation X (A ) (b̂D8 ) as X (A )D8 for better presentation.

Since b in ideal loss is not available, the model training can be only conducted on the click data
. . Hence, the exploration for a suitable surrogate loss toward unbiased estimation of the ideal loss
is ongoing.

2.2 Four Cases behind Implicit Feedback
To better understand the relation and gap between the click and the relevance, we identify four
cases behind the implicit feedback according to the user exposure and preference. Specifically,
when ~D8 = 1, we have:

—Case#0: AD8 = 1 and >D8 = 1, the user both knows and likes the item.

When ~D8 = 0, as shown in Figure 1, the unclicked data can be positioned as one of the following
three cases:

—Case#1: AD8 = 1 and >D8 = 0, the user likes but does not know the item.
—Case#2 : AD8 = 0 and >D8 = 1, the user knows but dislikes the item.
—Case#3: AD8 = 0 and >D8 = 0, the user is neither exposed to nor interested in the item.

This insight clearly reveals the inconsistence of the click and relevance. Specifically, unclicked
data do not always mean negative signal. It may lies on Case#1 (AD8 = 1, >D8 = 0), where the user
likes the item instead.

2.3 Analyses on Existing Methods
Based on the above insight, we now revisit existing methods and discuss their limitations. Existing
methods are mainly three types:

(1) WMF [28] simply considers all unclicked data as negative while downweighing their contri-
butions:

!WMF (b̂) =
1
|D|

∑
(D,8 ) ∈D

(
~D8X

(1)
D8
+ (1 − ~D8 )FD8X (0)D8

)
, (3)

where a confidence weightFD8 for the unclicked data is introduced, which is usually heuristically
specified with a uniform low value or based on item popularity. As Figure 1(b) shows, WMF blindly
considers all unclicked data as negative and may erroneously flip the label of the user–item pairs
that belong to Case#1 (AD8 = 1, >D8 = 0). As such, the loss of WMF is biased against the ideal one.

2Here, we simply take the representative point-wise loss for analyses as recent work on exposure bias [38, 53].
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(2) Exposure-based models (ExpoMF) [38] infer how likely a user is exposed to an item (%̂ (>D8 ))
and optimize

!ExpoMF (b̂) =
1
|D|

∑
(D,8 ) ∈D

E>D8∼%̂ (>D8 )
[
~D8X

(1)
D8
+ (1 − ~D8 ) >D8X (0)D8

]
. (4)

The loss function only considers the scenarios in which the item is exposed to the user (>D8 = 1),
i.e., the loss is computed exclusively when ~D8 = 1 or ~D8 = 0 & >D8 = 1. ExpoMF only takes Cases 0
and 2 to learn the user preference, as Figure 1(c) shows.This dedicated strategy can obviate mistaken
labels, since when >D8 = 1 the equation ~D8 = AD8 holds. However, as items in practical are not
always evenly exposed, the exposed data would exhibit skewed patterns of user preference. ExpoMF
would be typically biased toward the items with higher exposure opportunity (e.g., popular items),
reinforcing their performance, while discriminating the items with lower exposure probability (e.g.,
niche items). Bias issue remains unresolved for ExpoMF. This point has also been uncovered by
recent work [53] with theoretical analyses. In fact, we have:

Lemma 1 (Bias of ExpoMF [53]). ExpoMF cannot provide an unbiased estimation of the ideal
loss when a subset of items are unexposed to a user (i.e., if ∃D ∈ * & 8 ∈ � , \D8 ≠ 1, we have
E[!ExpoMF (b̂)] ≠ !8340; (b̂)).

The proof procedure is delineated in Appendix A, referring to [53]. Considering that items cannot
be fully exposed to users in practical scenarios, bias is commonly encountered in ExpoMF. This
issue originates from its oversight of Cases 1 and 3, which potentially contain valuable positive
and negative preference signals. Therefore, it is crucial to consider all four cases to learn user
preferences effectively and without bias.

(3) Propensity-based models [53] treat unclicked data as negative while reweighing clicked data
with the inverse of the propensity:

!IPW (b̂) =
1
|D|

∑
(D,8 ) ∈D

(
~D8

(
1
dD8

X
(1)
D8
+
(
1 − 1

dD8

)
X
(0)
D8

)
+ (1 − ~D8 ) X (0)D8

)
, (5)

where dD8 is defined as propensity, which estimates the probability of the exposure. !IPW could
theoretically achieve unbiased estimation with a proper propensity (i.e., dD8 = % (>D8 = 1)). Although
this method has mis-specified the labels of the data belonging to Case#1, the subtle design of the
propensity could properly offset this negative effect. However, we remark that this treatment would
incur high variance with

V[!IPW] =
1
|D|2

∑
(D,8 ) ∈D

bD8

(
1
dD8
− bD,8

) (
X
(1)
D8
− X (0)

D8

)2
. (6)

The variance depends on the inverse of the propensity, which is potentially exploded especially for
the items with low exposure probability. Although the clipping technique [10] could be applied to
reduce the variance, the unbiasedness would also be broken.

Summary. Existing methods do not well exploit the unclicked data: ExpoMF only utilizes partial
instances belonging to Case#0 and Case#2, ignoring Case#1 that signifies user positive preference;
while IPW and WMF mistakenly treated some positive instances (Case#1) as negative. This intrinsic
flaw heavily hinders the model from making accurate recommendation. To overcome this limitation

ACM Transactions on Information Systems, Vol. 42, No. 6, Article 158. Publication date: October 2024.
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Fig. 2. Illustration of training process of ReCRec, where b̂ and \̂ denote the predicted preference probability
and exposure probability, and Φ denotes the deduced distribution over four cases.

and for extracting reliable positive and negative signals, we need to explicitly deduce the cases
behind the user implicit feedback.

3 Proposed Method: ReCRec
In this section, we first detail the proposed ReCRec and then conduct thorough theoretical analyses
to show its merits.

3.1 Architecture of ReCRec
This work proposes a new method ReCRec that reasons the causes behind the implicit feedback for
debiased recommendation. ReCRec includes the following three modules:

—PM aims at capturing user true preference. It can be implemented by various existing methods
likeMF [33] or LightGCN [21]. Formally, given the features (GD, G8 ) of a user–item pair (e.g., IDs),
PM would output the prediction of how likely a user likes an item: b̂D8 = %̃ (AD8 = 1|GD, G8 ;,A ),
where,A denotes the parameters in PM. Here, we use the notation “%̃” instead of “%” as it is
the predicted probability rather than the ground truth.

—EM infers how likely a user is exposed to an item: \̂D8 = %̃ (>D8 = 1|GD, G8 ;,> ), where,>

denotes the parameters in EM. At the end of this section, we will detail how to implement EM.
—RM targets at reasoning the causes of implicit feedback, which can be classified into four cases.
Formally, given the collected data (~D8 ) and the prior predictions from PM and EM (b̂D8 , \̂D8 ), RM
deduces the posterior distribution of AD8 , >D8—i.e., the distribution over which cases the user–
item pair belonging to. RM outputs a four-dimensional vector ΦD8 = [i (11)D8

, i
(10)
D8

, i
(01)
D8

, i
(00)
D8
]

corresponding to the probabilities of four cases: i (01 )
D8

= %̃ (AD8 = 0, >D8 = 1 |~D8 ).

3.2 Model Training
Given the Architecture of ReCRec, now the question lies on how to optimize the model. Considering
that the optimization of the PM and EM depends on >D8 and AD8 , which are unobserved latent
variables, direct optimization is infeasible. Consequently, the E-M algorithm [14] has been employed
to optimize the three modules iteratively and alternately.

E-step. Fixing the modules PM and EM, updating RM based on the following Bayes formula:

% (AD8 , >D8 |~D8 ) ∝ % (~D8 |AD8 , >D8 )% (AD8 )% (>D8 ). (7)

ACM Transactions on Information Systems, Vol. 42, No. 6, Article 158. Publication date: October 2024.
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That is, we update Φ with:

i
(11)
D8
← ~D8

i
(10)
D8
← b̂D8 (1 − \̂D8 ) + U

1 − b̂D8\̂D8 + 3U
(1 − ~D8 )

i
(01)
D8
← (1 − b̂D8 )\̂D8 + U

1 − b̂D8\̂D8 + 3U
(1 − ~D8 )

i
(00)
D8
← (1 − b̂D8 ) (1 − \̂D8 ) + U

1 − b̂D8\̂D8 + 3U
(1 − ~D8 ). (8)

Here, a parameter U is introduced to circumvent numerical issues and promote stability during
training. Conceptually, U can also be interpreted as the Dirichlet prior on Φ. Intriguingly, Equation
(8) aligns with our intuition. When ~D8 = 1, it can be inferred that the user is both aware of and
attracted to the item, and thus we have i (11)

D8
= 1; Conversely, when ~D8 = 0, the probability mass

of Φ can be allocated among the other three cases, with the probability proportional to the model
predictions on user preference and exposure (i.e., i (01 ) ∝ %̂ (AD8 = 0 |,A )%̂ (>D8 = 1 |,A )).

M-step. Updating PM and EM based on i inferred by RM. We refer to the standard E-M algorithm
[14] and optimize the following expected likelihood:

max
b̂,\̂

1
|D|

∑
D,8∈D

E%̃ (>D8 ,AD8 |~D8 ) [% (~D8 |>D8 , AD8 )%̃ (>D8 , AD8 |GD, G8 )] . (9)

With re-organization, we can get the loss functions of PM and EM, respectively

!PM (b̂) =
1
|D|

∑
(D,8 ) ∈D

(
(i (10)
D8
+ i (11)

D8
)X (1)
D8
+ (i (00)

D8
+ i (01)

D8
)X (0)
D8

)
(10)

!EM (\̂ ) =
1
|D|

∑
(D,8 ) ∈D

(
(i (01)
D8
+ i (11)

D8
)X (1) (\̂D8 ) + (i (00)D8

+ i (10)
D8
)X (0) (\̂D8 )

)
. (11)

!PM can be easily understood. Note that the Cases#1,#3 signify user positive preference, while
Cases#2,#4 reflect negative. It would be natural to weight the positive loss X (1)

D8
(or negative loss X (0)

D8
)

with the probability that the instance belongs to Cases#1,#3 (or Cases#2,#4). Similar conclusion
can be applied for !EM, which targets at learning user exposure. It is noteworthy that, similar to
ExpoMF, our RecRec method also incorporates an exposure model. However, unlike ExpoMF, our
approach utilizes the exposure model to deduce the specific case to which an instance belongs
and takes all four cases into account to learn user preference effectively. As can be seen, different
from the existing methods, our ReCRec can extract both positive and negative preference signals
from the unclicked data. Each unclicked instance can be classified into three cases and accordingly
employ the positive or negative loss for the instance. But existing methods just employ the negative
loss for the unclicked data. This key difference makes ReCRec enjoy better properties and higher
recommendation accuracy.

3.3 Theoretical Analyses
In this section, we conduct theoretical analyses to answer the following important questions:

(1) Does our model theoretically achieve unbiased estimation of the ideal loss?
(2) Does our model achieve lower variance comparing with the IPW?

ACM Transactions on Information Systems, Vol. 42, No. 6, Article 158. Publication date: October 2024.
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3.3.1 Theoretical Unbiasedness of ReCRec. To provide the answer of the first question, we first
prove the unbiasedness holds when ΦD8 takes the proper values, and then prove the developed
training procedure would push the ΦD8 toward the ideal. In fact, we have the following lemmas:

Lemma 2 (Unbiasedness). When ΦD8 is equal to the factual posterior, i.e., i (01 )
D8

= % (AD8 = 0, >D8 =
1 |~D8 ), !PM is an unbiased estimation of the ideal Loss !Ideal.

Proof. For better description, we mark the loss for each instance as ;D8 = (i (10)D8
+ i (11)

D8
)X (1)
D8
+

(i (00)
D8
+ i (01)

D8
)X (0)
D8

. When ΦD8 takes the proper values, we have

E% (~D8 ) [;D8 ] = E% (~D8 ) [(i
(10)
D8
+ i (11)

D8
)X (1)
D8
+ (i (00)

D8
+ i (01)

D8
)X (0)
D8
]

= E% (~D8 ) [% (AD8 = 1|~D8 )X (1)D8 + % (AD8 = 0|~D8 )X (0)D8 ]

= bD8X
(1)
D8
+ (1 − bD8 )X (0)D8 .

Thus, we have E% (~) [!PM] = !Ideal held. The lemma gets proof. �

Lemma 3 (Adaptivity). With the training process proceeding, ΦD8 would approach to the factual
posterior.

Proof. Recent literature [2] tells us that E-M algorithm is equivalence to maximizing the
following evidence lower bound:

!� =
1
|� |

∑
D,8∈�

E% (~)E%̃ (A,> |~) [log % (~ |A, >)%̃ (A, >) − log %̃ (A, > |~)],

here the subscript D8 for each variable (e.g., ~D8 , AD8 , >D8 ) is omitted for brevity. Suppose %̃ (A, > |~)
and % (A, > |~) for all user-item pairs have the same support set with bounded divergence �1 ≤
%̃ (A, > |~)/% (A, > |~) ≤ �2. We have the following tight upper bound of the above evidence:

!� =
1
|� |

∑
D,8∈�

(
E% (~)E% (A,> |~)

[ %̃ (A, > |~)
% (A, > |~) log % (~ |A, >)%̃ (A, >) −

%̃ (A, > |~)
% (A, > |~) log % (~, A, >)

]
+ E% (~)E%̃ (A,> |~)

[
log % (A, > |~) + log % (~) − log %̃ (A, > |~)

] )
≤ 1
|� |

∑
D,8∈�

(
−�1 · � !

(
% (~, A, >) | |% (~ |A, >)%̃ (A, >)

)
− � !

(
%̃ (A, > |~) | |% (A, > |~)

) )
+�

≤ �,
where � = E% (~) [log % (~)] is a constant irrelevant with the optimization. The first inequality
holds as %̃ (A, > |~)/% (A, > |~) is lower bounded with �1, while the second inequality holds as the
KL-divergence is lower bounded with 0. As can be seen, !� achieves optimum if and only if the
estimated %̃ (A, >) and %̃ (A, > |~) equal to the factual % (A, >) and % (A, > |~), respectively. As the training
procedure of our ReCRec would improve !� toward the optimum, it would naturally push %̃ (A, > |~)
toward % (A, > |~). Admittedly, the optimum may not be reached in practical due to the stochastic
optimization or imperfect preference/exposure models. But, our empirical studies show that the
approximate %̃ (A, > |~) is sufficient to yield good performance.

�

Remark 1. These lemmas reveal the unbiasedness and adaptivity of ReCRec—ReCRec provides an
unbiased estimator of the ideal loss with the ideal ΦD8 , while the developed learning procedure of
ReCRec would push the learned ΦD8 toward the ideal. ReCRec enjoys better theoretical properties
over existing methods: (1) Compared with WMF and ExpoMF, ReCRec achieves unbiasedness while
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WMF and ExpoMF fall short. (2) Compared with IPW, ReCRec has an adaptive learning algorithm
to find the optimal configure while IPW requires extra design of the propensity.

3.3.2 Lower Variance of ReCRec. To provide the answer to the second question, we prove that
the variance of our method has a finite upper bound. In fact, we have:

Lemma 4. The variance of our estimator is

V [!PM] =
1

|D|2
∑
(D,8 ) ∈D

V
[
i
(10)
D8
+ i (11)

D8

] (
X
(1)
D8
− X (0)

D8

)2
, (12)

which is bounded with

V [!PM] ≤
1
4
· 1
|D|2

∑
(D,8 ) ∈D

(
X
(1)
D8
− X (0)

D8

)2
. (13)

Proof. For convenient, let ℎD8 = i (10)D8
+ i (11)

D8
. We have

E
[
(;D8 )2

]
= E

[
(ℎD8 )2

] (
X
(1)
D8

)2
+ E

[
(1 − ℎD8 )2

] (
X
(0)
D8

)2
+ 2

(
E [ℎD8 ] − E

[
(ℎD8 )2

] )
X
(1)
D8
X
(0)
D8

E2 [;D8 ] = E2 [ℎD8 ]
(
X
(1)
D8

)2
+ 2E[ℎD8 ] (1 − E[ℎD8 ]) X (1)D8 X

(0)
D8
+ (1 − E[ℎD8 ])2

(
X
(0)
D8

)2
. (14)

So, we have

V[;D8 ] = E
[
(;D8 )2

]
− E2 [;D8 ]

=
(
E
[
(ℎD8 )2

]
− E2 [ℎD8 ]

)
·
(
X
(1)
D8
− X (0)

D8

)2
= V [ℎD8 ] ·

(
X
(1)
D8
− X (0)

D8

)2
. (15)

Thus, the variance of !%" can be written as follows:

V [!PM] =
1
|D|2

∑
(D,8 ) ∈D

V [;D8 ] =
1

|D|2
∑
(D,8 ) ∈D

V
[
i
(10)
D8
+ i (11)

D8

] (
X
(1)
D8
− X (0)

D8

)2
. (16)

Note that ℎD8 takes the value on [0, 1], V [ℎD8 ] ≤ 1
4 , we have

V [!PM] =
1
|D|2

∑
(D,8 ) ∈D

V [;D8 ] ≤
1

4 · |D|2
∑
(D,8 ) ∈D

(
X
(1)
D8
− X (0)

D8

)2
.

�

Remark 2. This lemma demonstrates our ReCRec usually has lower variance than IPW. By
comparing Equation (6) and Equation (12), the variance in ReCRec is bounded with a small value
while it may be exploded in IPW especially for the instances with low exposure probability.

3.4 Implementations of EM
The architecture of EM is important for ReCRec. EM should be different from PM with encoding
human prior knowledge of exposure into the module. Here, we provide two scenes:

(1) Item-based exposure model (ReCRec-I) assumes user exposure only depends on item own
characteristics. It simply introduces an item-dependent learnable parameter `8 and model EM with
\̂D8 = f (18 ), where f (.) denotes the Sigmoid function.

(2) Factorization-based exposure model (ReCRec-F) considers the exposure depends on both user
and item. Given that different users usually experience different recommendation policy from
the system, the exposure probability should be naturally personalized. That is, the opportunity
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for different users to be exposed to an item would vary. A scalar item-based term is insufficient
for modelling exposure. Thus, here we model the exposure with user/item-based latent factors:
\̂D8 = f

(
e>D e
>
8 + 1D + 18

)
, where eD, e8 , 1D, 18 are learnable parameters w.r.t. user or item. Specifically,

when training EM, a regularizer is introduced to constrain \̂D8 to be close to the item popularity,
i.e., | |\̂D8 − B8 | |2. Here, B8 denotes the normalized item popularity and can be calculated by B8 =
(68/6<0G )0.5, where 68 denotes the popularity of the item 8 and 6<0G denotes the largest popularity
among all items. The introduced regularizer is based on our intuition that items with greater
popularity are more likely to be exposed to users.

4 Semi-Synthetic Experiment
In this section, we conduct experiments on a semi-synthetic dataset. Unlike real-world datasets,
the semi-synthetic dataset contains the ground truth of user preference and exposure, allowing us
to explore the following research questions (RQs):

—RQ1: How does ReCRec learn user preference and exposure compared with existing methods?
—RQ2 : How is the variance of ReCRec compared with IPW?

4.1 Experiment Setup
Dataset. We closely refer to [53] in generating the semi-synthetic dataset for fair comparison.
We use the MovieLens(ML)-100K dataset and generate ground-truth preference and exposure via
matrix factorization (MF). A specific parameter ? is introduced to control the skewness of the
distribution of the exposure. A larger ? suggests larger exposure bias. The details are as follows:

(1) Using MF [33] to get an approximation of the true ratings 0̂D8 .
(2) Using logistic MF model [31] to get an approximation of the true observations 1̂D8 .
(3) Generating the ground-truth parameters of preference and exposure as follows:

bD8 = f (0̂D8 − n)

\D8 =
(1̂D8 )?∑

(D,8 ) ∈D
(1̂D8 )?

·�, (17)

where f (.) is the sigmoid function, n controls the overall level of user preference, and ?
controls the skewness of exposure. The larger n would make the dataset have less positive
feedback, while the larger ? suggests the larger exposure bias introduced in the data, where
the difference in 1D8 has been amplified. In the experiment, we refer to recent work [53] and
set n = 5, and test the model performance with varying ? = 0.5, 1.0, 1.5. Note that too large ?
will cause most of the exposure parameters \D8 to be too small, resulting in highly sparse
dataset. Here, we re-scale \D8 to make their sum as a constant � . Here, we simply set � as
the benchmark when ? is set to 0.5, i.e., � =

∑
(D,8 ) ∈D

(1̂D8 )0.5.

(4) Generating the click variables via Bernoulli sampling:

>D8 ∼ �4A=(\D8 )
AD8 ∼ �4A=(bD8 )
~D8 = >D8 · AD8 . (18)

Given the synthetic data on all user–item pairs, we randomly sampled all clicked data, with 90%
serving as the training set and 10% as the validation set. The remaining unclicked data was used
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as the test set, and the preference variable AD8 from the unclicked data served as the ground truth
during testing.

We chose all the clicked data and randomly sampled 90% and 10% for model training and
validation, and the remaining data were used as the test set, with the preference variables AD8 from
the test data serving as the ground truth during testing.

Baseline. We compare ReCRec with the following baselines:

—WMF [28]: the classic WMF that down-weighs the contribution of unclicked data. To make
the baseline stronger, we experimented with several weighting strategies, which included
uniform [28], item-popularity-based [24], and user-activity-based strategies [46]. We report
the best performance.

—ExpoMF [38]: the representative debiasing method with leveraging an exposure-based gener-
ative model.

—Rel-MF [53]: the representative debiasing method based on propensity. Rel-MF leverages item
popularity to specify the propensity.

—CJMF [76]: the state-of-the-art propensity-based debiasing method that leverages a symmetric
learning strategy to jointly learn the propensity and the user preference.

—BISER [35]: the state-of-the-art propensity-based method that specifies the propensity based
on the prediction from the preference model.

For fair comparison, all of these methods are based on the uniform MF backbone model, with the
exception of BISER. BISER utilizes Auto-encoder, as suggested by original paper, which is stronger
than MF. We also try BISER with MF but got inferior performance.

Evaluation Metrics. We utilize the following metrics to evaluate our method:

—Logloss evaluates the accuracy of the predictions on preference or exposure with:

!>6;>BB (b) = 1
|DC |

∑
D,8∈DC

(−bD8 log(b̂D8 ) − (1 − bD8 ) log(1 − b̂D8 ))

!>6;>BB (\ ) = 1
|DC |

∑
D,8∈DC

(−\D8 log(\̂D8 ) − (1 − \D8 ) log(1 − \̂D8 )), (19)

where DC denotes the set of user–item pairs in the test data.
—NDCG@K measures the ranking quality of recommendation through discounted importance
based on the position

���D@ =
∑

8∈S(D )

I[/̂D8 ≤  ]

log
(
/̂D8 + 1

)
#���@ =

1
|U|

∑
D∈U

���D@ 
����D@ 

, (20)

where I[] denotes an indicator function, S(D) denotes the positive item set in the test data
for a user D, and /̂D8 denotes the ranking position of the item 8 when ranking the items on
the test data for the user D. ����D@ is the ���D@ value of the ideal ranking with the
optimal ranking for the user D.

—Empirical variance evaluates the variance of the estimator with

V̂[!(b̂)] = 1
|D|

∑
D,8∈D

(% (~D8 = 0) (!(b̂ |~D8 = 0) − !̄D8 )2 + % (~D8 = 1) (!(b̂ |~D8 = 1) − !̄D8 )2), (21)
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Fig. 3. Comparison of debiasing methods with varying values of ? , where ? controls the severity of exposure
bias: (a) Logloss on test data for measuring the accuracy of capturing user preference; (b) Logloss for measuring
the accuracy of capturing user exposure. The smaller Logloss signifies better prediction accuracy.

where !̄D8 denotes the mean of the loss calculated by

!̄D8 = % (~D8 = 0)!(b̂ |~D8 = 0) + % (~D8 = 1)!(b̂ |~D8 = 1), (22)

where % (~D8 = 1) = \D8bD8 and % (~D8 = 0) = 1 − \D8bD8 .
Hyperparameter Settings. We implement our model in Tensorflow. Adam is adopted as our

optimization method. Grid search is utilized to find best hyperparameters. The search range of the
learning rate for all experiments is {10−4, 10−3, 10−2, 0.1, 1, 10} and the range of the L2 regularization
coefficient is {10−6, 10−5, ..., 0.1}. The batch size is set to 212. The embedding size is fixed to 20 for
all methods as in recent work [53]. For the compared baselines, we closely follow their settings
reported in the relevant papers or directly utilize their codes if they are available. We also have
finely tuned their hyperparameters to ensure optimal performance.

4.2 Performance Comparison (RQ1)
The results are presented in Figures 3, 4, and 5. We make the following observations:

—Compared with existing methods, ReCRec achieves much better accuracy in predicting user
preference and exposure (cf. Figure 3(a) and (b)). More impressively, as the level of exposure
bias increases (i.e., ? becomes larger), the margin of the improvement becomes larger. The

ACM Transactions on Information Systems, Vol. 42, No. 6, Article 158. Publication date: October 2024.



158:14 S. Lin et al.

Fig. 4. Comparison of debiasing methods with varying values of ? , where ? controls the severity of exposure
bias: (a) ranking performance (NDCG@50) comparison; (b) variance comparison between ReCRec and IPW.
As the variance may have a wide range of magnitude, here we present the variance relative to ReCRec-ideal
for better illustration. ReCRec-ideal (or IPW-ideal) denotes the method with the ideal distribution ΦD8 (or
propensity d).

Fig. 5. Comparison of debiasing methods with varying values of  in #���@ at ? = 1.
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advancement can be attributed to the superior theoretical attributes of ReCRec, which ex-
hibits the potential to achieve unbiasedness while maintaining low variance. The accuracy
of prediction also brings better recommendation performance. It can be seen that ReCRec
also has better NDCG@50 than others (cf. Figure 4(a)). According to Figure 5, for different
values of  , the #���@ of RecRec surpasses all comparison methods, further validating
the effectiveness of our approach.

—ReCRec-I performs significantly worse than ReCRec-F on predicting user exposure. This
outcome reveals the limitation of an item-based exposure model in capturing complex patterns.
The process of exposure should be personalized, as the probability for different users to
encounter a particular item varies. Consequently, ReCRec-F that leverages personalized
exposure model exhibits better accuracy than ReCRec-I in capturing user exposure, leading to
better debiasing recommendation performance.

4.3 Variance Comparison (RQ2)
Figure 4(b) illustrates the variance of IPW-based methods and our ReCRec. We make the following
obervations:

—The variance of ReCRec is indeed much smaller than IPW-based methods—usually reducing by
more than 10 times. This result clearly demonstrates the advantage of ReCRec—it could avoid
the high variance weakness of IPW and thus yield more stable and better recommendation
performance (cf. Figure 4(b)).

—To our surprise, we can find that ReCRec (or IPW) with estimated parameters Φ (or propensity)
might have better variance than ideal. It can be seen from ReCRec-F has lower variance than
ReCRec-ideal, and CJMF has lower variance than IPW-ideal. This interesting phenomenon
may be attributed to the constraint capacity of the exposure model. Both ReCRec-F and CJMF
introduce strong constraints on the exposure model, i.e., aligning with item popularity. This
consequently curtails the flexibility of the exposure model and correspondingly limits the
variance of Φ (or propensity d). The variance of the estimator is reduced but may incur more
bias.

5 Real-World Experiment
In this section, we conduct extensive experiments on real-world datasets to validate the superiority
of our ReCRec. We aim to answer the following major research questions:

—RQ3: Does ReCRec outperform existing debiasing methods in real-world datasets?
—RQ4: How does ReCRec learn user exposure in real-world datasets?
—RQ5: How does each module of ReCRec impact performance?
—RQ6: How do hyperparameters (e.g., embedding dimension, regularizer coefficient) affect
model performance?

5.1 Experimental Setup
Datasets. We closely refer to [35] and use three public real-world datasets (Yahoo!R3, Coat, and
KuaiRand-Pure) for experiments. All three datasets contain a set of biased rating data collecting
the normal interactions of users in the platform, and a set of unbiased rating data from stochastic
experiment. Following [35], we utilize biased data for model training and unbiased data for model
validation (20%) and test (80%). Also, the rating data are translated into implicit feedback, i.e., the
ratings larger than three is regarded as positive otherwise as negative. The detailed information on
the datasets is shown in Table 2.
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Table 2. Dataset Statistics

Statistics Yahoo!R3 Coat KuaiRand-Pure

#Users 15,400 290 27,285
#Items 1,000 300 7,583
#Biased ratings 311,704 6,960 1436,609
#Unbiased ratings 54,000 4,640 1186,059

Fig. 6. Comparison of #���@ metrics at different values of  .

Evaluation Metrics. Besides NDCG@K, the following additional ranking metrics are employed for
evaluating recommendation performance as recent work [53]:

—Recall@K quantifies the proportion of positive items found in the top-K recommended items

'420;;@ =
1
|U|

∑
D∈U

∑
8∈S(D )

AD8 I[/̂D8 ≤  ]
|( (D) | , (23)

where I[] denotes an indicator function, S(D) denotes the positive item set in the test data for
a user D, and /̂D8 denotes the ranking position of the item 8 when ranking the items on the
test data for the user D.

—MAP@K denotes mean average precision calculated by

"�%@ =
1

 |U|

 ∑
:=1

∑
D∈U

∑
8∈S(D )

AD8 I[/̂D8 ≤ :]
:

. (24)

Considering a few positive instances in the test data, here we refer to recent work [53] and set  
as 5. More details about the impact of  can refer to Figure 6.

Hyperparameter Settings. The hyperparameter settings of the real-world experiment are similar
with the ones of semi-synthetic experiment, except that the embedding dimension is fixed to 200
for all methods in the real-world experiment. We find a larger embedding dimension in real-world
datasets can significantly enhance recommendation performance. Setting the embedding dimension
at 20, as performed in the semi-synthetic experiment, appears to be inadequate. More details about
the impact of dimensions can be found in Figure 9.
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Table 3. Performance Comparison between Our ReCRec and Baselines on Three Real-World Datasets

Yahoo!R3 Coat KuaiRand

Model NDCG@5 MAP@5 Recall@5 NDCG@5 MAP@5 Recall@5 NDCG@5 MAP@5 Recall@5

MF 0.6685 0.2234 0.7972 0.5529 0.2645 0.5565 0.3783 0.2026 0.3180
ExpoMF 0.6233 0.2084 0.7508 0.5247 0.2533 0.5419 0.3591 0.1964 0.3102
Rel-MF 0.6669 0.2230 0.7953 0.5557 0.2709 0.5463 0.3800 0.2055 0.3199
CJMF 0.6727 0.2257 0.8005 0.5291 0.2632 0.5319 0.3918 0.2144 0.3230
BISERa 0.6741 0.2260 0.8050 0.5577 0.2748 0.5422 0.3925 0.2166 0.3232
ReCRec-I 0.6818 0.2289 0.8114 0.5865 0.2856 0.5800 0.3946 0.2170 0.3269
ReCRec-F 0.6872 0.2327 0.8124 0.5946 0.2845 0.5787 0.3979 0.2184 0.3285
Impv-b (%) 1.9%b 2.1%b 0.9%b 6.6%b 3.9%b 7.0%b 1.37% 0.81% 1.63%

The best results are marked in boldface. The row ‘Impv-b’ indicates the relative performance gain of our ReCRec-F
compared to BISER. aIndicates the best baseline model, i.e., BISER. bIndicates that the improvement is significant with
t-test at ? < 0.05.

5.2 Performance Comparison (RQ3)
Table 3 and Figures 6 and 9 show the overall performance of our ReCRec compared with other
debiasing methods. We make the following observations:

—Our ReCRec-F and ReCRec-I consistently outperform other baselines on all three datasets
in terms of all metrics. Especially in the dataset Coat, the improvements are encouraging.
ReCRec-F achieves 6.6%, 3.9%, and 7.0% performance gain over the best baseline in terms of
NDCG@5, MAP@5, and Recall@5, respectively.This result clearly demonstrate the superiority
of the proposed ReCRec. Its theoretical advantages indeed bring better empirical better
recommendation performance on real-world datasets.

— In terms of two different EM, we observe ReCRec-F is relatively better ReCRec-I. This re-
sult confirms that modeling personalized exposure is necessary and potentially enhance
recommendation performance.

—Figure 6 presents a comparison of #���@ for all methods at different values of  . It can
be observed that both ReCRec-I and ReCRec-F surpass all other comparison methods across
different  values, further demonstrating the superiority of our ReCRec method.

5.3 Exploratory Analysis (RQ4)
We now explore the distributions of the inferred exposure of ReCRec on the Yahoo!R3 dataset. We
conduct the following empirical analyses:

—Figure 7(a) illustrates the learned item exposure probability (\̂D8 ) with item popularity. We
observe that the item with a higher popularity has a larger \D8 . ReCRec-I could adaptively
capture the positive relation between the popularity and exposure without requiring manual
specifying.

—Figure 7(b) shows the inferred distribution over four cases (Φ) with the item popularity. For
better presentation, items are segmented into ten groups based on their popularity referring
to [74]. The lager group ID suggests larger popularity. The average values are then calculated
within each group. We make the following observations: (1) The average i (01) and i (11)
increases with the larger popularity. This can be attributed to the fact that higher popularity
typically correlates with increased exposure opportunities. (2) The value of i (10) exhibits an
interesting pattern. It initially rises and then reduces as item popularity increases. This unique

ACM Transactions on Information Systems, Vol. 42, No. 6, Article 158. Publication date: October 2024.



158:18 S. Lin et al.

Fig. 7. Exploring the distributions of the inferred exposure on Yahoo!R3.

phenomenon can be attributed to twomain factors: (a) Popular items generally possess superior
quality and are therefore more likely to appeal to users, leading to an initial increase in i (10) ;
(b) However, once the popularity surpasses a certain threshold, items become exceedingly
likely to be exposed. This impact overwhelms the former effect, culminating in a decrease in
i (10) . These results validate the adapativity of ReCRec. It indeed captures some useful data
patterns.

—Does ReCRec-F capture personalized exposure? To give the answer, we refer to [74] and divide
users and items into 10 groups according to item popularity and user activity. The average
exposure for each group is shown in Figure 7(c). The darker the color indicates the larger
value. We observe ReCRec could capture the personalized exposure, i.e., the more active users
are prone to be exposed to more items.

—Note that Yahoo!R3 dataset contains a small dataset where a user is exposed but dislikes an
item (i.e., the item with low rating value). Thus, we explore model prediction of exposure on
this small exposed dataset and other missing data. The average predicted exposure probability
is shown in Figure 7(d). We observe (1) the score on exposed data is larger than missing data,
suggesting ReCRec indeed captures exposure to a certain degree; (2) the discrepancy in scores
between exposed and missing data for ReCRec-F is larger than that for ReCRec-I, implying
that ReCRec-F is comparatively more accurate than ReCRec-I in capturing user exposure.

5.4 Ablation Study (RQ5)
We now examine the impact of each module within ReCRec: (1) initially, we exclude the RM,
precluding the use of knowledge from the EM for learning user preferences, which would reduce
the model to a basic WMF; (2) we then assess the significance of different cases in learning user
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Fig. 8. The impact of each component of RM on the performance of ReCRec on Yahoo!R3 and Coat.

Fig. 9. Recommendation performance of the compared debiasing methods with different embedding dimen-
sions on the Yahoo!R3 dataset.

preference. Toward this end, we individually omit each case (i.e., setting i (11) , i (10) , i (01) or i (00)
as zero in the objective !%" ) in learning user preference.

The results are presented in Figure 8. As can be seen, the removal of either RM or any i results
in diminished performance. This finding underscores the criticality of considering all four cases
when learning user preferences from implicit feedback.

5.5 Hyperparameter Studies (RQ6)
5.5.1 Impact of Embedding Dimension. The diagram depicted in Figure 9 provides a comparative

analysis of the performance of various methods with varying embedding dimensions. For all
methods, we adjust the embedding size over a range of values 4, 8, 16, 64, 128, 200, using the
Yahoo!R3 dataset.

From the results, it is evident that both ReCReC-I and ReCRec-F consistently surpass the perfor-
mance of other models across all examined dimensions. Another phenomenon is observed wherein
the performance of all methods improves and eventually plateaus as the dimensionality escalates. It
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Fig. 10. Impact of _?>? (the coefficient of popularity regularizer) on the performance of ReCRec-F on the
Yahoo!R3 dataset.

is worth noting that our RecRec achieves near-optimal results and reaches a state of stability when
the dimensionality is eight. This observation suggests that our approach is capable of extracting
meaningful and efficient information even though using a limited dimensional space.

5.5.2 Impact of Coefficient of Popularity Regularizer. In the ReCRec-F model, _?>? , the coefficient
of the popularity regularization term controls the degree of similarity between the predicted
exposure and the popularity of items. We conduct experiments on the Yahoo!R3 dataset to study
how the value of _?>? affect recommendation performance (NDCG@5, MAP@5). The results are
shown in Figure 10.

As we can be seen, as _?>? becomes larger, there is an initial improvement in performance. This
can be attributed to the fact that user exposure is indeed positively correlated with item popularity.
Consequently, incorporating such prior knowledge can enhance the learning process of exposure.
However, when _?>? surpasses a certain threshold (e.g., _?>? = 2.0), the performance deteriorates
with further increases in _?>? . This can be explained by the fact that overly stringent constraints on
exposure can compromise its flexibility and personalization, leading to the sub-optimal performance.
Thus, a tradeoff for _?>? is observed. When _?>? is set to a proper value (e.g., _?>? = 2.0), the model
achieves the best performance.

6 Related Work
In this section, we briefly review related work from the following three perspectives.

6.1 Recommendation Models
Recent years have witnessed the flourish publications on recommendation models. The most classic
recommendation model is MF [33, 47, 57], which projected IDs of users and items into embedding
vectors and then recovered the feedback via the inner product of the user and item embedding.
As the inner product violates triangle inequality and lacks generalization [27], some recent work
proposed to utilize more advanced distance metrics for generating interactions. For example,
CML [27] utilized the Euclidean distance on the embedding space; LRML [56] introduced extra
relation vectors to evaluate the relations between users and items. Besides, neural network has
been leveraged to capture complex patterns of user–item interactions, spanning from Multilayer
Perceptron [23], Convolutional Neural Network [22], and AutoEncoder [39, 43, 54, 55].
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For enriching the learning of user representation, some researchers have incorporated users’
historical behaviors into their models. The most representative methods are FISM and SVD++,
which pool the embeddings of the interacted items to generate the user embedding. More recently,
the sequence of item interactions has received substantial attention, sparking a burgeoning field of
sequential recommendation. Various techniques have been proposed to encode the users’ historical
behaviors. These range from the traditional sequential probabilistic models [51] to recent advanced
Recurrent Neural Networks [26], transformer architectures [11, 32], Neural differential Models [20],
and LLM-based Models [13].

Given the effect of graph neural network (GNN) [16, 68] on capturing high-order relations,
GNN has also been introduced in RS to mining high-order collaborative signals in historical
interactions. NGCF [62] and GC-MC [1] extended the user-item interactions into a specific bipartite
graph and then performed graph propagation to integrate the information from the (high-order)
neighbors into the representation learning. HGAN [63] further introduced attention mechanisms
to aggregate information from different nodes in the graph; LightGCN [21] simplified the NGCF
architecture by removing unnecessary components; A number of researchers [59, 66, 72] further
leveraged the contrastive learning [65] in a graph-based recommendation to enhance its robustness
and generalization; Some researcher [15, 58] also studied generalization and distribution shift issue
in graph-based recommender.

6.2 Bias in RS
Given that data in RS are collected through observation rather than rigorous experiments, bias
frequently manifests within such systems [5]. Specifically, data bias refers to a scenario where
the distribution of the collected data diverges from that utilized for model testing [4]. Therefore,
blindly training a recommendation model on such skewed data could not only lead to suboptimal
recommendation accuracy, but could also potentially engender unfairness and intensify theMatthew
effect [17, 18, 29, 37].

Recent work [5] has classified data bias into four types including (1) selection bias [25, 36, 44, 49],
which happens in explicit feedback data referring to a phenomenon that the observed data might
not faithfully represent the entirety of user–item pairs; (2) exposure bias [38], which happens in
implicit feedback indicating a phenomenon that the click may not purely signify user preference;
(3) position bias [12, 30, 45] referring to a phenomenon that users’ feedback would be impacted by
the item position displayed to the user; (4) conformity bias [42, 61] referring to a phenomenon that
users tend to behave similarly to the others in a group.

Distinct types of biases display unique characteristics. Recently have witnessed various debiasing
strategies tailored for diverse biases [9, 40, 64, 70, 71]. As this work mainly focuses on exposure
bias, here we mainly review the debiasing methods for this type of bias. For other biases, readers
are encouraged to consult the extensive survey [5] on this topic.

6.3 Debiasing Exposure Bias
Exposure bias happens as users are only exposed to a part of specific items so that unclicked do not
always represent negative preference [5]. Exposure bias is common and may root in many factors
such as item popularity [75], user background [8] or previous recommendation policy [41]. Recent
work on addressing exposure bias can be mainly categorized into three types.

WMF, a classical approach, weighed unclicked data with specific confidence weights. Recent
studies have suggested varied weighting strategies. For example, Hu et al. [28] downweighted
unclicked data with uniformly assigning them lower scores compared to clicked data; He et al. [24]
utilized popularity-based weights, under the assumption that popular items are more likely to be
exposed to users; Pan and Scholz [46] further incorporates user-activity in the weighting strategy.
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Another type is ExpoMF [38], which deduced how likely a user is exposed to an item through
a generative exposure model and learned a recommendation model on the exposed data. Recent
studies have suggested varied architecture of the exposure model. For instance, Liang et al. [38]
proposed to generate the exposure based on item popularity or text topics; Chen et al. and Wang
et al. [6, 8, 60] incorporated social relations in the exposure model under the assumption that social
connected users share similar exposure distribution; Chen et al. [7] further took users community
into consideration.

More recently, some researchers proposed to leverage the propensity score to address exposure
bias. These methods offered an impressive theoretical property—achieving an unbiased estimator
of the ideal loss when the propensity is correctly specified. As the success of these methods
hinges on the accurate specification of the propensity, various strategies were developed. For
example, Saito et al. [53] proposed to utilize the item popularity to determine propensity; Zhu
et al. [76] developed a jointly learning strategy to infer both propensity and user preference; Lee
et al. [35] considered to specify the propensity using the predictions from the recommendation
model.

However, we argue that all of existing methods overlook the positive signals among unclicked
data, incurring bias estimation or high variance. Our ReCRec deduces the causes behind unclicked
data, mining both positive and negative signals and thus yielding better performance than existing
methods.

Besides the above debasing methods that tailored for exposure bias, there are some general
debiasing methods that can be adopted for addressing exposure bias. These methods mainly resort
to a small unbiased dataset for guiding the training of the debiasing model. For example, Bonner
and Vasile [3] proposed to align the embeddings learned on the biased data and unbiased data; Liu
et al. [41] proposed to leverage the knowledge distillation to extract useful unbiased knowledge
from the unbiased data; Chen et al. [4] proposed to learn the propensities and imputations via meta
learning from the unbiased data. While these methods hold promise, they necessitate the availability
of unbiased datasets. The collection of such datasets, however, is both challenging and costly. It
involves the intervention of the recommendation, e.g., using the random policy, which would
significantly hurt company benefits and user experience. This drawback substantially impedes the
practical application of these methods.

7 Conclusion and Future Work
In this work, we introduce a new method, ReCRec, that discerns the causes of implicit feedback
for debiased recommendation. ReCRec consists of a PM for capturing user preference, an EM for
inferring user exposure and a RM targeting at reasoning to which case each instance belongs.
A specific learning algorithm is developed to update the modules iteratively and alternatively.
Rigorous theoretical analyses affirm that ReCRec could yield an unbiased estimate of the ideal loss
with a bounded variance. Additionally, comprehensive experiments on both semi-synthetic and
real-world datasets validate its superiority over current state-of-the-art methods.

This work opens up several intriguing avenues for future research. Firstly, while RecRec demon-
strates impressive performance with a simple exposure model, there is potential to delve further
into more sophisticated EM. This could involve the use of neural networks or graph-based mod-
els, which may offer increased precision in capturing user exposure and, as a result, enhance
model performance. Secondly, in practical, exposure bias is dynamic rather than static. Typically,
users are continuously exposed to new recommendations. Therefore, investigating temporal ex-
posure bias by leveraging sequential models could provide a promising direction for subsequent
research.
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Appendix
A Proof of Lemma 1

Proof. The proof procedure refers to [53]. We can write the expectation of the objective of
ExpoMF as follows:

E[!�G?>"� (b̂)] = E[ 1
|D|

∑
(D,8 ) ∈D

\̂D8 [~D8X (1)D8 + (1 − ~D8 )X
(0)
D8
]]

=
1
|D|

∑
(D,8 ) ∈D

\̂D8 [E[~D8 ]X (1)D8 + (1 − E[~D8 ])X
(0)
D8
]

=
1
|D|

∑
(D,8 ) ∈D

\̂D8\D8WD8X
(1)
D8
+ \̂D8 (1 − \D8WD8 )X (0)D8 ] . (25)

Then, we have the gap between the objective of ExpoMF with the ideal loss:

E[!�G?>"� (b̂)] − !8340; (b̂)

=
1
|D|

∑
(D,8 ) ∈D

\̂D8\D8WD8X
(1)
D8
+ \̂D8 (1 − \D8WD8 )X (0)D8 ] −

1
|D|

∑
(D,8 ) ∈D

[WD8X (1)(D8 ) + (1 − WD8 )X
(0)
D8
] (26)

=
1
|D|

∑
(D,8 ) ∈D

[WD8 (\̂D8\D8 − 1)X (1)D8 + \̂D8 − 1 − WD8 (\̂D8\D8 − 1)X
(0)
D8
] .

As can be seen, the gap becomes zero if and only if \D8 = \̂D8 = 1 holds. �
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