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ABSTRACT
Learning effective representations for Continuous-Time Dynamic

Graphs (CTDGs) has garnered significant research interest, largely

due to its powerful capabilities in modeling complex interactions

between nodes. A fundamental and crucial requirement for rep-

resentation learning in CTDGs is the appropriate estimation and

preservation of proximity. However, due to the sparse and evolving

characteristics of CTDGs, the spatial-temporal properties inher-

ent in high-order proximity remain largely unexplored. Despite

its importance, this property presents significant challenges due

to the computationally intensive nature of personalized interac-

tion intensity estimation and the dynamic attributes of CTDGs.

To this end, we propose a novel Correlated Spatial-Temporal Po-

sitional encoding that incorporates a parameter-free personalized

interaction intensity estimation under the weak assumption of the

Poisson Point Process. Building on this, we introduce the Dynamic

Graph Transformer with Correlated Spatial-Temporal Positional

Encoding (CorDGT), which efficiently retains the evolving spatial-

temporal high-order proximity for effective node representation

learning in CTDGs. Extensive experiments on seven small and
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two large-scale datasets demonstrate the superior performance

and scalability of the proposed CorDGT. The code is available at:

https://github.com/wangz3066/CorDGT.
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1 INTRODUCTION
Graph Neural Networks (GNNs) [6, 10, 29, 31, 41] have become a

potent tool for analyzing diverse graph structures due to their effec-

tiveness in learning low-dimensional graph representations. While

early GNN research focused on static graphs, many real-world net-

work data exhibit evolving graph structures, such as theWorldWide

Web and recommendation systems [3, 30, 38]. The increasing preva-

lence of dynamic graph data has spurred researchers to adapt GNNs

to handle dynamic graphs. Dynamic graphs can be categorized into

Discrete-Time Dynamic Graphs (DTDGs) and Continuous-Time

Dynamic Graphs (CTDGs). Recently, CTDGs have garnered more

research attention compared to DTDGs, attributed to their flexible
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generalization capabilities and proficiency inmodeling intricate and

dynamic node interactions. To learn effective representations for

CTDGs, researchers have explored various techniques, including

temporal message passing [15, 24, 27, 36, 40] and the incorporation

of temporal intervals into random walks [13, 20, 35], etc.

The effectiveness of graph representation fundamentally hinges

on the preservation of proximity between nodes. This implies that

nodes that are proximate in the graph should also maintain close-

ness in the low-dimensional space. The first-order proximity, rep-

resented by the direct interactions between node pairs observed

in the CTDG, can be easily maintained by making the embeddings

of adjacent nodes close. However, considering the sparsity and the

evolving nature of CTDGs, the preservation of first-order proxim-

ity alone does not provide a comprehensive measure of proximity.

The high-order proximity [26] in CTDGs, evaluated by the close-

ness degree between target nodes and auxiliary nodes, embodies

the spatial-temporal duality. Figure 1 illustrates this spatial-

temporal duality of high-order proximity in CTDGs using a social

network example. Suppose the model is predicting the interaction

between users 𝑢 and 𝑣 at time 𝑡 = 11. As there is not direct inter-

action between the target nodes, their shared neighbors should be

taken into consideration. Unlike the static graphs, although users 𝑢

and 𝑣 have three shared neighbors in both subgraphs (a) and (b),

they have more frequent and recent interactions with their shared

neighbors in subgraph (a) than (b), indicating higher probability

of connections between node pairs 𝑢 and 𝑣 . Although important,

most existing methods [24, 27, 40] independently aggregate neigh-

bor information of target nodes without considering dependencies

between target nodes. Some existing works [13, 35] encode the

appearance positions of auxiliary nodes on the random walks path,

which fail to address the spatial-temporal duality property inherent

in high-order proximity.

Despite its paramount importance, estimating and preserving

comprehensive spatial-temporal proximity in CTDGs poses several

challenges for the following reasons: Firstly, CTDGs entail multiple

interactions occurring between node pairs at varying timestamps.

The interaction intensity, which represents the count of interac-

tions within a specified time interval, is instrumental in character-

izing the degree of connection between node pairs. Consequently,

measuring higher-order proximity in CTDGs necessitates a per-

sonalized intensity estimation between the target node pair and

the auxiliary nodes at any given timestamp, a process that is com-

putationally demanding. Several existing works [37, 50] employ

the Hawkes process and learn node representations to estimate

pairwise intensity. Nonetheless, integrating these methods to es-

timate high-order proximity necessitates pre-training of the node

embeddings or neural networks, thereby incurring significant com-

putational costs. Secondly, the dynamic nature of CTDGs leads to

varying proximity between node pairs across different timestamps,

influenced by both spatial and temporal factors. This necessitates

efficient adaptation in proximity estimation, thereby introducing

unique challenges in the modeling of CTDGs.

To address the aforementioned challenges, in this paper, we pro-

pose CorDGT, a Dynamic Graph Transformer with Correlated
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Figure 1: A social network example. The model is expected
to predict the existence of the interaction between node 𝑢
and 𝑣 at 𝑡 = 11.

Spatial-Temporal Positional Encoding. Inspired by the effective-

ness of Poisson process in modeling counting process, we pro-

pose a novel Temporal Distance that incorporates a parameter-

free interaction intensity estimation by leveraging the weak as-

sumption of the Poisson Point Process. This approach circum-

vents the computational cost of pretraining, thereby enhancing

efficiency. Based on Temporal Distance, we further propose a Cor-
related Spatial-Temporal Positional Encoding (STPE-C) that models

the spatial-temporal duality of evolving high-order proximity in

CTDGs. Equipped with the STPE-C, we propose a dynamic graph

Transformer that adaptively preserves the comprehensive proxim-

ity for effective learning of node embeddings in CTDGs, which are

subsequently leveraged for downstream tasks. Consistent perfor-

mance improvement over eight baselines are observed on both link

prediction and node classification tasks, demonstrating the superi-

ority of the proposed CorDGT. Additionally, experiments on large-

scale datasets demonstrate the superior effectiveness-efficiency

trade-off of proposed CorDGT. In summary, the main contributions

of this paper are as follows:

• We propose a novel estimation of comprehensive proximity

that incorporates an efficient parameter-free personalized

intensity to encode the evolving spatial-temporal high-order

proximity on CTDGs.

• We propose Dynamic Graph Transformer with Correlated

Spatial-Temporal Positional Encoding (CorDGT), which effi-

ciently preserves the evolving comprehensive proximity for

effective node representation learning in CTDGs.

• Extensive experiments conducted on seven small and two

large-scale datasets demonstrate the superiority and the scal-

ability of the proposed CorDGT.

2 RELATEDWORKS
Dynamic Graph Neural Networks. Existing dynamic graphs

can be categorized into Discrete-Time Dynamic Graphs (DTDGs)

and Continuous-Time Dynamic Graphs (CTDGs) based on whether

the timestamps in the dynamic graphs are discrete or continuous.

Early works on DTDGs learn the graph representation of each snap-

shot, which is then fed into a sequential model such as a Recurrent

Neural Network or Transformer to learn temporal representation

[17, 21, 25, 44, 45]. Some recent works learn the representation
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of successive snapshots selected by Bernoulli sampling [48] or a

sliding window [49]. In contrast, the graph proximity of CTDGs is

highly coupled with the time series. Most CTDG models leverage a

unified model to learn the node representation via temporal graph

neural networks [5, 15, 19, 24, 27, 40], random walks [13, 20, 35], or

Transformers [4, 9, 34, 47]. However, due to the sparsity and evolv-

ing nature of CTDGs, addressing the spatial-temporal property

of high-order proximity is important for proximity measurement,

which is overlooked by existing works. Different from existing

works, the proposed model addresses the spatial-temporal high-

order proximity in CTDGs by incorporating the spatial-temporal

distance between the target and the auxiliary nodes.

Temporal Point Process. The Temporal Point Process (TPP) is

a mathematical model used to represent a sequence of events in

time, which has been employed to model the interaction intensity

of Continuous-Time Dynamic Graphs (CTDGs) [2, 27, 37]. These

works have utilized a parametric network or temporal node em-

beddings to model the interaction intensity of TPPs, such as the

Hawkes process [11]. However, the pre-training process of these

methods can be time-consuming, making them unsuitable for high-

order proximity modeling. Instead, we propose a parameter-free

intensity estimation method based on the Poisson Point Process.

Graph Transformers. Several studies have explored the appli-

cation of the pure Transformer model in static graph representation

learning, wherein graph-specific information is incorporated as a

soft inductive bias via positional encodings such as eigenvectors of

the graph Laplacian matrix [7, 14], diagonals of the random walk

matrix [8]. pairwise shortest path length [22, 43]. In the context

of DTDGs, several works have proposed utilizing the Transformer

model to capture the temporal evolution following spatial graph

convolution within each graph snapshot [25, 33, 42, 46]. Given the

Transformer model’s capability to learn long-term dependencies,

it has been adopted for learning on CTDGs [9, 47]. APAN [34]

employs the Transformer to model asynchronous mail messages

from other temporal neighbors. Our proposed model differs from

these methods in terms of input tokens, positional encodings, and

Transformer architecture.

3 PROBLEM DEFINITION
Problem Formulation. The Continuous-Time Dynamic Graph

is defined as a set of interaction events E = [(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 , 𝑒𝑖 )]𝑀𝑖=1
, where

𝑀 is the number of events, and the tuple (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 ) represents that
nodes 𝑢𝑖 and 𝑣𝑖 interact at time 𝑡𝑖 , and 𝑒𝑖 ∈ R𝑑𝑒 is the feature vec-
tor associated with the 𝑖-th interaction event. The node feature

matrix of the CTDG is denoted as X = [𝑥 (1), ..., 𝑥 (𝑁 )] ∈ R𝑁×𝑑𝑛
where 𝑁 is the total number of nodes and 𝑥 (𝑖) is the raw node

feature of the 𝑖-th node. Two nodes may have multiple interactions

at different timestamps in a CTDG. The objective of representation

learning on CTDG is to learn a embedding function for each node 𝑖

at time 𝑡 : 𝑓𝑖 (𝑡) ∈ R𝑑 . Since most of the CTDG datasets do not have

node labels, the CTDG models are typically trained based on the

future link prediction task. Future link prediction on CTDGs aims

to predict the occurrence probability of the link (𝑢, 𝑣, 𝑡𝑝𝑟𝑒𝑑 ) based
on all the historical interactions happening before 𝑡𝑝𝑟𝑒𝑑 , which can

be categorized into transductive and inductive settings based on

whether the testing nodes are visible in the training stage. The net-

work parameters trained based on transductive link prediction can

be utilized for other downstream tasks such as node classification.

Temporal Neighbor [24, 40]. Given a node 𝑢 at time 𝑡 , the

collection of its (1-hop) temporal neighbors is defined as the set of

nodes that have interaction with 𝑢 before 𝑡 : 𝜂 (1) (𝑢; 𝑡) = {(𝑤, 𝑡 ′) |
(𝑢,𝑤, 𝑡 ′, ·) ∈ E, 𝑡 ′ < 𝑡}. The collection of 𝐾-hop (𝐾 > 1) temporal

neighbors of the node 𝑢 at time 𝑡 can be recursively defined as

all the temporal neighbor of its (𝐾 − 1)-hop temporal neighbors,

denoted as 𝜂 (𝐾 ) (𝑢; 𝑡). The 𝐾-hop temporal neighborhood of a node

𝑢 at time 𝑡 is defined as N (𝐾 ) (𝑢; 𝑡) = ∪𝐾
𝑖=1
𝜂 (𝑖 ) (𝑢; 𝑡).

4 MODEL
4.1 Overall Framework
In this section, we introduce the proposed Dynamic Graph Trans-
former with Correlated Spatial-Temporal Positional Encoding

(CorDGT). The general framework of CorDGT is presented in Fig-

ure 2. Suppose we are predicting the interaction probability of the

target nodes 𝑢 and 𝑣 at time 𝑡𝑝𝑟𝑒𝑑 , CorDGT begins by sampling

their contextual nodes set from their 𝐾-hop temporal neighborhood,

denoted as C(𝑢, 𝑡𝑝𝑟𝑒𝑑 ) and C(𝑣, 𝑡𝑝𝑟𝑒𝑑 ), respectively. As stated in

Section 1, the spatial-temporal high-order proximity between the

target nodes 𝑢 and 𝑣 is characterized by their first-order proximity

to these contextual nodes 𝑤 ∈ C(𝑢, 𝑡𝑝𝑟𝑒𝑑 ) ∪ C(𝑣, 𝑡𝑝𝑟𝑒𝑑 ). There-
fore, we first introduce Spatial Distance and Temporal Distance

to characterize the first-order proximity on the CTDG. Then, the

Correlated Spatial-Temporal Positional Encodings (STPE-C) for

each contextual node𝑤 ∈ C(𝑢, 𝑡𝑝𝑟𝑒𝑑 ) ∪ C(𝑣, 𝑡𝑝𝑟𝑒𝑑 ) with respect to

the target node pairs 𝑢 and 𝑣 at time 𝑡𝑝𝑟𝑒𝑑 is proposed to encode

the spatial-temporal high-order proximity. Further, the network

architecture of CorDGT is presented, which modifies the original

Transformer to incorporate structural information of the CTDG.

4.2 Contextual Nodes Sampling
A simple tree-based sampling strategy is adopted to obtain con-

textual nodes set. Specifically, given the node 𝑢 at time 𝑡𝑝𝑟𝑒𝑑 , its

contextual nodes set is initialized as C(𝑢, 𝑡𝑝𝑟𝑒𝑑 ) = {(𝑢, 𝑡𝑝𝑟𝑒𝑑 )}. At
the first iteration, we uniformly sample 𝑛1 temporal neighbors of

(𝑢, 𝑡𝑝𝑟𝑒𝑑 ) and add them to C(𝑢, 𝑡𝑝𝑟𝑒𝑑 ). At the 𝑘-th iteration (𝑘 > 1),

we uniformly sample𝑛𝑘 temporal neighbors for each nodes sampled

at the (𝑘 − 1) iteration and add them to C(𝑢, 𝑡𝑝𝑟𝑒𝑑 ). Note that the
sampling numbers 𝑛𝑖 (𝑖 = 1, ..., 𝐾) are predefined hyper-parameters.

4.3 Correlated Spatial-Temporal Positional
Encoding

4.3.1 Spatial Distance. The spatial distance can be characterized

by the shortest path length on the topological structure of the

CTDG. However, since the topological structure of the CTDG is

continuously evolving as new interaction events happen, online up-

dating the shortest path length between any two nodes on the entire

CTDG is time consuming. Alternatively, we use the shortest path

length on the sampled K-hop temporal neighborhood as a proxy.

Specifically, to compute Spatial Distance (SD) of 𝑤 to 𝑤0 at time

𝑡𝑝𝑟𝑒𝑑 , denoted as SD(𝑤 ;𝑤0, 𝑡𝑝𝑟𝑒𝑑 ), we firstly sample K-hop tempo-

ral neighborhood from the root node𝑤0, then SD(𝑤 ;𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) is



WSDM ’25, March 10–14, 2025, Hannover, Germany Zhe Wang et al.

Src Dst Time
… … 𝑡!
… … 𝑡"
… … …
… … 𝑡#

Events

CTDG

u v
𝑡!

𝑡"

𝑡# 𝑡$ 𝑡% 𝑡&

𝑡'

𝑡(
𝑡)

u v
𝑡!

𝑡"

𝑡# 𝑡$ 𝑡% 𝑡&

𝑡'

𝑡(
𝑡)

𝑤" 𝑤# 𝑤$

𝑤% 𝑤&

Contextual 
Nodes

Sampling

For all contextual nodes:

u

u

𝑤*

𝑤*
… 𝑇𝐷(𝑤* , 𝑢)

v

v

𝑤*

𝑤*
… 𝑇𝐷(𝑤* , 𝑣)

u
𝑤*

𝑆𝐷(𝑤* , 𝑢)

v
𝑤*

𝑆𝐷(𝑤* , 𝑣)

Spatial/Temporal Distance 

Enc

For all contextual nodes:

𝑆𝑇𝑃𝐸(𝑤$; 𝑢, 𝑣 }

Spatial-Temporal 
Positional Encoding

Input

u

𝐿×

𝑧(𝑢, 𝑡)

Score

CorDGT Model

𝑤! 𝑤" 𝑤#

MHSA

FFN

Mean 
Pooling

𝐿×

v

𝐿×

𝑧(𝑣, 𝑡)

𝑤" 𝑤$ 𝑤%

MHSA

FFN

Mean 
Pooling

𝐿×

Target Node Contextual Node

Figure 2: The framework of the proposed CorDGT.

defined as:

SD(𝑤 ;𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) = min{ℎ𝑜𝑝 (𝑤 ′;C(𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) |
𝑤 = 𝑤 ′,𝑤 ′ ∈ C(𝑤0, 𝑡𝑝𝑟𝑒𝑑 )}

(1)

where ℎ𝑜𝑝 denotes the hop number of 𝑤 ′ from the root node 𝑤0.

Note that if If𝑤 = 𝑤0, SD(𝑤 ;𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) is set as 0. The computation

of SD is based on the closest 𝑤 to the root node 𝑤0, since 𝑤 may

occur multiple times in the contextual node set of𝑤0. If𝑤 is not in

C(𝑤0, 𝑡𝑝𝑟𝑒𝑑 ), we set SD(𝑤 ;𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) as infinity.

4.3.2 Temporal Distance. In contrast to static graphs, the node

pairs may have multiple interactions at different timestamps in

the CTDG, thus the proximity between two nodes is associated

with their interaction history. We propose Temporal Distance to

characterize the proximity originated from the interaction history

between two nodes. Suppose current timestamp is 𝑡𝑝𝑟𝑒𝑑 , and the

timestamps sequence that nodes𝑤 and𝑤0 interacted prior to 𝑡𝑝𝑟𝑒𝑑
is denoted as𝑇 (𝑤,𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) = {𝑡1, ..., 𝑡𝑛}with 𝑡𝑖−1 < 𝑡𝑖 (𝑖 = 2, ..., 𝑛)
and 𝑡𝑛 < 𝑡𝑝𝑟𝑒𝑑 . Then, the Temporal Distance (TD) between𝑤 and

𝑤0 at time 𝑡𝑝𝑟𝑒𝑑 , denoted as TD(𝑤,𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) is defined as:

TD(𝑤,𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) = 𝑓 ({𝑡1, ..., 𝑡𝑛}, 𝑡𝑝𝑟𝑒𝑑 ) (2)

where 𝑓 is an arbitrary function which maps the interaction times-

tamps sequence to a scalar. Moreover, the temporal distance should

satisfy following properties: (Recentness) If the most recent interac-

tion between two nodes is closer to current time, then the temporal

distance between them should be smaller; (Intensity) If the inter-

action intensity of these two nodes is higher, then the temporal

distance between them should be smaller. The recentness property

can be easily characterized by the difference between 𝑡𝑛 and 𝑡𝑝𝑟𝑒𝑑 .

However, estimating the interaction intensity between two nodes

is not straightforward since there is no prior knowledge to its dis-

tribution and the interactions patterns of different node pairs may

be highly divergent. Most existing works adopt Hawkes process in

modeling the interaction intensity [37, 50]. However, these methods

require to pre-train the node embeddings to obtain the intensity,

thus is time-consuming. Instead, we propose a parameter-free ap-

proach to estimate the interaction intensity at any time. Specifically,

we employ the Poisson point process assumption for its simplic-

ity and generalization ability, which is a commonly used weak

assumption for an unknown counting process [16, 35]. We provide

following Theorem 1 with the Poisson point process assumption to

evaluate maximum likelihood estimation of interaction intensity

given the interaction sequence.

Lemma 1. Suppose the interactions between 𝑤 and 𝑤0 prior to
𝑡𝑝𝑟𝑒𝑑 , denoted as 𝑇 (𝑤,𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) = {𝑡1, ..., 𝑡𝑛} with 𝑡𝑖−1 < 𝑡𝑖 (𝑖 =

2, ..., 𝑛) and 𝑡𝑛 < 𝑡𝑝𝑟𝑒𝑑 , follow a Poisson point process with intensity

𝜆, then the maximum likelihood estimation of 𝜆 is
𝑛

𝑡𝑛
.

Proof. With the Poisson Point Process assumption, the proba-

bility of the interaction sequence [𝑡1, ..., 𝑡𝑛] happens is:

𝑃𝑟 (𝑁 (𝑡𝑖−1, 𝑡𝑖 ) = 1, 𝑖 = 1, 2, ..., 𝑛) =
𝑛∏
𝑖=1

𝜆(𝑡𝑖 − 𝑡𝑖−1)1
1!

𝑒−𝜆 (𝑡𝑖−𝑡𝑖−1 )

(3)

where 𝑁 (𝑡𝑖−1, 𝑡𝑖 ) denotes the number of interactions within the

range (𝑡𝑖−1, 𝑡𝑖 ) and 𝑡0 = 0. Therefore, the likelihood function of the

intensity 𝜆 can be written as:

𝐿(𝜆) =
𝑛∏
𝑖=1

𝜆(𝑡𝑖 − 𝑡𝑖−1) · 𝑒−𝜆 (𝑡𝑖−𝑡𝑖−1 )
(4)

Thus, the log-likelihood of 𝜆 is:

𝑙 (𝜆) =
𝑛∑︁
𝑖=1

ln(𝜆) + ln(𝑡𝑖 − 𝑡𝑖−1) − 𝜆(𝑡𝑖 − 𝑡𝑖−1) (5)

By setting the derivative

𝑑𝑙

𝑑𝜆
= 0, we get the maximum likelihood

estimation of 𝜆:

𝜆𝑀𝐿𝐸 =
𝑛

𝑡𝑛
(6)

which concludes the proof. □

Lemma 1 enables us to characterize the interaction intensity by

𝑛/𝑡𝑛 . By integrating both the intensity property and recentness
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property, we specify the temporal distance defined in Eq. (2) as:

TD(𝑤,𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) = 𝛼 ∗
𝑡𝑛

𝑡𝑝𝑟𝑒𝑑 · 𝑛
+ 𝛽 ∗

𝑡𝑝𝑟𝑒𝑑 − 𝑡𝑛
𝑡𝑝𝑟𝑒𝑑

(7)

where 𝛼, 𝛽 > 0 are hyper-parameters. Note that if 𝑤 and 𝑤0 do

not have interaction before, we set TD(𝑤,𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) as a very large

value. If𝑤 = 𝑤0, TD(𝑤,𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) is set as 0. For implementation,

due to the sparsity of CTDGs, we only need to store the most recent

interaction timestamp 𝑡𝑛 and the interaction times count 𝑛 for the

node pairs that have interactions before, which leads to the memory

complexity significantly less than O(|E|). To prevent the problem

of information leakage, when computing the temporal distance in

Eq. (7), we use the recorded 𝑡𝑛 and 𝑛 until the previousmini-batch of

interactions. After the complete forward propagation of the current

mini-batch, we update 𝑡𝑛 and 𝑛 records using the interactions of

the current mini-batch.

4.3.3 Spatial-Temporal Positional Encoding. The aforementioned

spatial distance and temporal distance encode the direct proximity

between two nodes on CTDG in scalars. However, the expressive-

ness of self-attention will be restricted if we directly use the scalar

distance as inputs. In addition, this encoding function should learn

the difference of spatial-temporal distance among contextual nodes

more effectively. Inspired by [28], we use the sinusoidal function

Enc : R+ → R2𝑑
as the encoding function:

Enc(𝑥) [2𝑖] = sin

(
𝜖𝑥

10000
2𝑖/𝑑

)
Enc(𝑥) [2𝑖 + 1] = cos

(
𝜖𝑥

10000
2𝑖/𝑑

) (8)

where 𝜖 is used to amplify the influence of 𝑥 on different positions of

the encoding, andwe set 𝜖 = 10000 in this work. Further, the Unitary

Spatial-Temporal Positional Encoding (STPE-U) of the contextual

node 𝑤 with respect to the single target node 𝑤0 at time 𝑡𝑝𝑟𝑒𝑑 is

defined as:

STPE_u(𝑤 ;𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) =MLP(Enc(TD(𝑤,𝑤0, 𝑡𝑝𝑟𝑒𝑑 ))) | |
MLP(Enc(SD(𝑤 ;𝑤0, 𝑡𝑝𝑟𝑒𝑑 )))

(9)

where | | denotes the concatenation operation, and MLP denotes

Multi-Layer Perceptions. The above defined STPE-U can charac-

terize the spatial-temporal first-order proximity of the contextual

node to the single target node. To address the spatial-temporal high-

order proximity between the target node pair (𝑢, 𝑣), the contextual
nodes𝑤 ∈ C(𝑢, 𝑡𝑝𝑟𝑒𝑑 ) ∪ C(𝑣, 𝑡𝑝𝑟𝑒𝑑 ) are leveraged as the auxiliary

nodes for the target node pair (𝑢, 𝑣). Specifically, we propose the
Correlated Spatial-Temporal Positional Encoding (STPE-C) of the

contextual node𝑤 as the combination of its STPE-U to both target

nodes:

STPE_c(𝑤 ; (𝑢, 𝑣), 𝑡𝑝𝑟𝑒𝑑 ) =STPE_u(𝑤 ;𝑢, 𝑡𝑝𝑟𝑒𝑑 )+
STPE_u(𝑤 ; 𝑣, 𝑡𝑝𝑟𝑒𝑑 )

(10)

4.4 Network Architecture
In this section, we present the network architecture of CorDGT,

which is a Transformer based model incorporating the structural in-

formation of CTDG. The input of CorDGT is the node embeddings

of contextual nodes 𝑋 = [𝑥 (𝑤1), ..., 𝑥 (𝑤𝐶 )] ∈ R𝐶×𝑑𝑒𝑚𝑏 where

𝐶 = |C(𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) | (𝑤0 ∈ {𝑢, 𝑣}) is the size of contextual nodes

set. The node embedding 𝑥 (𝑤𝑖 ) is the concatenation of raw node

feature of𝑤𝑖 and its STPE-C with respect to the target link (𝑢, 𝑣) at
time 𝑡𝑝𝑟𝑒𝑑 . In addition, some CTDG datasets may provide features

associated with interaction events, which contains important se-

mantic information about the correlations between the contextual

node pairs. Therefore, we modify the self-attention module of the

original Transformer to incorporate the event feature. Specifically,

the event feature matrix is defined as 𝐸 = [𝑒𝑖 𝑗 ]1≤𝑖, 𝑗≤𝐶 , where 𝑒𝑖 𝑗
is the event feature if node 𝑖 and 𝑗 are interacted during contextual

node sampling period otherwise a zero vector. The input node em-

bedding 𝑋 is denoted as 𝐻 (0) . Then, the self-attention module of

CorDGT (CorDGTAttn) is defined as:

𝐻
(𝑙 )
𝑖

= CorDGTAttn(𝐻 (𝑙−1) , 𝐸)

=

𝐿∑︁
𝑗=1

𝑀𝑖 𝑗 ∗ Softmax(𝐴(𝑙 )
𝑖 𝑗
(𝐻 (𝑙−1)

𝑗
𝑊
(𝑙 )
𝑉
+ 𝑒𝑖 𝑗𝑊 (𝑙 )𝐸𝑉 )

Where 𝐴
(𝑙 )
𝑖 𝑗

=
ℎ
(𝑙−1)
𝑖

𝑊
(𝑙 )
𝑄
(ℎ (𝑙−1)
𝑗

𝑊
(𝑙 )
𝐾
+ 𝑒𝑖 𝑗𝑊 (𝑙 )𝐸𝐾 )

𝑇√︁
𝑑𝑘

(11)

where 𝐻
(𝑙 )
𝑖

denotes the 𝑖-th row of the matrix 𝐻 (𝑙 ) .𝑊 (𝑙 )
𝑄
,𝑊
(𝑙 )
𝐾
∈

R𝑑×𝑑𝐾 ,𝑊 (𝑙 )
𝑉
∈ R𝑑×𝑑𝑉 ,𝑊𝐸𝐾 ∈ R𝑑𝑒×𝑑𝐾 ,𝑊 (𝑙 )𝐸𝑉 ∈ R

𝑑𝑒×𝑑𝑉
are weight

matrices. For simplicity, we set 𝑑𝐾 = 𝑑𝑉 = 𝑑 for the intermediate

layers. In addition, 𝑀 ∈ R𝐶×𝐶 in Eq. (11) is a masking matrix

defined as follow:

𝑀𝑖 𝑗 =

{
1, 𝑡𝑖 < 𝑡 𝑗 and ℎ𝑜𝑝𝑖 ≥ ℎ𝑜𝑝 𝑗
0, otherwise

(12)

where 𝑡 and ℎ𝑜𝑝 are the timestamps and hop numbers obtained

in contextual node sampling period. This masking matrix ensures

that messages can only pass from the history to future, and from

farther temporal neighbors to the closer temporal neighbors.

Following the common practice of Transformermodels, we adopt

the the Layer Normalization (LN) [1] and residual connection [12]

in our CorDGT layer. For easier optimization, we adopt a Pre-Norm

architecture [39] where the Layer Normalization is applied be-

fore CorDGTAttn and Feed-Forwad Networks (FFN). Formally, the

CorDGT layer is defined as follows:

𝐻 ′(𝑙 ) = CorDGTAttn(LN(𝐻 (𝑙−1) ), 𝐸) + 𝐻 (𝑙−1)

𝐻 (𝑙 ) = FFN(LN(𝐻 ′(𝑙 ) )) + 𝐻 ′(𝑙 )
(13)

where 𝐿 is the total number of layers. Multi-head self attention

[28] can also be adopted to further enhance the expressive power

of CorDGT. The output of CorDGT layer 𝐻 (𝐿) ∈ R𝐶×𝑑 are the

embeddings of contextual nodes. The embedding of the root node

𝑤0 (𝑤0 ∈ {𝑢, 𝑣}) at time 𝑡𝑝𝑟𝑒𝑑 , denoted as 𝑧 (𝑤0, 𝑡𝑝𝑟𝑒𝑑 ), is obtained
by applying mean pooling on the node embeddings of its associated

contextual nodes C(𝑤0, 𝑡𝑝𝑟𝑒𝑑 ):

𝑧 (𝑤0, 𝑡𝑝𝑟𝑒𝑑 ) =
1

𝐶

𝐶∑︁
𝑖=1

𝐻 (𝐿) (𝑖, :) (14)

4.5 Training Objective
Given the target link (𝑢, 𝑣, 𝑡𝑝𝑟𝑒𝑑 ), the node embeddings 𝑧 (𝑢, 𝑡𝑝𝑟𝑒𝑑 )
and 𝑧 (𝑣, 𝑡𝑝𝑟𝑒𝑑 ) can be computed using Eq. (14). Then, the predicted
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score of (𝑢, 𝑣, 𝑡𝑝𝑟𝑒𝑑 ) is computed as:

𝑆 (𝑢, 𝑣, 𝑡𝑝𝑟𝑒𝑑 ) = 𝜎 (MLP(𝑧 (𝑢, 𝑡𝑝𝑟𝑒𝑑 ), 𝑧 (𝑣, 𝑡𝑝𝑟𝑒𝑑 ))) (15)

where 𝜎 denotes the Sigmoid function.Finally, the Binary Cross

Entropy (BCE) loss is adopted to train CorDGT:

L =
∑︁
(𝑢,𝑣,𝑡 )

− log 𝑆 (𝑢, 𝑣, 𝑡𝑝𝑟𝑒𝑑 )

− E𝑟∼𝑈𝑛𝑖𝑓 (V\{𝑢,𝑣} ) log(1 − 𝑆 (𝑢, 𝑟, 𝑡𝑝𝑟𝑒𝑑 ))
(16)

where𝑈𝑛𝑖 𝑓 (·) denotes a uniform sampling distribution on the node

set. The overall training pipeline is in Appendix.

4.6 Complexity Analysis
In this section, we analyze the time and spatial complexity of the

proposed CorDGT model. For time complexity, given a mini-batch

of interactions of size 𝐵, sampling the contextual nodes requires

to binary-search the insertion point of the timestamp and costs

𝑂 (𝐵 log( ¯𝑑)), where ¯𝑑 is the average degree of nodes. Computing

the Temporal Distance costs 𝑂 (𝐵𝐶) complexity, where 𝐶 is the

number of contextual nodes. Computing the Spatial Distance costs

𝑂 (𝐾) complexity where𝐾 is the maximum hop of contextual nodes.

Forwarding the model costs 𝑂 (𝐶2𝐻𝐷) due to self-attention opera-

tion, where 𝐻 is the number of attention heads and 𝐷 is the hidden

dimension of weights. Therefore, the time complexity of training

CorDGT is 𝑂 (𝐵(log( ¯𝑑) +𝐶) +𝐶2𝐻𝐷). For spatial complexity, stor-

ing the statistics of interactions cost 𝑂 ( |E |), where |E | is the total
number of interactions. This spatial complexity is inevitable for

learning CTDG models due to the CTDG data loading. The com-

plexity comparison with other methods is presented in Appendix.

5 EXPERIMENTS
5.1 Experimental setup

Datasets. We evaluate the proposed model on nine Continuous-

Time Dynamic Graph (CTDG) datasets: Reddit, Wikipedia, LastFM,

UCI, Enron, Social Evolution, Flights, Gowalla-Food, and Gowalla-

Outdoors. Among these, Reddit and Wikipedia constitute bipartite

networks abundant in node/edge attributes, while LastFM repre-

sents a bipartite network devoid of node features. UCI, Enron, Social

Evolution, and Flights are non-bipartite communication networks,

also lacking attributes. Gowalla-Food and Gowalla-Outdoors are

two large-scale datasets derived from the primary Gowalla dataset.

For datasets without meaningful node features (i.e., LastFM, UCI,

and Enron), we employ zero vectors as node features. Further details

regarding these datasets are provided in Appendix.

Baselines. We compare the proposed CorDGT with three types

of CTDG models: (1) GNN-based: DyRep [27], TGAT [40], TGN

[24] and Graphmixer [5]. (2) Random walk based: CTDNE [20]

and CAW [35]. (3) Transformer based: TCL [32] and TGSRec [9].

More introductions about the baseline methods and tuned hyper-

parameters are presented in Appendix.

Evaluation Protocols. Our evaluation protocols closely follow

[24]. In specific, we adopt transductive/inductive link prediction

and dynamic node classification tasks for evaluation. For Trans-
ductive link prediction task, we split the total time range [0,𝑇 ]
into three seperate intervals [0,𝑇𝑡𝑟𝑎𝑖𝑛), [𝑇𝑡𝑟𝑎𝑖𝑛,𝑇𝑣𝑎𝑙 ] and [𝑇𝑣𝑎𝑙 ,𝑇 )

with 𝑇𝑡𝑟𝑎𝑖𝑛/𝑇 = 0.7 and 𝑇𝑣𝑎𝑙/𝑇 = 0.85 fixed. Then, we allocate the

interactions happening within each interval to generate the train-

ing, validation and testing set. The inductive link prediction task

follows the same splitting protocol as the transductive experiments.

However, we randomly select 10% of the nodes as "masking nodes",

excluding any links associated with them in the training set, and

removing any links not associated with them in the validation and

testing sets.

TrainingConfigurations. We train all themodels for 50 epochs

and adopt the early stopping strategies. We adopt Adam optimizer

and learning rate of 0.001 for all the tasks. Early stopping strategy

is adopted. The batch size is set as 100. We sample 2-hop temporal

neighbors for all datasets. More details about hyper-parameter of

CorDGT and other baselines are presented in Appendix.

5.2 Results and Discussion
TheAverage Precision (AP) scores of transductive and inductive link

prediction experiments are presented in Table 1. The Area Under

the receiver operating Characteristic (AUC) results are presented in

Appendix. As can be seen from Table 1, our CorDGT achieves the

best AP performance on all the datasets for both transductive and

inductive settings. Specifically, the transductive AP and inductive

AP of CorDGT show an average improvement of 1.95% and 3.21%,

respectively, demonstrating the effectiveness of CorDGT.

In addition, we make the following observations: (1) Our pro-

posed model demonstrates robust performance across both attrib-

uted networks (Reddit and Wikipedia) and non-attributed datasets

(LastFM, UCI, MOOC, and UCI). In contrast, the performance of

several baseline methods, which lack node encodings designed for

the evolving laws of CTDGs (such as Jodie, DyRep, and TGAT), sig-

nificantly decreases on non-attributed datasets. This suggests the

efficacy of our proposed STPE-C in modeling the evolving nature of

CTDGs. (2) On the LastFM and Social Evolution datasets, our model

improves the inductive Average Precision (AP) by 6.71% and 9.52%

over the strongest baseline, respectively. This may be attributed to

the significantly higher average interaction intensity of the Social

Evolution (𝜆 = 2.73 × 10
−3
) and LastFM (𝜆 = 5.04 × 10

−4
) datasets

compared to others. As such, the intensity may play a more crucial

role in proximity estimation. Our proposed model excels at captur-

ing long-term interaction intensity via temporal distance. (3) When

compared to the parametric intensity-based method (DyRep), our

proposed model displays significantly improved performance. This

improvement can be attributed to the incorporation of parametric-

free intensity into high-order proximity encoding. The results of

node classification is presented in Appendix.

5.3 Ablation Studies
In this subsection, we conduct ablation studies to evaluate the ef-

fectiveness of different modules of CorDGT . The inductive AP

and AUC results are shown in Table 2. The results are analyzed

as follows: (1) In Ablations 1 and 2, we eliminate the recentness

term and intensity term from the temporal distance calculation,

respectively. As evidenced by the results, the removal of either term

leads to a performance degradation across all datasets, especially

on LastFM. This demonstrate the significance of both recentness

and intensity in computing temporal distance. (2) In Ablations 3
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Table 1: The Average Precision (AP) results of transductive/inductive link prediction are reported. The values are multiplied by
100. The results of the best and second best performing models are highlighted in bold and underlined, respectively.

Model Reddit Wikipedia LastFM UCI Enron Social Evo. Flights

T
r
a
n
s
d
u
c
t
i
v
e

JODIE 97.18±0.2 94.09±0.5 70.89±0.8 85.91±0.9 74.73±4.6 88.24±0.5 95.23±1.6
DyRep 98.09±0.1 94.54±0.3 68.45±3.2 52.94±0.8 69.36±3.4 87.93±0.3 94.97±0.6
TGAT 98.15±0.1 94.69±0.1 54.42±0.9 77.75±0.2 58.91±0.3 92.15±0.2 94.76±0.2
TGN 98.70±0.0 98.49±0.1 72.43±2.9 85.57±4.5 77.45±3.3 93.27±0.1 97.23±0.1
CAWN 98.72±0.0 98.79±0.1 85.52±0.3 92.51±0.1 89.32±0.1 86.39±0.1 98.12±0.3
TGSRec 88.56±2.4 85.68±1.0 67.60±3.9 76.00±0.5 69.46±2.8 74.51±0.7 94.18±0.3
TCL 97.68±0.2 96.82±0.3 70.88±1.5 89.43±1.0 80.84±0.4 93.25±0.1 91.38±0.3

Graphmixer 97.42±0.0 97.25±0.1 78.26±0.4 93.46±0.3 83.28±0.2 92.93±0.1 91.37±0.6
CorDGT 99.18±0.0 99.07±0.1 92.23±0.1 96.03±0.2 91.76±0.5 93.81±0.2 98.81±0.0
Improve 0.46 0.28 6.71 2.57 2.44 0.54 0.69

I
n
d
u
c
t
i
v
e

JODIE 94.46±0.1 92.98±0.1 82.88±1.3 72.93±0.7 72.97±2.0 91.49±0.5 95.17±0.4
DyRep 95.81±0.3 92.01±0.4 80.43±2.2 49.42±0.8 57.54±3.3 89.82±0.5 93.58±0.7
TGAT 97.18±0.6 93.50±0.1 55.63±1.7 70.96±0.7 58.44±2.4 90.74±0.4 89.46±0.3
TGN 97.54±0.1 97.83±0.1 79.16±2.7 82.99±1.2 72.08±2.8 90.46±0.6 95.63±0.3
CAWN 97.19±0.6 97.33±0.4 83.51±0.6 91.95±0.6 86.28±2.2 79.14±0.2 96.80±0.2
TGSRec 82.08±5.4 78.39±0.3 68.42±3.8 65.46±0.7 68.83±3.8 68.85±1.6 87.64±0.3
TCL 93.89±0.5 97.08±0.2 72.56±1.7 88.37±1.8 77.28±0.8 91.67±0.1 83.41±0.1

Graphmixer 97.38±0.0 97.10±0.0 83.11±0.4 92.10±0.6 75.84±1.2 92.03±0.1 83.03±0.1
CorDGT 98.82±0.1 98.48±0.2 93.03±1.8 94.70±1.0 91.65±1.3 94.44±0.8 97.46±0.4
Improve 1.28 0.65 9.52 2.60 5.37 2.41 0.66

Table 2: Ablation studies results. Results of inductive link prediction are reported. The values are multiplied by 100. The best
performance is marked in bold.

Ablations

Reddit Wikipedia LastFM UCI

AUC AP AUC AP AUC AP AUC AP

Full Model 98.67±0.1 98.82±0.1 98.26±0.4 98.48±0.2 93.01±2.0 93.03±1.8 93.20±1.8 94.70±1.0
1. Set 𝛼 = 0 in Eq. (7) 98.09±0.0 98.24±0.1 98.17±0.0 98.28±0.3 89.10±0.6 92.07±0.4 91.30±0.3 91.52±0.3
2. Set 𝛽 = 0 in Eq. (7) 98.10±0.0 98.19±0.1 97.87±0.0 98.18±0.2 89.55±0.6 90.80±1.7 90.46±0.3 94.28±0.8

3. Remove temporal distance 97.91±0.1 98.33±0.3 97.81±0.1 97.11±0.1 88.43±0.1 86.68±0.4 92.19±0.1 91.20±0.3
4. Remove spatial distance 97.81±0.0 98.02±0.1 97.62±0.0 97.36±0.4 92.47±0.1 91.43±0.5 90.15±0.1 92.37±1.0

5. Replace STPE-C with STPE-U 96.99±0.2 93.87±1.1 89.22±2.2 75.38±5.1 64.82±0.7 50.03±2.9 78.59±2.2 64.32±4.6
6. Remove mask in Eq. (11) 98.14±0.0 98.19±0.0 98.08±0.1 98.19±0.1 88.95±0.1 85.81±1.4 90.31±0.1 92.05±0.3
7. Use recent sampling 97.49±0.1 97.36±0.1 96.44±0.3 96.93±0.2 87.23±0.8 85.91±0.1 86.25±1.6 87.15±1.5

and 4, we exclude the spatial distance and temporal distance from

the STPE-C component, respectively. The results indicate that the

performance across all datasets, particularly non-attributed ones, is

compromised when either spatial distance or temporal distance is

removed. This highlights the importance of modeling both spatial

and temporal proximity in learning on CTDGs. (3) In Ablation 5,

we substitute the binary STPE-C with STPE-U as defined in Eq. 8.

In this scenario, the high-order proximity between the target nodes

fails to be captured. We observe a significant drop in performance

across all datasets, underscoring the critical role of modeling spatial-

temporal high-order proximity in learning the evolving patterns of

CTDGs. (4) In Ablation 6, we remove the masking matrix utilized

in the Transformer model, which also leads to a performance de-

cline across all datasets. (5) In Ablation 7, we replace the uniform

contextual nodes sampling with the most recent sampling (i.e., the

most recent interacted neighbors are sampled as the contextual

nodes). The performance of CorDGT drops on all four datasets.

The reason may be that the diversity of neighbors decrease when

replaced with most recent sampling strategy, thus the high-order

proximity estimation may be less accurate.

5.4 Scalability Analysis
In this section, we evaluate the performance and efficiency of the

proposed CorDGT on large-scale datasets. We adopt Outdoors and
Food subsets from the large Gowalla [18] dataset for evaluation. The

Outdoors dataset contains around 0.22M nodes and 1.19M edges.

The Food dataset has around 0.67M nodes and 2.71M edges. We

run all the models for one epoch and compare the performance.

The inductive AP metrics and the training speed per epoch of the

Food dataset are presented in Figure 3. The results of Outdoors are

presented in Appendix.



WSDM ’25, March 10–14, 2025, Hannover, Germany Zhe Wang et al.

0 10000 20000 30000 40000

Time (seconds)

60

65

70

75

80

85

90

In
d
u
c
ti
v
e
A
P

JODIE

DyRep

TGN

TGAT

CAWN

GraphMixer

TCL

TGSRec

CorDGT-10

CorDGT-20

Figure 3: The inductive AP metrics and the training time per
epoch on Food datasets. The closer to the upper left corner,
the better performance. CorDGT-10 and CorDGT-20 denote
the CorDGT with 10 and 20 contextual nodes, respectively.

As can be seen from Figure 3, both two configurations of CorDGT

can achieve consistently outperform the baselines in terms of in-

ductive AP. In addition, training one epoch of CorDGTwith 10

contextual neighbors takes 3319 seconds, which is significantly

faster than memory-based models (JODIE, DyRep and TGN). It

is because the memory-based models need to store the memory

state for each node. Given the vast number of nodes in large-scale

datasets, the process of storing and managing the memory state

incurs a considerable computational cost. Our proposed CorDGT is

marginally slower than CAWN (3234 seconds), but has significant

better inductive AP performance.

5.5 Visualization
One motivation of the proposed CorDGT is to capture the spatial-

temporal high-order proximity in CTDGs by considering the dis-

tance of the contextual nodes to both ends of target nodes. To

further demonstrate the interpretability of the proposed CorDGT,

we visualize the link prediction score by the contextual nodes with

different Temporal Distance (TD) and Spatial Distance (SD) to the

target nodes. Specifically, we replace Eq. (15) as:

𝑆 (𝑢, 𝑣, 𝑡𝑝𝑟𝑒𝑑 ) = 𝜎 (Φ𝑇 (𝑧 (𝑢, 𝑡𝑝𝑟𝑒𝑑 ) + 𝑧 (𝑣, 𝑡𝑝𝑟𝑒𝑑 ))) (17)

where Φ : R𝑑 → R1
is a trainable linear projector, and train the

model. In this way, the contribution of each contextual node 𝑤

to the link prediction score can be decomposed as Φ𝑇 (ℎ𝑤). After
training, we randomly select a mini-batch of contextual nodes. To

see the influence of temporal distance to the predicted score, we

evenly split the range of TD to target node pairs in this mini-batch

to 5 groups, which formulates total 25 buckets. Then, we allocate

the contextual nodes into these buckets based on their TD to target

node pairs. Similarly, we can allocate the contextual nodes into

different buckets based on their SD to target node pairs. Finally,

we compute the average prediction score of the contextual nodes

in each bucket. The visualization results on UCI and Enron are

shown in Figure 4. As can be seen from Figure 4, the contextual

nodes have closer temporal distance (closer to top-left corner) to

both ends of the target link will give higher prediction score of the

Figure 4: Heatmap values indicate the confidence score
on positive source/target node pairs predicted by different
groups of contextual nodes. Left to right: UCI and Enron
datasets. Top to bottom: the contextual nodes are grouped
according to their Spatial Distance and Temporal Distance
to source/target nodes. The blank cells indicate that no data
is allocated to this group. Best viewed in color.

link (closer to yellow). This indicates that the proposed CorDGT

will give higher prediction if the contextual nodes have smaller

temporal distance to target node pairs. Similar observations are also

seen from spatial distance. Therefore, the proposed CorDGT may

be capable to capture the spatial-temporal high-order proximity.

6 CONCLUSIONS
This paper introduces the Dynamic Graph Transformer with Cor-

related Spatial-Temporal Positional Encoding (CorDGT), a novel

approach for representation learning on Continuous-Time Dynamic

Graphs (CTDGs). We employ the Poisson Point Process assumption

and sampled temporal neighborhood to achieve comprehensive

proximity estimation on CTDGs. Subsequently, we propose Cor-

related Spatial-Temporal Positional Encodings (STPE-C), which

utilizes the comprehensive proximity to capture spatial-temporal

high-order proximity. Extensive experiments conducted on seven

small and two large-scale datasets demonstrate the performance

superiority and scalability of the proposed CorDGT model. A po-

tential future direction for this work could involve designing more

sophisticated spatial-temporal distances for improved proximity

estimation and preservation.
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ETHICAL CONSIDERATIONS
The proposed CorDGT is used to learn the temporal embeddings

which can be leveraged for downstream tasks such as link predic-

tion and node classification. The direct negative societal effects

of this research, encompassing fairness, privacy, and security con-

siderations, are minimal. Nevertheless, akin to other predictive

models, a few erroneous predictions by the model could impact

system functionality. Despite extensive experimental validation of

the model’s efficacy, occasional inaccurate predictions, particularly

on outlier data, remain plausible. Therefore, enhancing data quality

through measures such as data cleaning prior to model application

is advised.
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A OVERALL ALGORITHM OF CORDGT

Algorithm 1 CorDGT Training

Input: Training data E = [(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 , 𝑒𝑖 )]𝑀𝑖=1
, node feature X =

[𝑥 (𝑖)]𝑁
𝑖=1

, hop number𝐾 , sampling number of contextual nodes

{𝑛𝑖 }𝐾𝑖=1
, 𝛼 , 𝛽 .

1: Initialize sparse matricesM𝑛 andM𝑡 .

2: 𝑙𝑜𝑠𝑠 ← 0

3: for (𝑢, 𝑣, 𝑒, 𝑡) ∈ E do
4: 𝑟 ← Sampled negative node;

5: Sample the contextual node sets C(𝑢, 𝑡), C(𝑣, 𝑡), C(𝑟, 𝑡).
6: for (𝑤, 𝑡 ′) ∈ C(𝑢, 𝑡) ∪ C(𝑣, 𝑡) do
7: Read the interaction counts 𝑐𝑛𝑡 (𝑢,𝑤) and 𝑐𝑛𝑡 (𝑣,𝑤) from

M𝑛 ; Read the latest interaction timestamps 𝑡𝑛 (𝑢,𝑤) and
𝑡𝑛 (𝑣,𝑤) fromM𝑡 .

8: Compute STPE_c(𝑤, (𝑢, 𝑣), 𝑡𝑝𝑟𝑒𝑑 ) using Eq. (10).
9: ℎ (0) (𝑤) ← STPE_c(𝑤, (𝑢, 𝑣), 𝑡𝑝𝑟𝑒𝑑 ) | |𝑥 (𝑤).
10: end for
11: 𝐻

(0)
𝑝𝑜𝑠 (𝑢) ← stack({ℎ (0) (𝑤)) |𝑤 ∈ C(𝑢, 𝑡)}), 𝐻 (0)𝑝𝑜𝑠 (𝑣) ←

stack({ℎ (0) (𝑤)) |𝑤 ∈ C(𝑣, 𝑡)})
12: Forward 𝐻

(0)
𝑝𝑜𝑠 (𝑢) and 𝐻

(0)
𝑝𝑜𝑠 (𝑣) using Eq. (13-14) to obtain

𝑧𝑝𝑜𝑠 (𝑢, 𝑡) and 𝑧𝑝𝑜𝑠 (𝑣, 𝑡).
13: Forward 𝑧𝑝𝑜𝑠 (𝑢, 𝑡) and 𝑧𝑝𝑜𝑠 (𝑣, 𝑡) using Eq. (15) to obtain

score 𝑆 (𝑢, 𝑣, 𝑡).
14: for (𝑤, 𝑡 ′) ∈ C(𝑢, 𝑡) ∪ C(𝑟, 𝑡) do
15: Read the interaction counts 𝑐𝑛𝑡 (𝑢,𝑤) and 𝑐𝑛𝑡 (𝑣,𝑤) from

M𝑛 ; Read the latest interaction timestamps 𝑡𝑛 (𝑢,𝑤) and
𝑡𝑛 (𝑣,𝑤) fromM𝑡 .

16: Compute STPE_c(𝑤, (𝑢, 𝑟 ), 𝑡𝑝𝑟𝑒𝑑 ) using Eq. (10).

17: ℎ (0) (𝑤) ← STPE_c(𝑤, (𝑢, 𝑟 ), 𝑡𝑝𝑟𝑒𝑑 ) | |𝑥 (𝑤).
18: end for
19: 𝐻

(0)
𝑛𝑒𝑔 (𝑢) ← stack({ℎ (0) (𝑤)) |𝑤 ∈ C(𝑢, 𝑡)}), 𝐻 (0)𝑛𝑒𝑔 (𝑟 ) ←

stack({ℎ (0) (𝑤)) |𝑤 ∈ C(𝑟, 𝑡)})
20: Forward 𝐻

(0)
𝑛𝑒𝑔 (𝑢) and 𝐻

(0)
𝑛𝑒𝑔 (𝑟 ) using Eq. (13-14) to obtain

𝑧𝑛𝑒𝑔 (𝑢, 𝑡) and 𝑧𝑛𝑒𝑔 (𝑟, 𝑡).
21: Forward 𝑧𝑛𝑒𝑔 (𝑢, 𝑡) and 𝑧𝑛𝑒𝑔 (𝑟, 𝑡) using Eq. (15) to obtain

score 𝑆 (𝑢, 𝑟, 𝑡).
22: 𝑙𝑜𝑠𝑠 ← 𝑙𝑜𝑠𝑠 + 𝐵𝐶𝐸 (𝑆 (𝑢, 𝑣, 𝑡), 𝑆 (𝑢, 𝑟, 𝑡))
23: UpdateM𝑛 (𝑢, 𝑣) ← M𝑛 (𝑢, 𝑣) + 1,M𝑡 (𝑢, 𝑣) ← 𝑡

24: end for
25: return 𝑙𝑜𝑠𝑠

B MORE DISCUSSION ON OTHER
STOCHASTIC PROCESS

The intensity is the number of happening times within a certain

time interval of a counting process. Therefore, non-counting pro-

cesses, such as Gaussian process and Wiener process, are not ap-

plicable for intensity estimation. Poisson process is the most well-

known and commonly used counting process. It assumes the inten-

sity is a constant, which provides great mathematical tractability

and computation efficiency. Most of other counting processes are

generalized from Poisson processes, such as non-homogeneous

Poisson process, Hawkes process and Markovian arrival process,
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Table 3: The time and space complexity of different models.

Space Complexity Time Complexity

TGAT 𝑂 (𝐵 log( ¯𝑑) +𝐶𝐻𝐷) 𝑂 (𝑃)
TGN 𝑂 (𝐵 log( ¯𝑑) +𝐶𝐻𝐷) 𝑂 (𝑃 + 𝑁𝐷′)

CorDGT 𝑂 (𝐵(log( ¯𝑑) +𝐶) +𝐶2𝐻𝐷) 𝑂 (𝑃 + |E|)

which includes more undetermined parameters for flexibility. Esti-

mating the parameters of these process requires significantly higher

computation budget than Poisson process.

C COMPLEXITY COMPARISONWITH
EXISTING MODELS

In Section 4, we analyze the computation complexity of CorDGT

. In this section, we also analyze the computation complexity of

two baseline methods, i.e., TGAT [40] and TGN [24]. For these

models, given a mini-batch of interactions of size 𝐵, the historical

neighbor sampling process costs 𝑂 (𝐵 log( ¯𝑑)) , where ¯𝑑 represents

the average degree of nodes. The forward process, costs 𝑂 (𝐶𝐻𝐷)
where 𝐶,𝐻, 𝐷 denote the number of sampled neighbors, attention

heads, and hidden dimensions, respectively. Thus, the overall time

complexity of TGAT and TGN is (𝐵𝑙𝑜𝑔( ¯𝑑) + 𝐶𝐻𝐷). The size of

network parameters is denoted as 𝑃 . In addition, TGN requires

a memory and costs the spatial complexity of 𝑂 (𝑁𝐷′) where 𝑁
and 𝐷′ denote the number of nodes and hidden dimension of the

memory. We summarize the time and space complexity in Table 3.

D EXPERIMENTAL SETTING
D.1 Datasets
Our experiments section includes seven public datasets: Reddit

1
,

Wikipedia
2
, UCI

3
, LastFM

4
, Enron

5
, Social Evolution

6
and Flights

7
.

Reddit network is an user action datasets which consists of subred-

dits posted by different users in one month on Reddit website. It is a

bipartite dataset consisting of 10000 most active users and 984 sub-

reddits with rich interaction feature provided. Wikipedia network

records the clicking actions on wikipedia pages by different users.

It is a bipartite network consisted by clicking actions on 1000 pages

in one month made by users with rich interaction feature provided.

UCI network is non-bipartite network which contains sent mes-

sages between the users of an online community of students from

the University of California, Irvine. The nodes represent students

and the edges represent the communicated messages among them.

Enron is a non-bipartite dataset which consists of approximately

0.5M emails that were exchanged between employees of the Enron

energy company over a span of three years. Social Evolution is a

mobile phone proximity network which tracks the everyday life of

a whole undergraduate dormitory from October 2008 to May 2009.

1
http://snap.stanford.edu/jodie/reddit.csv

2
http://snap.stanford.edu/jodie/wikipedia.csv

3
http://konect.cc/networks/opsahl-ucsocial/

4
http://snap.stanford.edu/jodie/lastfm.csv

5
https://www.cs.cmu.edu/~enron/

6
http://realitycommons.media.mit.edu/socialevolution.html

7
https://zenodo.org/records/3974209#.Yf62HepKguU

Flights is a directed dynamic flight network illustrating the devel-

opment of the air traffic during the COVID-19 pandemic, which

was extracted and cleaned for the purpose of this study. Each node

represents an airport and each edge is a tracked flight. The edge

weights specify the number of flights between two given airports

in a day. In addition, we select the large-scale Gowalla [18] dataset

for scalability evaluation. Gowalla is a social network for users

check-ins at various locations, containing about 36 million check-

ins made by 0.32 million users over 2.8 million locations. These

check-in records are in the time span of Jan 2009 - June 2011. The

locations are grouped into 7 main fields. We select a subset of Out-

doors and Food field for experiments. Specifically, we choose the

part of the Outdoors data from Jan. 2009 to Dec. 2010 and the part

of the Food data from Jan. 2011 to June 2011. Detailed statistics of

aforementioned datasets are presented in Table 4.

D.2 Baselines
The brief introduction of baseline methods in the Experiments

section are as follows:

CTDNE [20]. CTDNE extendsDeepWalk [23] to dynamic graphs

which leverages a SkipGram model on the temporal random walk

sequence and learn the node embeddings.

JODIE [15]. Jodie updates node embeddings in an interaction via

two coupled RNNs, which are leveraged for future link prediction

via a temporal projector.

DyRep [27]. DyRep updates the node embeddings involved in

an interaction by a recurrent model considering the messages from

2-hop temporal neighbors.

TGAT [40]. TGAT extends GAT [29] and GraphSAGE [10] to

dynamic graphs, which samples and recursively aggregates the mes-

sages of k-hop temporal neighbors. The temporal representation is

obtained by Fourier transformation on the time interval.

TGN [24]. TGN proposes a generalized message-passing net-

works by extending Jodie and TGAT with a per-node memory

mechanism for long-time interactions.

TGSRec [9]. TGSRec proposes a Temporal Collaborative Trans-

former which simultaneously captures the collaborative signals

from users and items as well as temporal dynamics.

TCL [32]. proposes a dynamic-graph-topology-aware Trans-

former with a two-stream encoder for semantic inter-dependency

modeling. Contrastive learning is adopted to maximize mutual

information between future interaction nodes.

CAWN [35]. CAWN samples temporal random walks and

anonymize the node identities via Causal AnonymousWalks (CAW).

The node encodings on temporal random walks are learned via a

sequential model.

Graphmixer [5]. Graphmixer proposes a conceptually simple

architecture that leverage MLP and mean-pooling to aggregate

the temporal information and node features of K most recently

interacted neighbors. Note that the original Graphmixer leverages

http://snap.stanford.edu/jodie/reddit.csv
http://snap.stanford.edu/jodie/wikipedia.csv
http://konect.cc/networks/opsahl-ucsocial/
http://snap.stanford.edu/jodie/lastfm.csv
https://www.cs.cmu.edu/~enron/
http://realitycommons.media.mit.edu/socialevolution.html
https://zenodo.org/records/3974209#.Yf62HepKguU
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Table 4: Dataset statistics. Average Interaction Intensity 𝜆 = 2|E |/|V|T [35], where |E | and |V| denote the number of interactions
and nodes, respectively. T denotes the total duration (seconds).

Reddit Wikipedia LastFM UCI Enron Social Evolution Flights Outdoors Food

# Nodes 10,984 9,227 1,980 1,899 184 74 13,169 223,777 673,858

# Links 672,447 157,474 1,293,103 59,835 125,235 2,099,519 1,927,145 1,192,397 2,708,688

# Nodes attributes 172 172 0 0 0 0 0 0 0

# Link attributes 172 172 0 0 0 2 1 0 0

𝜆 4.57 × 10
−5

1.27 × 10
−5

5.04 × 10
−4

3.79 × 10
−6

1.20 × 10
−5

2.73 × 10
−3

1.41 × 10
−5

1.71 × 10
−7

2.58 × 10
−7

Is bipartite? True True True False False False False True True

one-hot node encoding as input, thus can not be applied for induc-

tive experiment. In this work, we replace the one-hot encodings as

the node encodings used by other baselines for fair comparison.

D.3 Hyper-parameters Tuning
For all the baselines, we set the dimension of time encoding and

hidden unit as 100 and 172, respectively. For Jodie, DyRep and TGN,

we adopt the implementation
8
for evaluation. In specific, we set the

memory dimension as 32 (for UCI) or 172 (for Reddit, Wikipedia and

LastFM). We adopt a one-layer model with 10 temporal neighbors

being sampled. The official implementations of TGAT
9
and TGSRec

10
are adopted. The number of layers, attention heads and the

sampled temporal neighbors are set as 2, 2 and 20, respective.

For CAWN, we adopt its official implementation
11
. We grid

search following hyper-parameters: the time scaling factor is set as

{10
−4, 10

−5, 10
−6, 10

−7}, the random walk length in {2, 3, 4, 5} and
the number of walks in {16, 32, 64, 128}.

For Graphmixer, we adopt the original implementation
12
. The

time gap is set as 2000. The number of MLP-Mixer layers is set as 2.

For TCL, we adopt the implementation of DyGLib
13
. The number

of layers, attention heads and the sampled temporal neighbors are

set as 2, 2 and 20, respective.

D.4 Implementation details of CorDGT
For fair comparison, we train all the models for 50 epochs with

early stopping executed if there is no improvement on validation

AP for 3 epochs. In addition, we use the batch size of 100 for all

models. We repeat the methods for 3 runs and report the mean and

standard deviation of statistics. For the proposed CorDGT, we set

the learning rate as 0.001 and optimizer as Adam for all datasets.

The attention heads, layer number and hidden dimension of main

CorDGT encoder is set as 6, 2, 64, respectively, for all datasets. We

sample 2-hop temporal neighbors for all datasets. For LastFM and

UCI, the sampling numbers of contextual neighbors are {32,1}, and

for other datasets, the sampling numbers of contextual neighbors

are {20,1}. We set 𝛼 = 0.1 and 𝛽 = 1.0 for UCI and 𝛼 = 1 and

𝛽 = 0.1 for LastFM. We set 𝛼 = 1 and 𝛽 = 10 for other datasets.

We set the dimension of Correlated Spatial-Temporal Positional

Encoding as 200, where the dimension of Spatial Distance encoding

8
https://github.com/twitter-research/tgn

9
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-

temporal-graphs

10
https://github.com/DyGRec/TGSRec/

11
https://github.com/snap-stanford/CAW

12
https://github.com/CongWeilin/GraphMixer

13
https://github.com/yule-BUAA/DyGLib
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Figure 5: The inductive AP metrics and the training time
per epoch on Outdoors datasets. The closer to the upper left
corner, the better performance. CorDGT-10 and CorDGT-20
denote the CorDGT with 10 and 20 contextual nodes, respec-
tively.

and Temporal distance is set as 100 and 100, respectively. All the

experiments are run on a Linux Ubuntu 18.04 Server with a NVIDIA

RTX2080Ti GPU.

E ADDITIONAL EXPERIMENTAL RESULTS
E.1 Node classification results
The experiments settings of node classification are as follows. We

initially train a model using the transductive link prediction task.

Subsequently, we load the trained model and freeze its parameters,

then append a classifier on top of it for the purpose of classification.

The AUC results of dynamic node classification are presented in

Table 6. Note that we replace STPE-C with STPE-U as the positional

encodings, since the node classification task only considers single

node rather than interaction. Our CorDGT achieves the best per-

formance on both Wikipedia and Reddit datasets compared with

other baselines.

E.2 AUC results of link prediction
The AUC results of link prediction are presented in Table 5. As

can be seen, our proposed CorDGT consistently outperforms other

baselines on both transductive and inductive experiments.

https://github.com/twitter-research/tgn
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
https://github.com/DyGRec/TGSRec/
https://github.com/snap-stanford/CAW
https://github.com/CongWeilin/GraphMixer
https://github.com/yule-BUAA/DyGLib
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Table 5: Area Under ROC curve (AUC) results of transductive/inductive link prediction. The values are multiplied by 100. The
results of the best and second best performing models are highlighted in bold and underlined, respectively.

Model Reddit Wikipedia LastFM UCI Enron Social Evo. Flights

T
r
a
n
s
d
u
c
t
i
v
e

JODIE 97.51±0.2 94.67±0.1 70.43±0.6 88.67±0.2 79.65±2.6 91.74±0.5 96.17±1.2
DyRep 98.03±0.1 94.05±0.4 68.77±2.9 55.97±1.7 73.21±2.2 91.02±0.2 96.84±0.5
TGAT 98.04±0.1 94.42±0.1 51.81±1.2 79.73±0.1 59.25±0.2 94.37±0.2 94.24±0.2

TGN-attn 98.67±0.0 98.42±0.1 72.48±2.8 86.35±3.1 79.54±2.6 94.93±0.2 98.06±0.1
CAWN-attn 98.63±0.0 98.63±0.1 82.36±0.5 89.86±0.3 90.28±0.2 88.21±0.1 98.30±0.0
TGSRec 88.96±1.5 85.28±0.7 66.67±3.7 71.37±0.6 71.85±2.1 77.47±0.0 95.04±0.3
TCL 97.67±0.0 96.07±0.2 65.23±1.2 87.85±1.4 76.47±0.8 93.87±0.2 91.37±0.5

Graphmixer 97.53±0.2 97.14±0.1 75.28±0.1 90.63±0.2 82.76±0.4 94.61±0.1 91.32±0.0
CorDGT 99.18±0.1 98.84±0.1 92.37±0.2 95.12±0.4 93.28±0.4 95.48±0.1 98.84±0.0
Improve 0.51 0.21 10.01 4.84 3.00 0.55 0.54

I
n
d
u
c
t
i
v
e

JODIE 95.02±0.2 92.65±0.3 82.18±1.2 74.74±1.5 75.65±2.6 93.78±0.3 95.36±0.3
DyRep 95.81±0.3 91.15±0.7 79.81±2.0 48.63±1.3 56.93±2.0 91.43±0.5 93.64±0.9
TGAT 97.06±0.7 93.08±0.1 53.50±2.4 70.89±0.4 58.18±3.0 93.26±0.6 89.35±0.4

TGN-attn 97.45±0.1 97.74±0.1 78.61±2.9 82.08±2.7 72.15±2.3 93.54±0.6 96.03±0.4
CAWN-attn 97.23±0.4 96.43±0.4 88.67±0.6 88.91±0.8 87.24±0.5 84.57±0.3 96.64±0.0
TGSRec 81.99±4.2 79.30±0.7 67.93±3.0 61.66±1.5 72.32±2.2 63.57±1.5 90.31±0.1
TCL 93.84±0.1 95.36±0.2 71.32±1.0 92.14±0.1 73.28±1.1 93.85±0.2 84.54±2.0

Graphmixer 94.65±0.0 97.38±0.0 81.65±0.1 85.79±0.1 76.38±0.7 94.13±0.1 81.98±1.7
CorDGT 98.67±0.8 98.26±0.3 93.01±1.8 93.20±0.9 92.64±1.9 95.69±1.0 98.12±0.4
Improve 1.24 0.52 4.34 1.06 5.40 1.56 1.48

Table 6: The AUC results of node classification. The values
are multiplied by 100. The baseline results are taken from
[24]. The best results are highlighted in bold.

Method Wikipedia Reddit

CTDNE 75.89±0.5 59.43±0.6
JODIE 84.84±1.2 61.83±2.7
DyRep 84.59±2.2 62.91±2.4
TGAT 83.69±0.7 65.56±0.7
TGN 87.81±0.3 67.06±0.9

CorDGT 88.16±0.3 70.33±0.6

E.3 Scalability on Gowalla Outdoors
We further evaluate the scalability of the proposed CorDGT on

Gowalla-Food datasets. We train all the models one epoch. The

inductive AP and training time per epoch results are presented

in Figure 5. We observe that CorDGT with 10 or 20 contextual

nodes can obtain the highest inductive AP among baselines. In

addition, the training speed of CorDGT with 10 contextual nodes

(1511 seconds per epoch) is significantly faster than TGN (5046

seconds per epoch) on Food datasets. This result demonstrate the

scalability of the proposed CorDGT .

E.4 Parameters Sensitivity
In this subsection, we evaluate the sensitivity of the proposed

CorDGT with respect to some key hyperparameters. The results
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Figure 6: Parameters sensitivity analysis. The inductive AP
values are described in all figures. The performance of the
model changes with (a) different 𝛼 and 𝛽 on UCI dataset,
(b) different 𝛼 and 𝛽 on Enron dataset, (c) different 1-hop
neighbor number, (d) different batch size.
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are illustrated in Figure 6, and the observations are as follows: (1)

Equation (7) employs coefficients 𝛼 and 𝛽 to balance recentness

and intensity. We evaluate the influence of 𝛼 and 𝛽 on UCI and

Wikipedia. As shown in Figure 6(a), for UCI dataset, varying set-

tings of 𝛼 and 𝛽 minimally influence the performance of CorDGT.

On the other hand, for Enron dataset (Figure 6(b)), the smaller 𝛼

(≤ 1.0) and larger 𝛽 (≥ 1.0) enhance the performance of CorDGT.

(2) We also investigate the influence of sampled 1-hop contextual

node numbers on UCI and Enron datasets, as depicted in Figure

6(c). On the UCI dataset, the model’s performance improves with

an increasing number of sampled contextual neighbors. In contrast,

on the Enron dataset, the model achieves optimal performance

with 20 sampled neighbors, possibly due to Enron’s smaller node

number. (3) Furthermore, we explore the impact of different batch

sizes on UCI and Enron datasets, as shown in Figure 6(d). The

model’s performance remains stable on UCI. However, on the En-

ron dataset, performance generally deteriorates with increasing

sampled neighbor numbers. This discrepancy may stem from En-

ron’s higher average interaction intensity, suggesting that more

frequent updates on recent interactions and counts could benefit

proximity evaluation.
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