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Abstract
Recommendation Systems (RS) are often plagued by popularity

bias. When training a recommendation model on a typically long-

tailed dataset, the model tends to not only inherit this bias but often

exacerbate it, resulting in over-representation of popular items in

the recommendation lists. This study conducts comprehensive em-

pirical and theoretical analyses to expose the root causes of this

phenomenon, yielding two core insights: 1) Item popularity is mem-

orized in the principal spectrum of the score matrix predicted by

the recommendation model; 2) The dimension reduction phenome-

non amplifies the relative prominence of the principal spectrum,

thereby intensifying the popularity bias.

Building on these insights, we propose a novel debiasing strategy

that leverages a spectral norm regularizer to penalize the magnitude

of the principal singular value. We have developed an efficient algo-

rithm to expedite the calculation of the spectral norm by exploiting

the spectral property of the score matrix. Extensive experiments

across seven real-world datasets and three testing paradigms have

been conducted to validate the superiority of the proposed method.

CCS Concepts
• Information systems→ Recommender systems.
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1 Introduction
Recommender Systems (RS), with their capability to offer personal-

ized suggestions, have found applications across various domains

[18, 40, 70]. Collaborative filtering (CF), a widely-used technique

within RS, learns user preference from historical interactions. How-

ever, their effectiveness in personalization is significantly com-

promised by popularity bias [10]. This bias emerges when user

interaction data showcases a long-tailed distribution of item inter-

action frequencies. Subsequently, recommendation models trained

on such data tend to inherit and even amplify this bias, leading to

an overwhelming presence of popular items in recommendation

results [53, 66, 73].

This notorious effect not only undermines the accuracy and

fairness of recommendation [2, 3], but also exacerbates theMatthew

Effect and the filter bubble through the user-system feedback loop

[21, 22, 34].

Given the detrimental impact of popularity bias amplification,

a thorough understanding of its root causes is crucial. Although

some recent studies have endeavored to elucidate this, their in-

vestigations exhibit significant limitations: 1) Some researchers

[52, 53, 66] have investigated popularity bias amplification through

causal graphs. However, they merely postulate causal relations

between item popularity and model predictions without deeply ex-

ploring the underlying mechanisms behind the relations. Moreover,
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Figure 1: Illustration of two core insights.

their analyses depend on hypothesized causal graphs, which may be

flawed due to the widespread presence of unmeasured confounders

[20, 65]. 2) Other studies [7, 12, 62, 67, 71] have revealed graph neu-

ral network (GNNs) can exacerbate popularity bias. However, these

analyses primarily focus to GNNs rather than the mechanisms of

generic recommendation models.

To bridge this research gap, we undertake extensive theoretical

and empirical studies on popularity bias amplification. By inves-

tigating the spectrum of the ranking score matrix over all users

and items predicted by recommendation models, we present the

following insights:

1) Memorization Effect. When training a recommendation

model on long-tailed data, the information of item popularity is
memorized in the principal spectrum (Figure 1(a)). Empirically, we

observe that the principal singular vector of the score matrix closely

aligns with item popularity, with a cosine similarity consistently ex-

ceeding 0.98 across multiple representative recommendation mod-

els and datasets. Theoretically, we derive the lower bound of this

cosine similarity, demonstrating that the similarity converges to

one for highly long-tailed training datasets.

2) Amplification Effect. The phenomenon known as dimension
reduction augments the relatively prominence of the principal spec-
trum that captures item popularity, leading to bias amplification
(Figure 1(b)). We reveal that dimension reduction is pervasive in

RS due to two primary reasons: i) The deliberate low-rank setting

of user/item embeddings, employed either to conserve memory

or to counteract overfitting, amplifies the impact of the principal

spectrum; ii) The inherent training dynamics of gradient-based op-

timization prioritize the learning of the principal dimension, while

the singular values of other dimensions are easily underestimated.

Our further theoretical and empirical analyses establish the rela-

tionship between dimension reduction and popularity bias — larger

principal singular values compared to other singular values lead to

more popular items on the recommendations.

Our analysis not only explains the underlying mechanisms of

bias amplification but also paves the way for the development of an

innovative strategy to counteract this effect. Recognizing that the

essence of this amplification lies in the undue contribution of the

principal spectrum, we introduce a spectral norm regularizer [58]

aimed at directly restraining the magnitude of the principal singular

value. However, the direct computation of the spectral norm neces-

sitates exhaustive processing of a large score matrix and numerous

iterative procedures [48, 58], inducing significant computational

costs. To address this challenge, we further develop an accelerated

strategy by leveraging the intrinsic spectrum properties of the score

matrix and matrix transformation techniques. Consequently, our

method effectively mitigates popularity bias while imposing limited

computational overhead.

In summary, our contributions are:

• Conducting comprehensive analyses to unravel the mech-

anisms behind popularity bias amplification in recommen-

dation — item popularity is encoded within the principal

singular vector, and its impact is exaggerated due to the

dimension reduction phenomenon.

• Proposing an efficient method for mitigating the bias am-

plification through the regulation of the principal singular

value.

• Performing extensive experiments across seven real-world

datasets under three different testing scenarios, demonstrat-

ing the superiority of our method in reducing bias and en-

hancing recommendation quality.

2 Preliminaries
In this section, we present the background of the recommendation

system and popularity bias amplification.

Task Formulation. This work mainly focus on the collabora-

tive filtering (CF) [56], a widely-used recommendation scenario.

Consider a RS with a user set U and an item set I. Let 𝑛 and𝑚

denote the total number of users and items. Historical interactions

can be expressed by a matrix Y ∈ {0, 1}𝑛×𝑚 , where the element

𝑦𝑢𝑖 indicates if user 𝑢 has interacted with item 𝑖 (e.g., click). For
convenience, we define the number of interactions of an item as

𝑟𝑖 =
∑
𝑢∈U 𝑦𝑢𝑖 , and collect 𝑟𝑖 over all items as a popularity vec-

tor r. RS targets to suggest items to users based on their potential

interests.

RecommendationModels. Embedding-basedmodels arewidely

utilized in RS [56]. Such models convert user/item attributes (e.g.,
IDs) into 𝑑-dimensional representations (u𝑢 , v𝑖 ), and make predic-

tions using the embedding similarity [56]. Given that the inner

product is a conventional similarity metric due to its efficiency

in retrieval and superior performance [32, 54, 60], this work also

focuses on the inner product for analysis. Specifically, the model’s

predicted scores can be formulated as 𝑦𝑢𝑖 = 𝜇 (u⊤𝑢 v𝑖 ), where 𝜇 (.)
denotes an activation function like Sigmoid. 𝑦𝑢𝑖 represents a user’s

preference for an item, which is then used for ranking to generate

recommendations. For clarity of presentation, we also employ ma-

trix notation. Let matrices Ŷ,U,V represent scores over all user-item

combinations, embeddings over all users and items, respectively.

Model predictions can be succinctly expressed as Ŷ = 𝜇 (UV⊤).
Objective Functions. Common choices of loss functions for

training a recommendation model include point-wise loss such as

BCE and MSE [41], and pair-wise loss like BPR [42]. It is worth

noting that BPR can be reconceptualized as a specialized pointwise

loss.Concretely, BPR loss is expressed as:

L𝐵𝑃𝑅 = −
∑︁
𝑢∈U

∑︁
𝑖∈I,𝑦𝑢𝑖=1

∑︁
𝑗∈I,𝑦𝑢𝑗=0

log(𝜇 (u⊤𝑢 v𝑖 − u⊤𝑢 v𝑗 ))

If construct a hyper-item space denoted as I′ = I×I derived from

item pairs, and define the embeddings of hyper-items as v′
𝑖 𝑗

= v𝑖−v𝑗
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and assign new observed interactions to the combinations of users

and hyper-items, i.e., 𝑦′
𝑢,𝑖 𝑗

= 1 for 𝑦𝑢𝑖 = 1&𝑦𝑢 𝑗 = 0 and 𝑦′
𝑢,𝑖 𝑗

= 0

for 𝑦𝑢𝑖 = 0&𝑦𝑢 𝑗 = 1. BPR can be re-written as:

L𝐵𝑃𝑅 = − 1

2

∑︁
𝑢∈U

( ∑︁
(𝑖,𝑗 ) ∈I′
𝑦′
𝑢,𝑖 𝑗

=1

log(𝜇 (u⊤𝑢v′𝑖 𝑗 ) ) +
∑︁
(𝑖,𝑗 ) ∈I′
𝑦′
𝑢,𝑖 𝑗

=0

log(𝜇 (−u⊤𝑢v′𝑖 𝑗 ) )
)

where BPR can be reframed as a specific point-wise loss under the

hyper-items space I′. Therefore, for convenience, our analyses
mainly focus on point-wise loss. But we will also discuss why our

proposed debiased method is suitable for BPR (cf. Section 4.2) and

validate its effectiveness in experiments (cf. Section 5).

Popularity Bias Amplification. Items’ interaction frequency

in recommendation data often follows a long-tailed distribution

[6, 17, 47]. For instance, in a typical Douban dataset, a mere 20% of

the most popular items account for 86.3% of all interactions. When

models are trained on such skewed data, they tend to absorb and

amplify this bias, frequently over-prioritizing popular items in their

recommendations. For example, in the Douban dataset using the

MF model, 20% of the most popular items occupy over 99.7% of the

recommendation slots, while a mere 0.6% of the most popular items

occupy more than 63% (cf. Appendix1 B.1 more examples). This

notorious effect significantly impacts the recommendation accuracy

and fairness, even potentially posing detrimental effects on the

entire ecosystem of RS[10]. Thus, understanding the underlying

mechanisms behind this effect is crucial.

3 Understanding Popularity Bias Amplification
In this section, we conduct thorough analyses to answer:

1) How do recommendation models memorize the item popularity?

2) Why do recommendation models amplify popularity bias?

3.1 Popularity Bias Memorization Effect
3.1.1 Empirical Study. To discern how recommendation models

memorize item popularity, we designed the following experiment:

1) We well trained three representative recommendation models,

MF [35], LightGCN [24] and XSimGCL [59], on three real-world

datasets (cf. Section 5 for experimental details); 2) We then per-

formed SVD decomposition on the predicted score matrix, Ŷ =

PΣQ⊤ =
∑

1≤𝑘≤𝐿 𝜎𝑘p𝑘q⊤
𝑘
where 𝐿 = 𝑚𝑖𝑛(𝑛,𝑚) and 𝜎1 ≥ 𝜎2 ≥

... ≥ 𝜎𝐿 . We further computed cosine similarity between the right

principal singular vector q1 and the item popularity r. The out-

comes are showcased in Table 1. From these experiments, we draw

an impressive observation:

Observation 1. The principal right singular vector q1 of the
matrix Ŷ aligns significantly with the item popularity r. The cosine
similarity consistently surpasses 0.98 over multiple recommendation
models and datasets.

Given the orthogonal nature of different singular vectors, we

can deduce that item popularity is almost entirely captured in the

principal spectrum. This intriguing phenomenon elucidates how

the recommendation model assimilates item popularity from the

data and how this popularity influences recommendation outcomes.

1
The complete, detailed appendix is available in the arXiv version of this paper at

https://arxiv.org/abs/2404.12008.

Table 1: The cosine similarity between the principal singular
vector (q1) and the item popularity (r) under different back-
bones and loss functions.

Backbone Movielens Douban Globo

MSE BCE BPR MSE BCE BPR MSE BCE BPR

MF 0.993 0.988 0.991 0.992 0.991 0.993 0.993 0.989 0.992

LightGCN 0.992 0.991 0.992 0.990 0.988 0.990 0.992 0.990 0.991

XSimGCL 0.998 0.994 0.995 0.991 0.990 0.992 0.992 0.985 0.989

3.1.2 Theoretical Analyses. Prior to the theoretical validation of

observation 1, we posit a power-law hypothesis pertaining to rec-

ommendation data:

Hypothesis 1. The interaction frequency of items in recommenda-
tion data follows a power-law distribution (a.k.a. Zipf law) described
by 𝑟𝑔 ∝ 𝑔−𝛼 .

Here 𝑟𝑔 signifies the popularity of the𝑔-thmost popular item, and

𝛼 is a shape parameter indicating the distribution’s slope. Power-

law, as a typical long-tailed distribution, is prevalent across various

natural and man-made phenomena [16]. Recent studies assert that

item popularity in RS also aligns with this ubiquitous principle

[6, 17, 47]. Then we have the following important theorem:

Theorem 1 (Popularity Memorization Effect). Given an
embedding-based recommendation model with sufficient capacity,
when training the model on the data with power-law item popularity,
the cosine similarity between item popularity r and the principal
singular vector q1 of the predicted score matrix is bounded with:

cos(r, q1 ) ≥
𝜎2

1

𝑟max

√︁
𝜁 (2𝛼 )

√︄
1 − 𝑟max (𝜁 (𝛼 ) − 1)

𝜎2

1

(1)

For 𝛼 > 2, this can be further bounded with:

cos(r, q1 ) ≥

√︄
2 − 𝜁 (𝛼 )
𝜁 (2𝛼 )

(2)

where 𝑟max is the popularity of the most popular item, and 𝜁 (𝛼) is
Riemann zeta function with 𝜁 (𝛼) =

∞∑
𝑗=1

1

𝑗𝛼 .

Proof can be found in Appendix A.1. Notably, as the long-tailed

nature of item popularity intensifies (i.e.,𝛼 →∞ suggesting 𝜁 (𝛼) →
1), the right side of Eq. (2) converges to one, implying a near-perfect

alignment between r and q1. Even when the data isn’t markedly

skewed and has a considerable 𝜁 (𝛼), we typically observe 𝜎2

1
to

vastly exceed 𝑟max, e.g., 5.6 × 10
5
vs. 4.6 × 10

3
in the dataset Movie-

lens (with more examples presented in Appendix B.2). Thus, from

Eq. (1), a high similarity between r and q1 emerges. This theorem

provides theoretical validation for our observation 1.

3.2 Popularity Bias Amplification Effect
Earlier discussions illuminate that the principal spectrum memo-

rizes item popularity. In this subsection, we reveal the phenomenon

of dimension reduction in RS, which amplifies the effect of the

principal spectrum, leading to popularity bias amplification.

3.2.1 Empirical Study. The occurrence of dimension reduction

in RS is largely attributable to two factors: 1) explicit low-rank

configuration of user/item embeddings [24, 36], and 2) intrinsic

training dynamics associated with gradient-based optimization

[4, 15, 44]. Here, we present experiments to validate these points

and examine their impacts on popularity bias.
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Figure 2: Illustration of how dimension reduction impacts popularity bias in Movielens: (a)-(b) the proportion of popular
items in recommendations and the ratio of the largest singular value (𝜎2

1
/∑

1≤𝑘≤𝐿 𝜎
2

𝑘
) with varying embedding dimensions and

training epochs, respectively; (c) how singular values evolves during training.

Impact of Low-Rank Configuration. Figure 2(a) displays the
proportion of popular items in recommendations from well-trained

MF models with varying embedding dimensions 𝑑 . We also present

the magnitude of the largest singular value 𝜎1 compared with other

singular values. We report 𝜎2

1
/∑

1≤𝑘≤𝐿 𝜎
2

𝑘
as it is easily calculable,

where the denominator equals the sum of the diagonal elements of

Ŷ. We observe:

Observation 2. As the model embedding dimension 𝑑 is reduced,
the relative prominence of the principal singular value increases
(𝜎2

1
/∑

1≤𝑘≤𝐿 𝜎
2

𝑘
↑), and the recommendation increasingly favors pop-

ular items.

This observation reveals the impact of low-rank embeddings.

A smaller 𝑑 squeezes the dimensions (causing singular values of

more dimensions to become zero), thereby relatively amplifying

the effect of the principal spectrum. Consequently, item popularity

contributes more significantly to ranking, resulting in more severe

popularity bias.

Dimension Collapse from Gradient Optimization. Figure
2(c) illustrates the evolution of singular values as training pro-

gresses using a gradient-based optimizer; and Figure 2(b) offers a

dynamic view of popularity bias and the ratio 𝜎2

1
/∑

1≤𝑘≤𝐿 𝜎
2

𝑘
over

the training procedure. We observe:

Observation 3. The principal singular value grows preferentially
and swiftly, while others exhibit a more gradual increment. Notably,
many singular values appear to be far from convergence even at the
end of the training process. Accordingly, popularity bias is severe at
the beginning but exhibits a relative decline as training advances. But
even at the end of training, unless an extensive number of epochs are
employed (which could result in computational overhead and potential
over-fitting), the bias remains pronounced.

This phenomenon reveals the dynamic of singular values during

gradient optimization— the principal dimension is prioritized, while

singular values of other dimensions are easily under-estimated.

This inherent mechanism could readily lead to dimension collapse,

relatively enhancing the impact of the principal spectrum, and

thereby inducing popularity bias.

3.2.2 Theoretical Analyses. In this subsection, we focus on estab-

lishing a theoretical relationship between singular values and the

ratio of popular items in recommendations. For readers interested

in the theoretical support of the impact of gradient optimization,

we refer them to the Appendix A.3, which are relatively straightfor-

ward by invoking recent gradient theory [15, 44]. For convenience,

our analysis here concentrates on the ratio of the most popular

item in top-1 recommendations. We have:

Theorem 2 (Popularity bias amplification). Given hypothesis
1 and nearly perfect alignment between q1 and r, the ratio of the most
popular item in top-1 recommendations over all users is bounded by:

𝜂 ≥ 1

𝑛
𝜙

( √︁
2𝜁 (2𝛼 )

1 − 2
−𝛼 (

∑
1≤𝑘≤𝐿 𝜎𝑘

𝜎1

− 1)
)

(3)

where 𝜙 (𝑎) = ∑
𝑢∈U I[𝑝1𝑢 > 𝑎] is an inverse cumulative function

calculating the number of elements 𝑝1𝑢 in the left principal singular
vector p1 exceeding a given value 𝑎, and the function I[.] signifies an
indicator function.

The detailed proof is available in Appendix A.2. This theorem

vividly showcases the influence of dimension reduction on popular-

ity bias. Essentially, as dimension reduction intensifies the relative

prominence of the principle singular value (
𝜎1∑

1≤𝑘≤𝐿 𝜎𝑘
↑), the input

of the function 𝜙 (.) decreases (
√

2𝜁 (2𝛼 )
1−2

−𝛼 (
∑

1≤𝑘≤𝐿 𝜎𝑘
𝜎1

− 1) ↓). Given
the monotonically decreasing nature of 𝜙 (.), dimension reduction

thus escalates the ratio of most popular items in recommendations.

Interestingly, the theorem illustrates the impact of a long-tailed dis-

tribution on popularity bias. A larger 𝛼 (indicating a more skewed

item popularity distribution) decreases the value of

√
2𝜁 (2𝛼 )

1−2
−𝛼 , fur-

ther elevating the lower bound of the ratio, intensifying bias.

4 Proposed Method
In this section, we first introduce our proposed debiasing method,

followed by a discussion of its properties and a comparison with

other debiasing approaches.

4.1 ReSN: Regulation with Spectral Norm
The above analyses elucidate the essence of the popularity bias

amplification — the undue influence of the principal spectrum.

Therefore, the core of an effective debiasing strategy naturally lies

on mitigating this effect. To address this, we propose ReSN which

leverages Spectral Norm Regularizer to penalize the magnitude of

principal singular value:

LRe𝑆𝑁 = L𝑅 (Y, Ŷ) + 𝛽 | |Ŷ| |22 (4)
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where L𝑅 (Y, Ŷ) is original recommendation loss, and | |.| |2 denote

the spectral norm of a matrix measuring its principle singular value;

𝛽 controls the contribution from the regularizer.

However, there are practical challenges: 1) the 𝑛×𝑚 dimensional

matrix Ŷ can become exceptionally large, often comprising billions

of entries, making direct calculations computationally untenable;

2) Existing methods to determine the gradient of the spectral norm

are iterative [48, 58], which further adds computational overhead.

To circumvent these challenges, we make two refinements:

Firstly, given the alignment of the principal singular vector q1

with item popularity r, the calculating of the spectral norm can be

simplified into: | |Ŷ| |2
2
= | |Ŷq1 | |2 ≈ ||Ŷr| |2/| |r| |2, where | |.| | denotes

the L2-norm of a vector. It transforms the calculation of the complex

spectral norm of a matrix to a simple L2-norm of a vector, avoiding

iterative algorithms by leveraging the singular vector property.

Further, the item popularity r can be quickly computed via r = Y⊤e,
where e represents a 𝑛-dimension vector filled with ones.

Secondly, we exploit the low-rank nature of the matrix Ŷ. For
models based on embeddings, Ŷ can be expressed as Ŷ = 𝜇 (UV⊤),
where U and V represent the embeddings associated with users

and items, respectively, and 𝜇 (.) designates an activation function.

Our approach turns to penalize the spectral norm of the matrix

before the introduction of the activation function. This is motivated

by the ease of computation: | |UV⊤ | |2
2
= | |U(V⊤q̃1) | |2, where q̃1

denotes the right principal vector of the matrix UV⊤. By adopting

this method, we circumvent the computationally-intensive task of

processing the entire matrix Ŷ. Nonetheless, this method introduces

a challenge: accurately computing q̃1, since it doesn’t inherently

align with item popularity. To rectify this, we may simply mirror

the calculation of q1 ← Y⊤e
| |Y⊤e | | to q̃1 ← VU⊤e

| |VU⊤e | | . This approach
is clued by our Observation 1 and Theorem 1: a matrix’s principal

singular vector tends to alignwith the column sum vector, especially

when the vector showcases a long-tailed distribution.

To empirically validate the accuracy and rationality of the pro-

posed method, we computed the ideal value of | |UV⊤ | |2
2
, as well as

the estimated
| |UV⊤VU⊤e | |2
| |UV⊤e | |2 from ReSN, training the MF model with

two losses on three datasets. The results are shown in the Table 2.

According to the table, we found that the actual spectral norms and

our approximate estimates are very close across diverse losses and

datasets.This indicates that the singular vector q̃1 obtained through

UV⊤e
| |UV⊤e | | , serves as an accurate surrogate for the true value of q1.

Therefore, the estimated regularization term is a accurate surrogate

for the spectral norm | |UV⊤ | |2
2
which validates the precision of this

strategy.

In essence, our ReSN optimizes the following loss function:

˜LRe𝑆𝑁 = L𝑅 (Y, Ŷ) +
𝛽

| |VU⊤e| |2
| |UV⊤VU⊤e| |2 (5)

4.2 Discussions
The proposed ReSN have the following aspects:

Model-Agnostic: The proposed ReSN is model-agnostic and

easy to implement. Given that ReSN introduces merely a regulariza-

tion term, it can be easily plugged into existing embedding-based

methods with minimal code augmentation.

Efficiency: The regularizer can be fast computed from right to

left — it predominantly requires the multiplication of a 𝑛 × 𝑑 (or

𝑚×𝑑) matrix with a vector. With a time complexity of𝑂 ((𝑛 +𝑚)𝑑),

Table 2: Comparison between the actual spectral norm and
the estimated approximation.

Datasets MSE BCE

| |UV⊤ | |2
2
| |U(V⊤q̃1 ) | |2 | |UV⊤ | |2

2
| |U(V⊤q̃1 ) | |2

Movielens-1M 5.627 × 10
5

5.613 × 10
5

5.629 × 10
5

5.620 × 10
5

Douban 1.160 × 10
7

1.155 × 10
7

1.161 × 10
7

1.157 × 10
7

Globo 8.321 × 10
6

8.309 × 10
6

8.327 × 10
6

8.316 × 10
6

ReSN is highly efficient. Section 5.5 also provides empirical evidence.

The additional time for calculating the regularizer is negligible.

Suitable for BPR Loss: As delineated in Section 2, while BPR

can be regarded as a specialized point-wise loss, it involves the

concept of hyper-items. It means that the regularizer should be

conducted on the embedding matrix of hyper-items 𝑉 ′ ∈ R𝑚2×𝑑
,

i.e., | |UV′⊤V′U⊤e | |2
| |V′U⊤e | |2 , rather than

| |UV⊤VU⊤e | |2
| |VU⊤e | |2 . In the following, we

will build their approximations. For the numerator part, we have:

V′⊤V′ =
∑︁
𝑖, 𝑗∈𝐼
(v𝑖 − v𝑗 )⊤ (v𝑖 − v𝑗 ) = 2𝑚V⊤V − 2𝑚2v̄⊤v̄

where v̄ =
∑
𝑖∈𝐼 v𝑖/𝑚 denote the mean vector of the item em-

beddings. Furthermore, current literature posits that an ideal item

representation should emulate a uniform distribution over the unit

ball [50]. This implies that v̄ tends to gravitate towards the origin.

Thus, V′⊤V′ can be approximated by V⊤V and | |UV′⊤V′U⊤e| |2 can
be approximated by | |UV⊤VU⊤e| |2.

Similarly, for the denominator:

| |V′U⊤e| |2 =
∑︁
𝑖, 𝑗∈𝐼
(v𝑖U⊤e − v𝑗U⊤e)⊤ (v𝑖U⊤e − v𝑗U⊤e)

= 2𝑚
∑︁
𝑖∈𝐼
(v𝑖U⊤e)⊤ (v𝑖U⊤e) − 2(

∑︁
𝑖∈𝐼

v𝑖U⊤e)⊤ (
∑︁
𝑖∈𝐼

v𝑖U⊤e)

= 2𝑚(VU⊤e)⊤ (VU⊤e) − 2𝑚2 (v̄U⊤e)⊤ (v̄U⊤e)
We can deduce | |V′U⊤e| |2 can be approximated by | |VU⊤e| |2. Con-
sequently, ReSN emerges as a logical regularizer even for the BPR

loss. This assertion is also validated by our experiments.

Differences from Methods on Dimensional Collapse: Re-
cent studies [8, 50, 67] has also employed regularizers to alleviate

the dimensional collapse of user/item embeddings. Our ReSN di-

verges from these methods in two key aspects: 1) ReSN imposes

constraints directly onto the prediction matrix, unlike the embed-

ding matrix constraints utilized in these methods. This distinction

is of significance due to the inherent spectral gap between the em-

beddings and the prediction matrix. 2) ReSN explicitly modulates

the influence of the principal spectrum that captures popularity

information, while these methods mainly focuses on promoting

embedding uniformity. ReSN directly and solely mitigates the im-

pact of the memorized popularity signal, thus demonstrating high

efficacy in mitigating popularity bias; while others may disrupt

the spectral structure of the prediction, potentially compromising

model accuracy.

Differences from Regularization-based Debiasing meth-
ods: Various regularizers are introduced to combat popularity bias

[33, 43, 67, 73]. However, except [67] as discussed before, existing

approaches are typically heuristic, applying strong constraints to

model predictions that may break the model’s original spectrum.

While it could mitigate popularity bias, this approach may also
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impair the model’s ability to capture other useful signals, signifi-

cantly compromising recommendation accuracy. Contrasting this,

our ReSN is a light and theoretic-grounding approach — it moti-

vated by the core reason of bias amplification and only modulates

the influence of the principle spectrum.

5 Experiments
We conduct experiments to address the following questions:

RQ1: How does ReSN perform compared with other methods?

RQ2: Is ReSN suitable for diversified loss functions and backbones?

RQ3: What is the impact of regularizer coefficient 𝛽?

RQ4: How is the efficiency of ReSN ?

5.1 Experiment Settings
Datasets andMetrics.Weadopt seven real-world datasets, Yelp2018

[24], Douban [46], Movielens [61], Gowalla [25], Globo [19], Ya-

hoo!R3 [35] and Coat [45] for evaluating our model performance.

Details about these datasets refer to Appendix C.1.

We adopt three representative testing paradigms for comprehen-

sive evaluations: 1) Common: We employ the conventional testing

paradigm in RS, wherein the datasets are randomly partitioned into

training (70%), validation (10%), and testing (20%). We also report

the accuracy-fairness trade-off in this setting. 2) Debiased: Closely
referring to [5, 53, 69], we sample an debiased test set where items

are uniformly distributed, aiming to evaluate the model’s efficacy in

mitigating popularity bias. 3) Uniform-exposure: We also adopt

the uniform exposure paradigm for model testing as the recent

work [31, 49, 63]. Notably, the datasets Yahoo!R3 and Coat contain

a small dataset collected through a random recommendation policy.

Such data isolate the popularity bias from uneven exposure, offer-

ing a more precise estimation of user preferences. Consequently,

we train our recommendation model on conventionally biased data

and then test it on these uniformly-exposed data.

For evaluation metrics, we adopt the widely-used NDCG@K
for evaluating accuracy [29]. We simply adopt 𝐾 = 5 for Yahoo

and Coat datasets and 𝐾 = 20 for the other datasets as recent work

[24, 59, 63]. We observe similar results with other metrics. We also

employ the ratio of pop/unpopular items for illustrating the

severity of popularity bias in recommendations. Here we closely

refer to recent work [66] to define popular and unpopular items. We

sort the items according to their popularity in descending order, and

divide items into five groups ensuring the aggregated popularity of

items within each group is the same.We define the items in the most

popular groups as popular items, while the others as unpopular.

Baselines. The following methods are compared: 1) MACR
(KDD’21 [53]), PDA (SIGIR’21 [66]): the representative causality-

based debiasing methods, which posit a causal graph [39] for the

recommendation procedure and leverage causal inference to mit-

igate popularity bias accordingly; 2) InvCF (WWW’23 [63]): the

SOTA method that addresses popularity bias by disentangling the

popularity from user preference. 3) Zerosum (Recsys’22 [43]) , IPL
(SIGIR’23 [33]): the representative methods based on regularizers,

which penalize the score differences or constrain the ratio of the

predicted preference with the exposure.

For fair comparisons, we implement all compared methods with

uniform MF backbone and MSE loss. We also explore the perfor-

mance with other backbones and losses in subsection 5.3. Besides
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Figure 3: Pareto curves of compared methods illustrating the
trade-off between accuracy and fairness under the common
testing paradigm.
above baselines, we also compare our method with the methods

on mitigating dimension collapse, including nCL [8] and DirectAU

[50]; and the debiasing methods tailored for GNN-based methods

including APDA [71] and GCF
logdet

[67] when using GNN-based

backbones.

Parameter Settings. The embedding dimension 𝑑 is 256 while

other dimensions are explored in 5.4 . Grid search is utilized find

the optimal hyperparameters. More details refer to Appendix C.2

5.2 Performance Comparison (RQ1)
Comparison under three testing paradigms. Table 3 showcases
the NDCG@20 comparison across seven datasets over three testing

paradigms. Under the Common testing paradigm, our ReSN, with

few exceptions, consistently outperforms compared methods. This

superior performance can be attributed to the rigorous theoretical

foundations of ReSN, which pinpoint and address the root cause of

bias amplification. By curbing this bias amplification, ReSN achieves

significant improvements in recommendation accuracy. Transition-

ing to the Debiased and Uniform-exposure testing paradigms, the

improvements by ReSN become even more impressive, demonstrat-

ing its effectiveness in mitigating popularity bias.

Exploring Accuracy-fairness Trade-off. Given the conven-

tional accuracy-fairness trade-off observed in RS, we delve deeper

into examining this effect across variousmethods. Afterwell-training

various methods with differing hyper-parameters (details of hyper-

parameters tuning refer to Appendix C.2), we depict the Pareto

frontier in Figure 3. It highlights the relationship between accu-

racy (NDCG@20) and fairness (ratio of unpopular items) under the

Common testing paradigm. Here, positions in the top-right cor-

ner indicate superior performance. We observe that ReSN exhibits

a more favorable Pareto curve in comparison to other baselines.

When fairness is held constant, ReSN showcases superior accu-

racy. Conversely, when accuracy is fixed, ReSN delivers enhanced

fairness. This suggests that ReSN effectively navigates the fairness-

accuracy trade-off, primarily through its capability to counteract

popularity bias amplification — it only mitigates the effect of the

principle spectrum without disturbing other spectrum.

Compared with the Methods on Tackling Dimension Col-
lapse. Table 4 shows the results of our ReSN compared with exist-

ing methods on tackling dimension collapse on debiased testing

paradigm. nCL and DirectAU can indeed mitigate the popularity

bias. However, their performance is inferior to ReSN. The reason is

that our ReSN is designed for debiasing, directly modulating the

effect of the item popularity on predictions, and thus yielding better

performance.
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Table 3: Performance comparison in terms of NDCG between ReSN and other baselines across seven datasets and three testing
paradigms. The “Com”(refers to “Common”) represents the paradigm where the training and test datasets are partitioned
randomly; “Deb”(refers to “Debiased”) represents the paradigm where a debiased test dataset is formulated based on item
popularity; “Uni”(refers to “Uniform-exposure”) represents the paradigm where the test data is uniformly-exposed. The best
result is bolded and the runner-up is underlined. The mark ‘*’ denotes the improvement achieved by ReSN over best baseline is
significant with 𝑝 < 0.05.

Movielens Douban Yelp2018 Gowalla Globo Yahoo Coat

Com Deb Com Deb Com Deb Com Deb Com Deb Uni Uni

MF 0.3572 0.1490 0.0440 0.0116 0.0416 0.0164 0.1182 0.0438 0.1709 0.0028 0.6672 0.5551

Zerosum 0.3309 0.1411 0.0434 0.0110 0.0415 0.0137 0.1063 0.0421 0.1630 0.0036 0.6665 0.5633

MACR 0.3732 0.1647 0.0441 0.0145 0.0404 0.0208 0.1107 0.0545 0.1782 0.0253 0.6714 0.5661

PDA 0.3688 0.1662 0.0446 0.0171 0.0437 0.0229 0.1283 0.0675 0.1725 0.0243 0.6756 0.5676

InvCF 0.3723 0.1567 0.0450 0.0152 0.0433 0.0183 0.1302 0.0592 0.1671 0.0194 0.6519 0.5715

IPL 0.3618 0.1621 0.0442 0.0173 0.0419 0.0219 0.1318 0.0623 0.1715 0.0203 0.6691 0.5602

ReSN 0.3857* 0.1745* 0.0456* 0.0186* 0.0445* 0.0254* 0.1343* 0.0703* 0.1682 0.0256* 0.6792* 0.5871*

Table 4: NDCG@20 comparison with methods for addressing
Dimension Collapse under the debiased testing paradigm.

Movielens Douban Gowalla

MF 0.1529 0.0116 0.0438

nCL 0.1572 0.0112 0.0451

DirectAU 0.1691 0.0131 0.0622

ReSN 0.1788 0.0188 0.0712

Table 5: NDCG@20 comparison with GNN-based backbones
(LightGCN, XSimGCL) under the debiased testing paradigm.

Movielens Douban Gowalla

LGCN XSGCL LGCN XSGCL LGCN XSGCL

Backbone 0.1531 0.1686 0.0117 0.0132 0.0446 0.0563

Zerosum 0.1363 0.1438 0.0112 0.0129 0.0437 0.0498

MACR 0.1682 0.1692 0.0157 0.0164 0.0543 0.0623

PDA 0.1684 0.1732 0.0182 0.0190 0.0689 0.0732

InvCF 0.1602 0.1672 0.0153 0.0169 0.0599 0.0687

IPL 0.1653 0.1701 0.0166 0.0193 0.0642 0.0699

APDA 0.1657 0.1713 0.0156 0.0189 0.0468 0.0522

GCF
logdet

0.1672 0.1724 0.0124 0.0141 0.0403 0.0492

ReSN 0.1758 0.1810 0.0194 0.0202 0.0717 0.0763

Table 6: NDCG@20 comparison with different Loss functions
under the debiased testing paradigm.

Movielens Douban Gowalla

+BCE +BPR +BCE +BPR +BCE +BPR

MF 0.1529 0.1540 0.0117 0.0120 0.0432 0.0431

Zerosum 0.1472 0.1498 0.0109 0.0106 0.0423 0.0425

MACR 0.1682 0.1629 0.0155 0.0149 0.0574 0.0546

PDA 0.1635 0.1633 0.0176 0.0173 0.0661 0.0675

InvCF 0.1574 0.1582 0.0153 0.0154 0.0553 0.0583

IPL 0.1612 0.1628 0.0173 0.0177 0.0612 0.0626

ReSN 0.1788 0.1693 0.0188 0.0180 0.0712 0.0702

5.3 Adaptability Exploration (RQ2)
To investigate the adaptability of ReSN, we evaluate it with various

backbones and loss functions under debiased testing paradigm. Ta-

ble 5 showcases the performance of ReSN under LightGCN [24] and
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Figure 4: The proportion of popular items in recom-
mendations and the ratio of the largest singular value
(𝜎2

1
/∑

1≤𝑘≤𝐿 𝜎
2

𝑘
) and NDCG@20 with varying 𝛽 .

Table 7: Running time comparison (s/Epoch), where ReSN-
Direct directly calculates spectral normwithout acceleration.

Movielens Douban Gowalla

MF 0.177 2.098 0.634

ReSN 0.181 2.124 0.675

ReSN-Direct 649 59239 15280

Speedup Ratio 3585 27890 22637

XSimGCL [59], where APDA [71] and GCF
logdet

[67] that tailored

for GNN-based backbones are included. Besides, Table 6 depicts

the results with BCE and BPR losses. Notably, ReSN consistently

outperforms compared methods, irrespective of the chosen back-

bone or loss function. These findings affirm the great adaptability

of ReSN, underscoring its ability to seamlessly integrate with di-

verse recommendation models. Our ReSN also outperforms those

debiasing methods tailored for GNN-based methods. They reason

is that they only consider to mitigate bias amplification raised by

GNNs while ignoring the bias from the generic recommendation

mechanism.

5.4 Hyperparameter Study (RQ3)
Figures 4 presents the recommendation accuracy, the ratio of popu-

lar items, and the ratio of principle singular value (𝜎2

1
/∑

1≤𝑘≤𝐿 𝜎
2

𝑘
)

in ReSN as the hyperparameter 𝛽 varies. Notably, as 𝛽 increases, the

ratio of principle singular value and the severity of popularity bias

reduces. This trend affirms the efficacy of our regularizer. Regarding
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recommendation accuracy, it initially rises and then declines with

an increase in 𝛽 . This can be attributed to the fact that popularity

bias isn’t intrinsically detrimental [66, 68]. Indeed, item popularity

can also convey beneficial information about the item’s appeal or

quality, which ought to be retained. Hence, the strategic approach

for popularity bias lies in mitigating its bias amplification, rather

than eliminating it entirely. That is also our target.

5.5 Efficiency Study (RQ4)
To further validate the effectiveness of our acceleration strategy,

we test the running time per epoch of ReSN and the original brute-

force strategy employed to compute the gradient of the spectral

norm. Also, we present the baseline MF for comparison. The results

are presented in Table 7. As can be seen, our acceleration strategy

achieves over 3600, 27000 and 22000 times impressive speed-up in

both datasets, respectively. Moreover, compared with MF, our ReSN

does not incur much computational overhead.

6 Related Work
Analyses on Popularity Bias. In RS, items frequently exhibit a

long-tailed distribution in terms of interaction frequency. Models

trained on skewed data are susceptible to inheriting and exacerbat-

ing such bias [2, 3, 26, 55, 72, 73]. The crux of tackling popularity

bias lies in understanding why and how recommendation models

intensify popularity bias. Several recent efforts aim to elucidate this.

Among these, causality-based investigations stand out. For instance,

Wang et al. [52], Zhang et al. [66] developed a causal graph of the

data generative process, attributing the amplification of popularity

bias to a confounding effect; Wei et al. [53] presented an alternate

causal graph, exploring the direct and indirect causal influence of

popularity bias on predictions. A common limitation among these

causality-based methods is their surface-level engagement with the

causal relationships among variables, rather than delving deeper

into the underlying mechanisms. For example, these studies usually

operate on the assumption that item popularity directly affects

predictions. However, the specifics of how and why predictions

memorize and are influenced by item popularity remain largely

unexplored. Worse still, their effectiveness hinges on the accuracy

of their respective causal graphs, which might not always hold due

to the unmeasured confounders [20, 30].

There were other investigations into popularity bias. For in-

stance, Zhu et al. [73] demonstrate that model predictions inherit

item popularity, yet they failed to elucidate the amplification. Also,

their conclusions rely on a strong assumption that the preference

scores maintain same distribution across different user-item pairs.

The study by [38] shed light on the limited expressiveness of low-

rank embeddings, giving clues of popularity bias in recommenda-

tions. Yet they did not factor in the impact of long-tailed training

data. In fact, popularity bias origins from long-tailed data [66, 73],

amplified during training, which would be more serious than the

theoretically analyses presented in [38]. Some efforts [13, 28] ex-

amined popularity bias through embedding magnitude, their the-

oretical analysis can only applied in the early stages of training.

Other researchers delved into how graph neural networks amplify

popularity bias through influence functions [11], the hub effect [71]

or dimensional collapse [67]. However, their conclusions can not

be extended to general recommendation models.

Methods on Tackling Popularity Bias. Recent efforts on ad-

dressing popularity bias are mainly four types: 1) Causality-driven

methods assume a causal graph to identify popularity bias and em-

ploy causal inference techniques for rectification. While they have

demonstrated efficacy, their success is closely tied to the accuracy

of the causal graph. This poses challenges due to the prevalence of

unmeasured confounders [20, 30, 37]. 2) Propensity-based methods

[9, 23, 45, 51, 64] adjust the data distribution by reweighting the

training data instances. While this approach directly negates popu-

larity bias in the data, it may inadvertently obscure other valuable

signals, such as item quality. Consequently, these methods often

underperform compared to causality-driven ones. 3) Regularizer-

based methods [1, 27, 33, 43, 73] constrain predictions by introduc-

ing regularization terms. For example, Zhu et al. [73] employs a

Pearson coefficient regularizer to diminish the correlation between

item popularity and model predictions; Zhang et al. [67] adopts

a regularizer for mitigating embeddings collapse; Rhee et al. [43]

proposes to regularize the score differences; [33] constrains the

predictions with IPL criterion. As discussed in section 4.2, their con-

straints are too strong, may significantly compromising accuracy.

4) Disentanglement-based methods [14, 57, 63] target at learning

disentangled embeddings that segregate the influence of popular-

ity from genuine user preferences. While promising, achieving a

perfect disentanglement of popularity bias from true preferences

remains a formidable challenge in RS.

Among the related work, the one most closely related to ours is

[67], but we emphasize that our work differs in two key aspects: 1)

Their theoretical justification of bias amplification focuses solely

on GNNs, whereas our analysis applies to generic recommenda-

tion mechanisms. 2) Their regularizer aims to mitigate collapse of

user/item embeddings, while our ReSN specifically targets the miti-

gation of the principal spectrum’s influence. Section 4.2 provides a

detailed discussion of these differences, demonstrating that ReSN is

more effective in debiasing. Table 4 also offers empirical evidence

supporting our claims.

7 Conclusion
In this study, we delve into the root cause of popularity bias ampli-

fication. Our analyses offer two core insights: 1) Item popularity

is encoded in the principal spectrum of model predictions; 2) The

phenomenon of dimension reduction accentuates the influence of

the principal spectrum. Based on these insights, we introduce ReSN,

an efficient technique aimed at mitigating popularity bias by pe-

nalizing the principle singular value. A potential limitation of our

study pertains to the static perspective on popularity bias, neglect-

ing its dynamic nature as it evolves temporally. It could be more

insightful to investigate the mechanism of bias amplification in the

context of temporal sequential recommendations, and to examine

its evolution during the feedback loop.
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