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Abstract
The rapid growth of mobile web technologies has revolutionized
how people manage daily activities, emphasizing the critical need
for accessible mobile user interfaces (UIs) that accommodate users
with disabilities and situational impairments. Current AI-driven
UI understanding methods show promise but primarily target gen-
eral UI modeling, neglecting nuanced, user-centric accessibility
requirements. To bridge this gap, we first conducted a formative
study with 12 visually impaired participants. Our study uncovers
selective-accessible issues, a new class of accessibility challenges
requiring finer granularity and selective focus on UI components,
which existing methods largely overlook. Our findings also reveal
that the severity of issues varies across interaction stages, with
earlier stages posing a more significant impact. Building on these
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insights, we propose a comprehensive framework of three accessi-
bility stages: focusability, information, and functionality (FIF), en-
compassing 12 sub-tasks under 3 overarching tasks. Identifying UI
element focusability prediction (UFP) as a pivotal yet underexplored
task within FIF, hindered by the absence of dedicated datasets, we
introduce a new dataset (NOS) with 117,480 annotated components
addressing accessibility issues comprehensively. To further enhance
UFP, we introduce Graph-based UI Focusability Prediction (GIFT),
a method leveraging graph neural networks to model UFP-targeted
UI relationships. User studies validate the dataset’s quality, while
experiments showGIFT ’s effectiveness in improving UFP outcomes.
Our code and datasets are publicly available to support further web
inclusivity advancements at https://github.com/eaglelab-zju/NOS.
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(a) Our UI Annotations. (b) SA Example (Rico-s).

(c) NA Example (TalkBack): The
Red boxes are missing focuses.

(d) OA Example (Rico-s): The box
of ❶ is inactive under the popup
and should not be focusable.
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(e) Isssue Statistics.

Figure 1: (a)-(d) Examples of UI Accessibility Issues. (e) Com-
parison of Existing Datasets with Our Annotations (Anno.
D22 & D23). The NA and OA ratios of <TalkBack, Rico-s [26],
CLAY [24]> are <10.3%, 7.9%, 7.0%> and <33.8%, 59.5%, 59.0%>.

1 Introduction
The rapid evolution of mobile web technologies has significantly
transformed how people manage daily activities, highlighting the
critical need for universally accessiblemobile user interfaces (UIs) [44].
However, many UIs still lack accessibility for individuals with dis-
abilities and situational challenges [23, 28], and accessibility chal-
lenges of mobile web applications are reportedly more severe than
those of native applications onmobile platforms as assistive services
cannot analyze webView elements properly [32]. UI accessibility,
which seeks to ensure that interfaces are perceivable, understand-
able, and operable for users with different requirements, is crucial
for achieving web inclusivity [31]. Nevertheless, existing UI anal-
ysis methodologies often fall short by concentrating on general
characteristics, such as the type identification of UI elements [35],
instead of addressing comprehensive accessibility user needs [1].
These shortcomings highlight the pressing need for a user-centered
approach to UI modeling that accommodates the full spectrum of
accessibility requirements, thereby advancing web inclusivity.

To gain deep insights into the challenges and requirements of UI
accessibility, we conducted a formative study involving 12 blind and
low-vision (BLV) participants who regularly usemobile applications
in their daily lives. The study uncovered critical accessibility issues
and needs acrossmultiple stages and granularity levels. First, partic-
ipants highlighted that the UI interaction stages (namely reaching,
comprehending, and operating) significantly impact the issue sever-
ity, even when the same issue is encountered. Accessibility issues
arising in earlier stages, such as the initial reaching and focusing
phase, pose greater barriers, underscoring the importance of re-
solving issues at this critical entry point. Second, in addition to
the well-documented non-accessible (NA) [50] and over-accessible
(OA) [28] issues, participants identified a new category: selective-
accessible (SA) issues. While NA and OA issues refer to inaccessible

or redundant UI elements, SA issues emphasize appropriate granu-
larity in UI accessibility, requiring a selective focus on components.
Participants stressed that an ideal UI accessibility solution must in-
volve a unified approach to addressing NA, OA, and SA issues.

Building on the findings of our formative study, we proposed
a novel framework structured around three core access stages:
Focusability, Information, and Functionality (FIF). This framework
encompasses 12 sub-tasks with eight dedicated to focusability and
two each focused on information and functionality. These sub-tasks
align with three overarching goals: UI Focusability Prediction (UFP),
UI Accessibility Information Generation (UAG), and UI Functional-
ity Repairment (UFR). Our analysis reveals that while UAG and UFR
tasks can be effectively addressed using established AI-generated
content (AIGC) and software engineering methods, the UFP task
has been critically overlooked despite its foundational role in address-
ing accessibility issues at the initial focusing stage. Furthermore, an
investigation into the focus results of Android default screen reader,
TalkBack [17], alongside existing UI datasets such as Rico-semantic
(Rico-s)[27] and CLAY[24], uncovers considerable issues with fo-
cusability. For instance, as shown in Figure 1e, the TalkBack, Rico-s,
and CLAY datasets exhibit 10.3%, 7.9%, and 7.0% NA issues and
33.8%, 59.5%, and 59.0% OA issues, respectively. These results are
consistent with the dissatisfaction expressed by participants in our
formative study regarding UI accessibility. More specifically, Fig-
ure 1b illustrates the incorrect focus granularity of SA issues in
the Rico-s dataset, contrasted with ground-truth annotations in
Figure 1a. Likewise, Figure 1c shows NA issues in TalkBack’s focus
results, while Figure 1d demonstrates OA issues in Rico-s.

Therefore, addressing UFP is essential for advancing UI accessi-
bility efforts, but the absence of applicable UI datasets and method-
ological frameworks hinders progress. To overcome these chal-
lenges, we propose a new dataset that addresses NA, OA, and SA
issues (NOS) in UI focusability. This dataset contains annotations
for 117,480 UI components across 2,000 pages, validated through
a user evaluation where both BLV and sighted users confirmed
its alignment with accessibility requirements. We also introduce
a novel Graph-based UI FocusabiliTy Prediction (GIFT) method,
leveraging graph structures to extract UFP-targeted contextual UI
relationships. GIFT is the first approach to address the UFP task,
emphasizing the critical role of heterophilic relationships and hier-
archical individuality for effective UFP. Experimental and ablation
studies validated GIFT’s effectiveness in tackling UFP tasks.

The main contributions of this work are:

• Formative Study and Framework for UI Accessibility: We
conducted a formative study on UI accessibility, identified a
new class of selective-accessible issues, and established a unified
framework FIF addressing UI accessibility for the mobile web.

• New UI Accessibility Task: We introduced UFP as a critical yet
underexplored task in UI accessibility, highlighting its impact on
subsequent accessibility stages of information and functionality.

• New Dataset: We developed a novel dataset with annotations
addressing NA, OA, and SA issues, validated through user evalu-
ations and supporting further web inclusivity advancements.

• Method and Experiments: We proposed the first method for
UFP, Graph-based UI Focusability Prediction (GIFT), demonstrat-
ing the importance of graph-based approaches for the UFP task.
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2 Formative Study
To better understand the real issues and needs of UI accessibility, we
conducted a formative study involving 12 BLV participants. Using
semi-structured interviews, we addressed the following questions:
• Q1: What is the mobile web UI experience of BLV users, and
what are the most critical issues?

• Q2: Are there new accessibility issues that have not been noticed?
• Q3: What is the ideal UI experience for BLV users?

2.1 Method
We recruited 12 BLV participants through online outreach and
compensated each with 25 USD for a 45-minute in-person study. All
participants use assistive technologies (ATs) like TalkBack daily to
interact with mobile applications and represent various professions,
including teaching (P1-2), students (P3-7), software engineering
(P8-10), and massage therapy (P11-12). Eight representative mobile
applications (apps) were selected from diverse categories essential
for daily life, such as online shopping and renting. Participants
were provided access to these apps three days before the interview
and were encouraged to explore them using TalkBack, noting any
accessibility issues encountered. Additionally, we sampled example
pages from each app that represented typical accessibility issues,
focusing on two categories: ❶ NA: Non-accessible issues [2, 33]
occur when UI components are inaccessible to users relying on
ATs. ❷ OA: Over-accessible issues [28] arise when UI components
that should not be accessible to either BLV or sighted users are
improperly exposed to ATs.

During the interviews, participants interacted with and assessed
these sampled pages, which helped evaluate the identified issues
and prompted discussions about their broader app experiences.
Participants shared additional challenges encountered during daily
use and their expectations for an ideal UI experience. For more
details of the formative study, please refer to Appendix E.

2.2 Findings
Several key findings were derived from the interviews.

Interaction Stages Affecting Issue Manifestation (Q1). Par-
ticipants frequently reported encountering both NA and OA issues,
but the severity of their impact varied depending on the interaction
stage. Participant P3 explained, “NA can result in missing informa-
tion or functionality. Missing unimportant information is acceptable,
but overlooking a focusable component prevents users from discover-
ing certain functions, hindering normal use. For example, once when
filling out registration information, I repeatedly navigated the page
but couldn’t find the submit button”. Similarly, P9 shared: “Some
sharing buttons on a page were inaccessible, denying me the same
rights as others to use the feature”. Synthesizing participants’ in-
sights revealed two key points: (1) For NA issues, the impact varies
across three interaction stages: accessing UI elements, retrieving
information, and operating functionality. The inability to access el-
ements has the most significant impact, followed by non-functional
elements. Missing information has the least impact, as it can some-
times be inferred from context. (2) For OA issues, as UI elements
are always accessible, their impact is generally less severe. How-
ever, excessive redundancy or irrelevant information can hinder
comprehension and significantly increase interaction time.

New Issues Related to UI Granularity (Q2). The study re-
vealed a previously underexplored category of issues tied to the
granularity of UI elements, which were overlooked in prior re-
search. These granularity-related issues affect how UI components
are grouped or divided for accessibility. Participant P6 highlighted
an example where fine-grained grouping in some pages was im-
plemented unreasonably: “The statement ’Buy one, get one free for
$10’ was split into two focuses: ’Buy one, get one free’ and ’for $10’.
This division could mislead users into believing the second item is
free regardless of price or that the deal only applies if the total cost is
$10”. P12 added: “Overly large groups of content can also be problem-
atic. Listening to extensive content in a single focus is exhausting. If
I accidentally move to the next focus midway through listening and
then attempt to return, I must start over from the beginning, which is
frustrating." P1 highlighted another issue: “Some pages group regions
containing text, buttons, and other components into a single focusable
element. If the group does not implement button functionality properly,
it prevents users from operating the functionality." These insights
identify a distinct category of accessibility issues beyond NA and
OA. These issues, which we term ❸ SA: Selective-accessible issues,
represent accessibility problems arising from the selective focus
behavior of UI components. They stem from improper granular-
ity in UI component access, affecting both the transmission of UI
information and the exposure of UI functionality.

Ideal User Experience Expectation BeyondNAandOA (Q3).
Participants unanimously agreed that ideal accessibility extends be-
yond resolving NA and OA issues. As one participant summarized:
“On the basis of eliminating NA and OA, an ideal design provides
multiple levels of focus granularity and allows users to switch between
levels to better understand combined information at different layers."

3 FIF: Unified Framework of UI Accessibility
Building upon the findings of our formative study, we propose
a novel standardized framework for UI accessibility that catego-
rizes issues into three interaction stages: Focusability reaching,
Information comprehending, and Functionality actioning (FIF). Ini-
tially, UI components must ensure proper focusability to achieve
reachable accessibility. Subsequently, they should deliver accurate
information for comprehensible accessibility (e.g., UI content, logic,
changes, etc.). Finally, ATs must be able to execute component
functionalities to meet actionable accessibility requirements.

3.1 Sub- and Overarching tasks of FIF
3.1.1 Sub-tasks. The FIF framework comprises 12 sub-tasks, sys-
tematically labeled from [T1] to [T12], ensuring a comprehensive
and structured approach. Among these, reachable accessibility is
the largest category, consisting of eight sub-tasks ([T1]–[T8]) and
addressing NA ([T1]), OA ([T2]–[T4]), and SA ([T5]–[T8]) issues.
In contrast, comprehensible and actionable accessibility each in-
volves two sub-tasks, focusing on the completeness of information
delivery ([T9]–[T10]) and functionality exposure ([T11]–[T12]).

Focusability: Reachable Accessibility. Reachable accessibility
addresses focusability issues in UI components.

[T1] Non-accessible Component Recovery. Components that
support independent interaction or convey standalone semantic
information should be identified as accessible.
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[T2] Duplicate Component Pruning. When multiple consecu-
tive nodes represent the same UI region, the most information-rich
node should be marked as focusable, while redundant nodes are
designated as non-focusable.

[T3] Invisible Component Filtering. Nodes without visual
presence or semantic relevance should be marked as non-focusable.

[T4] Inactive Component Filtering. Visible nodes not within
the active view hierarchy, such as those obscured by overlays or
hidden behind pop-ups, should be designated as non-focusable.

[T5] Semantic Component Aggregation. For components that
have granular focus requirements but for which the information
is better conveyed as a whole, only the outermost node should be
marked as focusable, while the inner nodes should be non-focusable.

[T6] Complex Component Segmentation. In cases where nu-
merous inner nodes convey complex information, these nodes may
be segmented and marked as focusable to enhance user experience.

[T7] Minimal-functional Component Focusability. Inner
nodes capable of independent interaction should be marked as
focusable rather than falsely grouped.

[T8] Hierarchical Consistency Enforcement. Consistency
should be maintained in labeling nodes across the same hierar-
chical level (e.g., list items within a single list).

Information: Comprehensible Accessibility. Comprehensi-
ble accessibility emphasizes ensuring that information conveyed
by UI components is meaningful and interpretable for BLV users.

[T9]ComponentCaptioning. For components, especially those
grouping multiple items, an appropriate caption should be assigned
for better semantic clarity.

[T10] Component Ordering. Each component should be cor-
rectly ordered based on its contextual importance or role.

Functionality: Actionable Accessibility. Actionable accessi-
bility pertains to ensuring that the functionality of UI components
is fully accessible and operable through assistive technologies.

[T11] Function Alignment. The functionalities exposed to BLV
users who access the mobile web through assistive technologies
should align with those exposed to non-disabled users.

[T12] Inclusive Functional Alternatives. Functional Accessi-
bility has the unique task of alternative functional support, which
is to provide alternative forms of certain functionality that is in-
accessible to people with certain disabilities. For example, text
CAPTCHAs need to have alternative forms like voice CAPTCHAs
so that visually impaired users can pass them.

3.1.2 Overarching tasks. Three overarching tasks are further pro-
posed to standardize the handling of the 12 sub-tasks: (1) UI Focus-
ability Prediction (UFP), a newly introduced task, addresses the
NA, OA, and SA issues of UI focusability as a unified prediction
problem. (2) UI Accessibility Information Generation (UAG) focuses
on generating accessible semantic information like component cap-
tion and order. (3) UI Functionality Repairment (UFR) repairs the
functional issues through software engineering methods.

UI Focusability Prediction (UFP). The eight sub-tasks ([T1]-
[T8]) associated with NA, OA, and SA can be formulated as a
prediction problem. Fundamentally, these tasks seek to determine
whether a component should be focusable to AT users. While the
NA and OA issues ([T1]-[T4]) can be framed as classification prob-
lems, selective accessibility presents additional complexity. First,

responses are not necessarily unique for components intended for
selective AT exposure. For instance, tasks like [T5] (semantic com-
ponent aggregation) and [T6] (complex component segmentation)
may be interrelated, with choices between aggregation or segmen-
tation resembling a recommendation or ranking problem due to
varying user preferences. Therefore, we unify the first eight tasks
under the UI Focusability Prediction (UFP) task.

UI Accessibility Information Generation (UAG). Following
UFP’s determination of component accessibility, the tasks ([T9]-
[T10]) remain to accurately convey content and function-related
information to AT users. We formalize these accessibility require-
ments, which pertain to content, functionality, logical structure,
and more, as a generation task termed UI Accessibility Information
Generation (UAG).

UI Functionality Repairment (UFR). Actionable problems
are managed primarily via the ActionList attribute in code [28],
making it largely a task of logistical assessment within software
engineering (SE), rather than a challenge requiring complex knowl-
edge inference of visual semantic or relational understanding.

3.2 Limitations of Existing UI Modeling for FIF
It is apparent that UFR represents a typical software engineer-
ing task, while UAG aligns closely with recent advancements in
Artificial Intelligence Generated Content (AIGC). However, UI Fo-
cusability Prediction (UFP), a novel task proposed in this work,
significantly diverges from existing UI tasks.

Limitations of Traditional Software Engineering for UFP.
Traditional SE methods for UI accessibility primarily rely on hard-
coded rules, static analysis, and structural heuristics [28]. While
these methods are effective in detecting predefined accessibility is-
sues, they fall short in providing the multi-modal context necessary
for determining focusability at a granular level based on complex
semantics and diverse user needs. These limitations underscore the
demand for an intelligent, multi-modal approach to UFP.

Limitations of Existing UI Modeling for UFP. The UFP task
introduces a nuanced layer of UI understanding, presenting two
key difficulties: (1) Context-Dependent Selective Focusability. UFP de-
termines components that should be selectively accessible, such as
visible but inactive elements beneath overlays or widgets of multi-
ple elements as an independent functional unit. In contrast, existing
tasks typically assume all visible components are accessible, making
them ill-equipped to meet the requirements. (2) Unified Consider-
ation of Multiple Accessibility Needs. UFP integrates NA, OA, and
SA issues holistically, unlike existing methods that address these
issues in isolation. For instance, UI grouping [48] is limited to clus-
tering components but fails to balance grouping and segmentation
dynamically for accessibility needs, while UI detection [5] holds
potential for resolving NA issues by visual information but fails
OA issues marking components under overlays as non-focusable
despite their visibility. A detailed comparison of existing UI tasks
and their limitations is provided in Table 7 within Appendix D.

This study is the first to address UI accessibility at focusability,
which can mitigate many issues related to information or function, as
often caused by UI focusability issues. In the following sections, we
provide a holistic approach to advancing UFP in the mobile web by
introducing a tailored dataset and novel method.
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Table 1: Comparison of NOS with Other Existing UI Datasets. Inh. represents the inheritance relationships of the datasets.
Comp. is short for components. VH. is view hierarchy. OS.means epen source. AL. denotes accessibility labels.

Dataset Inh. Year #Comp. #Pages #Apps VH. Labels Tasks OS. AL.
D1 ERICA [12] 2016 - 18,000 1,011 - - User Interaction Analysis ✗ ✗
D2 Rico [11] 2017 - 66,261 9,700 ✓ View Hierarchy UI Layout Generation ✓ ✗
D3 Rico-semantic [26] D2 2018 1,369,685 66,261 9,700 ✓ View Hierarchy UI Layout Generation ✓ ✗
D4 ReDraw [29] 2018 431,747 14,382 6,538 ✓ Component Type UI Component Recognition and Classification ✓ ✗
D5 Widget Caption [25] D2 2020 61,285 21,750 6,470 ✓ Component Description UI Component Caption ✓ ✗
D6 LabelDroid [8] 2020 19,245 13,145 7,594 ✗ Component Type UI Component Recognition ✓ ✗
D7 Wireframe [7] D6 2020 - 54,987 7,748 ✓ Query and Target UI UI Search/UI Component-Matching ✓ ✗
D8 VINs [4] D2 2021 - 2,740 9,700 ✓ Query and Target UI UI Search ✗ ✗
D9 Screen2words [42] D2 2021 - 22,417 6,269 ✓ Screen Description Screen Summarization ✓ ✗
D10 CLAY [24] D2 2022 1,427,915 59,555 9,700 ✓ Component Type UI Component Recognition ✓ ✗
D11 META-GUI [37] 2022 - 18,337 11 ✓ Question-Answer Task-oriented Dialogue ✓ ✗
D12 MUD [15] 2023 - 18,132 3,300 ✓ Component Type UI Component Recognition & UI Retrieval ✓ ✗
D13 DroidTask [45] D11 2023 - 362 13 ✓ Action Type Mobile Task Automation ✓ ✗
D14 AITW [30] 2023 - 5,689,993 159 ✗ Instruction Mobile Device Control ✓ ✗
D15 Auto-UI [55] D14 2023 - 1,276,752 159 ✗ Instruction Mobile Device Control ✓ ✗
D16 Ferret-UI [52] D5&D9 2024 - 123,702 - ✗ - Referring, Grounding, and Reasoning ✗ ✗
D17 Mobile3M [46] 2024 - 3,098,786 49 ✓ Graph Structure Page Navigation ✗ ✗
D18 AutoGUI [38] 2024 - 702,000 - ✗ Question-Answer UI Functionality Grounding ✓ ✗
D19 GUI-WORLD [6] 2024 - 12,379 - ✗ Question-Answer UI Understanding & Instruction Following ✓ ✗
D20 ScreenAI-SA [3] D2 2024 22,078 4,200 - ✓ Component Type Screen Annotation & Navigation ✓ ✗
D21 NOS-raw 2024 1,634,104 31,097 490 ✓

UI Focusability UI Focusability Prediction
✓

D22 NOS-raw-labeled D21 2024 66,031 1,000 208 ✓ ✓ ✓
D23 Rico-labeled D3 2024 51,449 1,000 - ✓ ✓ ✓
D24 NOS D22&23 2024 117,480 2,000 - ✓ ✓ ✓

(a) Rico-s for [T7] (b) CLAY for [T7] (c) NOS for [T7] (d) Rico-s for [T8] (e) CLAY for [T8] (f) NOS for [T8]

Figure 2: SA Examples: (2a)-(2c) highlight erroneous red components in Rico-s and CLAY violating the requirements of [T7]
Minimal-functional Component Focusability, while (2d)-(2f) illustrate violations of [T8]Hierarchical Consistency Enforcement.

4 NOS: A New Dataset for UI Accessibility
Existing UI datasets are not directly applicable to UFP due to two
limitations: (1) Absence of Focusability-Related Context Information.
UFP necessitates detailed component information and hierarchical
relationships to indicate focusability at multiple semantic levels.
However, as summarized in Table 1, 15 out of 20 existing datasets
lack proper UI component labels or view hierarchies. (2) Lack of
Accessibility Labels. UFP requires labels that specify focusability of
granularity for NA, OA, and SA issues, which are generally missing
in existing datasets with only component types provided and not
adequate for focusability determination. Examples illustrating the
inapplicability are presented in Figure 2 with additional examples in
Figure 4within Appendix C. To address the challenges, we introduce
a novel dataset addressing the NA, OA, and SA issues (NOS).

4.1 Introduction of the Proposed Dataset
The proposed dataset, NOS1, is presented as a labeled version (NOS:
NOS-raw-labeled & Rico-labeled) and an extensive unlabeled ver-
sion (NOS-raw). See Table 1 for statistics.
1URL: https://doi.org/10.5281/zenodo.14802776 https://github.com/eaglelab-zju/NOS

Crawler and Cleaning. To obtain heuristic focus results from
the default Android Assistive Technology TalkBack, which is absent
in existing datasets, we crawled a new batch of UI data. This data
captures each page’s TalkBack focus results, serving as a baseline
to illustrate the severity of NA, OA, and SA issues. The dataset,
termed NOS-raw, consists of 1,634,104 components collected from
31,097 pages across 490 apps. The raw data included redundant
and invalid nodes extracted from the view hierarchy of each page.
To ensure quality, we implemented a cleaning process to filter out
invalid components, such as those with negligible size or completely
outside the screen. See Algorithm 1 in Appendix B for more details.

Labeling and Verification. Due to resource constraints, we
sampled 1,000 pages each from NOS-raw and Rico for focusability
labeling, resulting in a labeled subset with 117,480 components.
The annotations were carried out by three annotators with varying
levels of accessibility-related experience (one month, six months,
and two years). The annotations were subsequently verified by
three verifiers with more extensive experience (one month, one
year, and five years). Before annotation, a senior expert with five
years of accessibility experience provided training and addressed

https://doi.org/10.5281/zenodo.14802776
https://github.com/eaglelab-zju/NOS
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Table 2: User Evaluation Scores. S. represents sighted users.
The highest values are bolded .

Participants 1 2 3 4 5 6 7 8 9 10 11 12 AVG. 13 14 15 AVG.

BLV

NA TalkBack 2 2 1 3 3 3 2 3 2 2 3 3 2.42

S.

2 2 3 2.33
Annotated 5 5 5 5 5 4 5 4 4 4 5 5 4.67 5 4 4 4.33

OA TalkBack 1 2 2 3 1 3 4 4 3 2 3 2 2.50 1 1 1 1
Annotated 5 4 4 4 3 4 5 5 5 4 4 5 4.33 5 5 5 5

SA-aggregation TalkBack 5 4 0 5 5 5 4 5 4 4 4 3 4.00 2 3 3 2.67
Annotated 2 2 2 3 3 4 5 4 4 5 5 4 3.58 5 5 5 5

SA-segmentation TalkBack 0 1 0 1 2 2 1 2 2 2 1 1 1.25 1 1 1 1
Annotated 5 5 5 5 5 5 5 5 4 5 5 5 4.92 5 5 5 5

Frequency
NA 3 4 3 3 2 2 3 3 4 4 3 4 3.17
OA 4 3 2 3 2 2 3 4 2 3 3 4 2.92
SA 2 3 2 1 2 1 2 2 2 3 3 3 2.17

Severity
NA 5 5 5 5 4 4 4 4 4 5 4 4 4.42
OA 5 4 2 3 3 1 3 3 4 4 3 4 3.25
SA 3 4 3 3 3 3 5 4 4 4 4 5 3.75

any questions raised by the annotators. To further validate the
labeling quality, we conducted a user study to validate the dataset
annotations, as described in the following section.

4.2 User Evaluation
We further conducted a user study to evaluate the criteria and
results of the annotation. The interviews were designed to address
the following questions:
• q1: Do the focusability results after annotation better meet the
needs of users with vision impairments?

• q2: Do BLV users think of these UI accessibility issues as critical
and frequently encountered?

• q3: Do sighted accessibility developers/evaluators share a consis-
tent understanding when provided with the same experience?
Method. We recruited the same 12 BLV participants (P1-12) as

in Section 2 with 3 new sighted participants (P13-15) and com-
pensated them with 25 USD for their participation in a round of
45-minute in-person study. The three sighted participants had prior
experience in mobile accessibility development (P13) or evaluation
(P14-15). Three sets of examples for NA, OA, and SA issues are pre-
pared, each consisting of a pair of UI pages representing pre- and
post-annotation focusability conditions. The pre-annotation pages
simulated TalkBack’s focusability results, while the post-annotation
pages reflected the application of our labeling criteria. To ensure
user experience consistency, we programmatically implemented
focusable component access and text-to-speech functionality for
both pre-annotation and post-annotation focuses within the exam-
ples. Participants navigated the pages using swipe gestures on their
screens, simulating the behavior of assistive technologies like Talk-
Back. After interacting with each pair of pages, participants rated
their experiences based on three metrics: accessibility, encounter
frequency, and issue severity, with scores ranging from 0 (lowest) to
5 (highest). This was followed by a Q&A-style interview to explore
their perceptions. Please refer to Appendix E for details.

Findings. We analyze the 3 research questions based on the
results in Table 2 and participant comments, drawing the following
key findings. First, the results support the reasonability of the an-
notations, as most annotated examples received higher satisfaction
scores from both BLV and sighted participants with their scores
generally consistent with each other (q1). Second, regarding issue
frequency and severity, NA issues emerged as the most frequent and
severe, while SA issues were the least frequent, and OA issues were
the least severe (q2). Moreover, comprehensive UI aggregation
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Figure 3: Overall Framework of GIFT.

based on a deep understanding of visual semantics can enhance
user experience, as evidenced by the difference in scoring on SA
aggregation annotations between sighted and BLV users and the
change in opinions of BLV users in interviews (q3). Specifically,
sighted participants found the aggregated results significantly more
accessible, with scores of 5 compared to TalkBack’s 2.67. Meanwhile,
BLV users initially scored TalkBack focus results higher (4.00) than
aggregated results (3.58). However, this changed after further clar-
ification in interviews. Two BLV participants initially remarked
that “the lack of component aggregation is not a serious problem”
and expressed a preference for “receiving as much focus as possible
while also accessing the textual information”. However, after the
interviewer clarified that the segmented components in the exam-
ples collectively served as a single functional unit (e.g., a product
description) and did not provide additional value when segmented,
the participants revised their perspectives. They then acknowl-
edged that "such aggregation is beneficial because over-segmented
components can lead to misjudgment, making the process complicated,
cumbersome and time-consuming." This underscores the critical role
of addressing SA issues, as effectively aggregated component groups
can significantly reduce the time and effort required for BLV users
to navigate and comprehend UI content.

5 Methodology and Experiments
5.1 Graph-based UI Focusability Prediction
Building on the introduced dataset, we propose a novel framework,
Graph-based UI FocusabiliTy Prediction (GIFT), designed to effec-
tively address the UFP task. The overall architecture of GIFT is illus-
trated in Figure 3, comprising three key components: a multi-modal
semantic capture module, a graph-based relationship extraction
module, and a prediction module. The primary contribution lies in
the development of the graph-based relationship extraction mod-
ule and the recognition that heterophilic graph neural networks
(GNNs) with hierarchical individuality preservation are essential
for capturing nuanced relational patterns critical to this task.

5.1.1 Multi-modal Semantic Capture. We capture each UI compo-
nent’s semantic information using basic models across four feature
sources: visually cropped screenshots, textual information, one-hot
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Table 3: Relationship Requirements for UFP Tasks.

Task Required Relationship for Task Fig.
[T1] Syntactic and Positional Relationships: Components with

similar semantics as siblings typically share a similar spatial or
hierarchical placement. If sibling components are focusable and
one is not, this may indicate a missing focus assignment.

4a-
4c

[T2] Redundancy and Nesting Relationships: Components with
redundant semantics or functions are often related through sim-
ilarity or a nesting structure within a common view hierarchy
or visual location, signaling shared roles or functionality.

4d-
4f

[T3] Visibility Hierarchical Relationships: Invisible components
generally occupy distinct subtrees in the view hierarchy com-
pared to visible ones, reinforcing their non-interactive status.

4g-
4i

[T4] Active-Inactive Layer Relationships: Inactive components
are frequently situated outside the active subtree (e.g., the back-
ground of a popup layer) and may have grayscale overlays in-
dicating inactivity. These hierarchical relationships assist in
identifying components that remain unaffected by the overlay.

4j-
4l

[T5] Compositional Relationships for Unified Semantics: Com-
ponents that collectively form a semantic unit, such as an icon
paired with text in menus, should be grouped for focus, reflect-
ing their shared functional semantic relationships.

4m-
4o

[T6] Segmentation Relationships for Clarity: Groups of com-
ponents that convey complex semantics should be segmented
based on their semantic similarity relationships to avoid over-
whelming users with excessive information in a single focus.

4p-
4r

[T7] Contextual and Functional Independence Relationships:
Small components with unique functions distinct from their
parent or child elements should be independently focusable,
underscoring a relational understanding of their design context.

2a-
2c

[T8] Consistent Hierarchical Relationships: Hierarchical com-
ponents should provide a consistent focus experience, with a
relational understanding of hierarchy essential.

2d-
2f

script attributes, and location coordinates. For visual content, we
use the ViT [14] architecture to embed each component’s cropped
screenshot. Textual data is embedded using BERT [13], includ-
ing the component’s inner text, content_description, view_id_re-
source_name, and class_name. The one-hot script attributes and
location coordinates are encoded throughMLPs. The one-hot vector
captures the presence of specific node attributes (i.e., [checkable,
checked, clickable, long_clickable, context_clickable, text,
focusable, focused, content_description, selected, enabled]),
while the location coordinates use <left, top, right, bottom>
to define the component’s position. Note that the selection of node
attributes is hand-crafted, and additional accessibility-related at-
tributes could be incorporated. However, as our goal is to demon-
strate the effectiveness of GIFT rather than to optimize feature engi-
neering, we only maintain a consistent attribute selection across all
experiments to ensure fairness. Finally, the resulting embeddings
are fused via an MLP layer for a unified representation.

5.1.2 Graph-based Relationship Extraction. To determine a com-
ponent’s focusability, relational analysis is crucial. Table 3 shows
the relationship requirements for each task from [T1] to [T8]. Ap-
parently, not only SA issues depend on relational understanding
for proper focus selection, but NA and OA issues can also benefit
from relationship extraction. Given the significance of these rela-
tionships in UFP tasks, we draw inspiration from the tree structure
of the view hierarchy (i.e., a specialized graph form), and propose
adding a graph-based relationship extraction module to GIFT. We
construct the graph by leveraging the inherent view hierarchy and
employing a GNN backbone to learn underlying relationships.

A critical question then arises: What type of graph-based method
best suits this scenario? We argue that not all GNNs are appropriate

for UFP. Specific GNNs with heterophily handling and hierarchi-
cal individuality capture capabilities offer distinct advantages due
to two factors: (1) Heterophilic Neighborhoods: UI view hierarchy
graphs typically exhibit heterophilic relationships, where nodes of-
ten connect to functionally distinct neighbors, while similar nodes
(e.g., sibling components) are situated as unconnected siblings at
the same depth. (2) Hierarchical Individuality: Tree structures cre-
ate shared traits at the same depth but distinctive characteristics
across different depths. Most GNNs aggregate neighbors uniformly,
which cascades across neighborhoods of different hops. While this
maintains depth-based commonalities, it may erase distinctions
across depths. Thus, heterophilic GNNs [19, 36] that maintain in-
dividuality across hops are ideal for UFP rather than homophilic
ones [18, 22] , a need largely unaddressed by existing graph-based
UI understanding methods [24]. This setup enables GIFT to capture
both relational structures and hierarchical individuality crucial for
accurate focus prediction.

5.1.3 Inductive Binary Prediction. After relationship extraction,
each component’s embedding undergoes classification through an
MLP, predicting focusability as a binary outcome. Since each page
has its graph derived from the view hierarchy, GIFT operates in-
ductively, processing each page independently rather than using
a fixed graph as in transductive GNNs. When a new page is intro-
duced, a new graph is generated with components as nodes, which
then pass through the three modules. This design enables GIFT
to generalize efficiently without prior exposure to specific page
structures, adapting to each page’s unique structure.

5.2 Experiments
In this section, we conduct extensive experiments to address the
following research questions:

• RQ1: How does the proposed GIFT perform compared with
graph-agnostic methods? What kind of GNNs are most suitable?

• RQ2: What are the contributions of each component in GIFT?
• RQ3: How do existing Multimodal Large Language Models per-
form relative to GIFT on the UFP task?

5.2.1 Baselines and Experimental Settings. We evaluate GIFT across
three versions of the NOS dataset, i.e., Rico-labeled, NOS-labeled,
and NOS (Mixed). Baselines: (1) Heuristic approaches: TalkBack;
(2) Graph-agnostic methods: DeTR (CLAY-trans) [5, 24], MLP and
Transformer [39] (GIFT variants without the graph-based mod-
ule); (3) Graph-based methods (GIFT +GNNs): GCN [22], GAT [40],
GraphSAGE [20], SIGN [16], OrderedGNN [36], SGFormer [47],
IGNN [19]; (4)Multimodal Large LanguageModels (MLLMs): Intern2-
VL-8B [10], CogAgent-18B [21], Qwen2-VL-7B [43], MiniCPM 2.6
V-8B [51]. Experimental Setup23: The NOS dataset is randomly
split into train/valid/test sets in a 60%/20%/20% ratio, repeated three
times. We report the mean and standard deviation of the perfor-
mance metrics across these splits, i.e., macro F1-score (MaF1) and
area under the curve (AUC). For all experiments, we use pre-trained
ViT and BERT parameters, which remain frozen during training.

2Code: https://github.com/eaglelab-zju/NOS
3DOI: https://doi.org/10.5281/zenodo.14803014

https://github.com/eaglelab-zju/NOS
https://doi.org/10.5281/zenodo.14803014
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Table 4: Performance Comparison across Rico-labeled, NOS-raw-labeled, and NOS (Mixed) Datasets. R. means rank, and A.R. is
short for average rank. Bolded scores indicate the highest values, while underlined scores are the second-highest.

Model Rico-labeled NOS-raw-labeled NOS (Mixed)
MaF1±Std R. AUC±Std R. MaF1±Std R. AUC±Std R. MaF1±Std R. AUC±Std R. A.R.

Heuristic Talkback — — 72.27±1.56 10 — — —
Graph-
agnostic

DeTR (CLAY-trans) 65.14±0.39 9 87.35±0.88 9 74.87±1.75 9 88.57±0.94 9 71.96±1.38 9 88.11±0.92 9 9.00
GIFT +MLP 72.56±1.26 6 91.49±0.66 6 79.55±0.58 8 92.51±0.55 8 77.68±0.32 8 92.83±0.50 8 7.33

GIFT +Transformer 74.96±1.16 5 93.08±0.35 4 80.75±0.26 6 93.37±0.52 7 78.81±0.39 6 93.47±0.06 7 5.83

Graph-
based
GIFT +

GCN 64.02±0.39 10 87.27±0.32 10 67.75±2.72 11 84.77±1.85 10 68.42±1.27 10 87.96±0.22 10 10.17
GAT 75.28±2.00 3 92.62±0.85 5 82.38±0.58 4 94.59±0.58 4 82.51±1.00 2 95.38±0.16 2 3.33

GraphSAGE 71.58±0.99 8 90.66±0.37 8 80.89±0.46 5 93.75±0.38 5 80.01±0.90 5 93.89±0.21 5 6.00
SIGN 71.99±0.80 7 90.82±1.28 7 80.08±0.50 7 93.50±0.54 6 77.94±0.49 7 93.55±0.60 6 6.67

OrderedGNN 75.15±2.22 4 93.13±1.09 3 82.27±1.24 3 95.01±0.55 2 82.24±1.24 3 95.21±0.34 4 3.16
SGFormer 75.88±1.64 2 93.32±0.64 2 82.94±0.61 2 94.91±0.32 3 82.19±0.44 4 95.26±0.05 3 2.67

IGNN 77.59±2.65 1 94.33±0.97 1 84.37±0.62 1 95.81±0.21 1 83.87±0.49 1 95.91±0.09 1 1.00

Table 5: Ablation Studies. lbd is short for labeled.

Model Rico-lbd NOS-raw-lbd NOS (Mixed)
MaF1 AUC MaF1 AUC MaF1 AUC

w/o Visual 70.72 91.68 78.20 91.67 73.92 91.78
w/o Textual 75.97 93.87 83.88 95.52 82.52 95.44
w/o Attributes 67.50 89.85 77.11 91.88 74.75 92.18
w/o Location 76.27 93.70 84.09 95.79 82.78 95.70
w/o Graph 72.56 91.49 79.55 92.51 77.68 92.83
GIFT +IGNN 77.59 94.33 84.37 95.81 83.87 95.91

5.2.2 Performance Analysis (RQ1). Table 4 presents the perfor-
mance results. Several observations can be drawn: (1) The heuristic
focus model, TalkBack, achieves an F1 score of 72.27, ranking 10th
out of 11 models. This result underscores the significant challenges
in achieving focus accessibility and highlights the need for ad-
vanced, intelligent models to address the UFP task effectively. (2)
Graph-based models generally outperform graph-agnostic mod-
els, particularly when a suitable GNN backbone is selected. The
GCN variant demonstrates the lowest performance likely due to its
limitations in handling heterophily [36]. In contrast, heterophilic
GNNs and graph transformers, such as OrderedGNN, SGFormer,
and IGNN, significantly outperform other GNNs. (3) Variants of
GIFT that incorporate transformers and GAT exhibit competitive
performance, benefiting from their adaptive attention mechanisms.
Conversely, the DeTR architecture, which is also utilized in CLAY
as a cross-attention transformer variant for the UI type recogni-
tion task, shows the third-lowest performance. This suggests that
DeTR’s cross-attention mechanism, which aligns each node’s view
hierarchy embedding with the entire page screenshot, is less effec-
tive for UFP compared to methods that leverage visual information
from cropped screenshots of individual components directly.

5.2.3 Ablation Studies (RQ2). The ablation studies are presented
in Table 5. (1) Results show that removing the visual screenshots
and one-hot script attribute results in the largest performance de-
cline, underscoring the critical role of visual semantics and script
attributes associated with component functionality in the UFP task.
(2) Excluding the graph component leads to the third-largest drop in
performance, highlighting the importance of graph-based relational
modeling within this architecture. (3) The textual and location com-
ponents contribute moderately, with slight performance decreases
when omitted. While these components add some distinguishing
information, they are less essential than the other information. (4)

Table 6: Results of MLLMs on NOS (Mixed).

Accuracy Recall Precision MaF1
Intern2-VL-8B 26.04±1.23 99.66±0.19 25.18±1.24 40.62±1.46
CogAgent-18B 26.29±0.91 97.21±0.49 25.12±1.16 39.91±1.42
Qwen2-VL-7B 35.31±0.31 96.77±0.57 27.46±1.29 42.97±1.44

MiniCPM 2.6V-8B 25.60±1.17 99.97±0.02 25.30±1.19 40.37±1.35
GIFT 91.76±0.12 85.04±0.84 82.63±1.80 83.87±0.49

The complete GIFT achieves the highest scores, confirming the
advantage of integrating all components into the model.

5.2.4 Comparison with MLLMs (RQ3). Table 6 presents the results
of several MLLMs on UFP. While the recall values for all MLLMs
approach 100%, the accuracy, precision, and macro F1-scores are
consistently low. This indicates a tendency for the MLLMs to over-
predict UI components as focusable, failing to effectively address
components with OA and SA issues. However, findings from the
formative study and user evaluations underscore the significance of
addressing OA and SA issues. Over-segmentation or inappropriate
focusability in such components often leads to semantic ambiguity,
impeding effective navigation and usage—critical barriers identified
by BLV participants. These results highlight the limited customiz-
ability of MLLMs for accessibility-specific scenarios and their inability
to adapt to diverse accessibility requirements effectively.

6 Conclusion
This paper advances the field of mobile web accessibility by in-
troducing the unified UI accessibility framework of three stages:
focusability, information, and functionality (FIF), guided by in-
sights from a formative study with 12 BLV users. We identified
key challenges across the stages, introducing the novel concept of
selective-accessible (SA) issues. FIF structures accessibility tasks
into a unified approach with 12 sub-tasks of 3 overarching tasks.
Recognizing UI focusability prediction as a pivotal yet underex-
plored task, we contribute a tailored dataset (NOS) and propose
the Graph-based UI Focusability Prediction (GIFT) method, which
leverages GNNs to model UFP-targeted contextual relationships.
Experimental and user evaluations validate the effectiveness of our
dataset and method, enhancing mobile web accessibility.
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A Related Work
Accessibility in Mobile Web and UI Test. The mobile web con-
stitutes a significant segment of the Web [41], and its accessibility
challenges are reportedly more severe than those of native appli-
cations on mobile platforms as assistive services cannot analyze
webView elements properly [32]. This highlights the urgent need to
prioritize inclusivity in the mobile web. While UI accessibility test-
ing tools tackle a range of accessibility issues, traditional methods
rooted in software engineering [28, 50] primarily rely on hard-
coded, rule-based component-level analysis. These methods often
fail to consider visual, textual, or relational contexts, which are
crucial for accurately predicting focus granularity. Recent research
has sought to address these limitations through deep learning tech-
niques. For instance, Zhang et al. [54] proposed an on-device object
detection model that extracts UI elements from screenshots, lever-
aging heuristics to refine detections, group elements and determine
navigation order. However, this method is constrained by its re-
liance on heuristics, and the absence of open-source datasets and
code limits its adaptability and broader applicability. ALVIN [53],
a GCN-based checker, focuses on addressing accessibility needs
for users with low vision but does not address focusability issues
pertinent to screen reader users. By relying solely on view hier-
archy information, it overlooks the visual semantics required for
effective focus prediction. In summary, existing accessibility testing
tools and techniques inadequately address the critical aspect of fo-
cusability, lacking the semantic and relational insights necessary for
optimizing focus prediction. This underscores the need for an intelli-
gent approach beyond rule-based and heuristic checks, as well as a
deeper understanding of user-specific accessibility requirements.

UI Understanding and Modeling. Certain research efforts in
UI understanding and modeling, such as UI detection, type recog-
nition, and tappability prediction [24, 34], contribute to the cre-
ation of accessibility metadata by providing foundational infor-
mation [49, 54] (e.g., size, position, type, etc.). While these tasks

can partially support UI focusability improvements, they struggle
with selective focusability in complex scenarios, such as the group-
ing or segmentation of multiple UI elements. Similarly, studies on
UI grouping [48] primarily aim to facilitate applications like UI
code generation [9], rather than addressing accessibility concerns.
Consequently, these approaches fail to address key focusability is-
sues, such as non-accessible or over-accessible elements. Moreover,
although AI-driven agents for UI manipulation [46] are gaining pop-
ularity, their pre-training tasks generally target broader objectives
like general UI understanding, often overlooking user-centric acces-
sibility requirements. Overall, there is a noticeable gap in unified UI
understanding tasks tailored specifically to accessibility, particularly
in resolving focusability challenges. Developing such a task is crucial
for ensuring the equitable application of intelligent techniques in UI
understanding and modeling for users with disabilities. A comprehen-
sive analysis of existing UI tasks and their limitations in addressing
accessibility issues is presented in Table 7 within Appendix D.

B Algorithms of GIFT
Algorithm 1 presents the detailed process of component cleaning.

C A Comparison with Existing UI Datasets and
Additional Examples of Their Issues

We provide the details of 20 existing UI datasets in our open-source
repository: https://github.com/eaglelab-zju/NOS/tree/master/
appendix_details/A Comparison with Existing Datasets.md.

Figure 4 shows additional examples of existing dataset issues.
[T1] Non-accessible Component Recovery (Figure 4a- 4c):

In both CLAY and Rico-s datasets, a critical text component labeled
“30” is missing, which results in the loss of essential information
for users. In Figure 4c, manual annotations addressed this issue by
recovering the missing focus, thereby restoring the accessibility of
independent semantic components.

[T2] Duplicate Component Pruning (Figure 4d- 4f): The
pop-up list in Figure 4d- 4f exhibits redundancy in CLAY and Rico-s
datasets, where each list item is represented by two overlapping
bounding boxes. These redundant components reduce operational
efficiency by requiring users to navigate duplicate focuses. In our
NOS dataset, each list item is consolidated into a single focusable
component, streamlining interaction.

Algorithm 1 Component Cleaning
Input: Left (𝑙 ), right (𝑟 ), top (𝑡 ), and bottom (𝑏) coordinates of the

component node, screen height (𝐻 ) and width (𝑊 ), height of
the bottom system panel (𝑁 ), minimal width or height (𝑀)

Output: 𝑇𝑟𝑢𝑒 if the node is valid, otherwise 𝐹𝑎𝑙𝑠𝑒
1: 𝑡 = max(𝑡, 0), 𝑙 = max(𝑙, 0), 𝑏 = min(𝑏, 𝐻 − 𝑁 ), 𝑟 = min(𝑟,𝑊 )

⊲ Adjust boundaries to fit within screen edges, allowing
partial out-of-screen nodes

2: if 𝑙 +𝑀 ≥ 𝑟 or 𝑡 +𝑀 ≥ 𝑏 then
3: return 𝐹𝑎𝑙𝑠𝑒 ⊲ Filter out nodes that are too small
4: end if
5: if 𝑡 ≥ (𝐻 − 𝑁 ) or 𝑙 ≥𝑊 or 𝑏 ≤ 0 or 𝑟 ≤ 0 then
6: return 𝐹𝑎𝑙𝑠𝑒 ⊲ Filter out nodes completely outside the

screen
7: end if
8: return 𝑇𝑟𝑢𝑒

https://github.com/eaglelab-zju/NOS/tree/master/appendix_details/A%20Comparison%20with%20Existing%20Datasets.md
https://github.com/eaglelab-zju/NOS/tree/master/appendix_details/A%20Comparison%20with%20Existing%20Datasets.md
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(a) Rico-s for [T1] (b) CLAY for [T1] (c) NOS for [T1] (d) Rico-s for [T2] (e) CLAY for [T2] (f) NOS for [T2]

(g) Rico-s for [T3] (h) CLAY for [T3] (i) NOS for [T3] (j) Rico-s for [T4] (k) CLAY for [T4] (l) NOS for [T4]

(m) Rico-s for [T5] (n) CLAY for [T5] (o) NOS for [T5] (p) Rico-s for [T6] (q) CLAY for [T6] (r) NOS for [T6]

Figure 4: Examples of Various NA, OA, and SA Issues. (4a)-(4c): [T1] Non-accessible Component Recovery; (4d)-(4f): [T2]
Duplicate Component Pruning; (4g)-(4i): [T3] Invisible Component Filtering; (4j)-(4l): [T4] Inactive Component Filtering;
(4m)-(4o): [T5] Semantic Component Aggregation; (4p)-(4r): [T6] Complex Component Segmentation.

[T3] Invisible Component Filtering (Figure 4g- 4i): Fig-
ure 4g- 4i involve a page with two stacked views, where the lower
layer is invisible. The Rico-s dataset fails to filter out invisible com-
ponents, potentially misleading users about the content of the page.
Both CLAY and manually annotated datasets retain only visible
components as focusable elements. However, the CLAY dataset
includes an unnecessary outermost bounding box.

[T4] Inactive Component Filtering (Figure 4j- 4l): In Fig-
ure 4j- 4l, a pop-up overlays inactive views. Neither the CLAY

nor Rico-s datasets filter out components from the inactive views,
complicating user interaction and comprehension of the pop-up
functionality. The manual annotations (Figure 4 l) focus exclusively
on the active pop-up, improving user understanding and efficiency.

[T5] Semantic Component Aggregation (Figure 4m- 4o):
Figure 4m- 4o contain numerous icons. In CLAY and Rico-s datasets,
icons and their corresponding labels are treated as separate com-
ponents. The annotated dataset NOS (Figure 4 o) groups them into
unified components, enhancing usability by aligning semantic and
visual associations, thus improving operational efficiency.
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Table 7: Comparison of UFP with Existing UI Tasks. N., O.
and S. are short for NA,OA and SA issues,respectively.

Existing UI Tasks and Their Limitation for UFP N. O. S.

1 UI Detection[11, 27]: Identifying visible components without as-
sessing accessibility requirements of focusability. ✗ ✗

2 Type Recognition[15, 24, 37]: Classifying component types with-
out determining accessibility needs of focusability. ✗ ✗ ✗

3 Function Inference[3, 6, 38]: Inferring potential functionality but
lacking granularity to decide on focus exposure for ATs. ✗ ✗ ✗

4 Tappability Prediction[24]: Identifying clickable elements with-
out addressing focusability for non-clickable but accessible ones. ✗ ✗ ✗

5 Widget Captioning[25]: Generating captions for individual com-
ponents without handling accessibility needs of focusability. ✗ ✗ ✗

6 Screen Summarization[42]: Providing an overview of the screen
without considering element distinction needed for accessibility. ✗ ✗ ✗

7 UI Component Suggestion[15, 24, 37]: Suggesting components
but lacking predictions on whether they should be focusable. ✗ ✗ ✗

8 Touch Gesture Recognition: Focusing on user gestures without
addressing accessibility requirements. ✗ ✗ ✗

9 User Intent Detection[30, 55]: Detecting general intent without
providing context-sensitive accessibility requirements. ✗ ✗ ✗

10 User Flow Prediction[37]: Predicting user flows without consid-
ering accessibility needs. ✗ ✗ ✗

11 Screen Transition Prediction[46]: Forecasting screen changes
without attention to individual element accessibility. ✗ ✗ ✗

12 UI Aesthetics Evaluation: Evaluating visual appeal without con-
sidering accessibility needs for users with disabilities. ✗ ✗ ✗

13 Command Grounding[8]: Mapping commands to actions without
predicting context-based focusability accessibility of components. ✗ ✗ ✗

14 Interaction Modeling[7]: Modeling multi-modal interactions yet
lacking predictive accessibility within complex interfaces. ✗ ✗ ✗

15 Conversation Perception[37]: Interpreting conversational cues
without addressing accessibility needs of focusability. ✗ ✗ ✗

16 Conversation Interaction: Facilitating conversation-based inter-
actions without predicting component focusability needs. ✗ ✗ ✗

UI Focusability Prediction (UFP): Achieving unified accessibility
predictions on component focusability and granularity. ✓ ✓ ✓

[T6] Complex Component Segmentation (Figure 4p- 4r):
The game information in Figure 4p- 4r is complex, with numerous
text components in the middle treated as independent entities in
both CLAY and Rico-s datasets. The manual annotations (Figure 4r)
reorganize these components into logically grouped segments. This

segmentation improves usability by presenting information in a
more structured format without compromising comprehension.

[T7] Minimal-functional Component Focusability (Fig-
ure 2a- 2c): In Figure 2a- 2c, the active pop-up in the Rico-s dataset
is treated as a single large component, with no separation focus for
its internal text or buttons. The manually annotated dataset sepa-
rates them into individual focusable components, enabling access
to the elements of independent semantics and interactions. While
the CLAY dataset also treats the pop-up’s internal components
as distinct, it includes additional components from inactive views
beneath the pop-up, which may confuse users.

[T8] Hierarchical Consistency Enforcement (Figure 2d-
2f): Figure 2d- 2f depict a pop-up list with inconsistent component
focuses in CLAY and Rico-s datasets. For example, the focus of the
list item ❶ is missing, while other items feature nested focus boxes.
The manual annotations unify the structure by designating the
outermost focus box of each list item as a single focusable element.

D A Comparison with Existing UI Tasks
The limitations of 16 existing UI tasks for addressing NA, OA, and
SA issues are demonstrated in Table 7, with a summary of them
presented in our open-source repository https://github.com/
eaglelab-zju/NOS/tree/master/appendix_details/AComparisonwith
Existing UI Tasks.md.

E Details of Formative Study and User
Evaluation

The details of the formative study and user evaluation can be
found in our open-source repository https://github.com/eaglelab-
zju/NOS/tree/master/appendix_details/Formative Study.md.

https://github.com/eaglelab-zju/NOS/tree/master/appendix_details/A%20Comparison%20with%20Existing%20UI%20Tasks.md
https://github.com/eaglelab-zju/NOS/tree/master/appendix_details/A%20Comparison%20with%20Existing%20UI%20Tasks.md
https://github.com/eaglelab-zju/NOS/tree/master/appendix_details/A%20Comparison%20with%20Existing%20UI%20Tasks.md
https://github.com/eaglelab-zju/NOS/tree/master/appendix_details/Formative%20Study.md
https://github.com/eaglelab-zju/NOS/tree/master/appendix_details/Formative%20Study.md
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