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Abstract

Graph Neural Networks (GNNs) have emerged as the de facto standard for repre-
sentation learning on graphs, owing to their ability to effectively integrate graph
topology and node attributes. However, the inherent suboptimal nature of node con-
nections, resulting from the complex and contingent formation process of graphs,
presents significant challenges in modeling them effectively. To tackle this issue,
Graph Structure Learning (GSL), a family of data-centric learning approaches,
has garnered substantial attention in recent years. The core concept behind GSL
is to jointly optimize the graph structure and the corresponding GNN models.
Despite the proposal of numerous GSL methods, the progress in this field remains
unclear due to inconsistent experimental protocols, including variations in datasets,
data processing techniques, and splitting strategies. In this paper, we introduce
OpenGSL, the first comprehensive benchmark for GSL, aimed at addressing this
gap. OpenGSL enables a fair comparison among state-of-the-art GSL methods by
evaluating them across various popular datasets using uniform data processing and
splitting strategies. Through extensive experiments, we observe that existing GSL
methods do not consistently outperform vanilla GNN counterparts. However, we do
observe that the learned graph structure demonstrates a strong generalization ability
across different GNN backbones, despite its high computational and space require-
ments. We hope that our open-sourced library will facilitate rapid and equitable
evaluation and inspire further innovative research in the field of GSL. The code of
the benchmark can be found in https://github.com/OpenGSL/OpenGSL.

1 Introduction

Graph Neural Networks (GNNs) [4, 13, 8, 32] have emerged as the dominant approach for learning
on graph-structured data, thanks to their exceptional ability to leverage both the graph topology
structure and node attributes [35]. Considerable endeavors have been recently made to enhance
the performance of GNNs by refining the architectures of GNN models, such as neural message
passing [32, 37, 36, 7, 2] and transformer based methods [14, 39, 28]. However, these model-centric
methods overlook the potential flaws of the underlying graph structure, which can result in sub-
optimal performance. Notably, extensive evidence from previous studies [24] confirms that real-world
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Figure 1: Timeline of GSL research. Bottom left corner: illustrations of the three training strategies.

graphs often exhibit subpar characteristics, such as the absence of valuable links and the presence of
spurious connections among nodes.

To improve the graph quality, Graph Structure Learning (GSL) [48], a family of data-centric graph
learning methods [42, 41, 23], has recently attracted considerable research interest. These methods
target optimizing the graph structure and the corresponding GNN representations jointly [19, 16,
11, 5, 33]. By refining the graph structure, GSL methods can potentially empower GNNs to learn
better representations with improved performance. GSL has been successfully applied to disease
analysis [3] and protein structure prediction [12].

Despite the plethora of GSL methods proposed in recent years, as illustrated in Figure 1, there is no
comprehensive benchmark for GSL, which significantly impedes the understanding and progress of
GSL in several aspects. i) The use of different datasets, data processing approaches, data splitting
strategies, and GNN backbones in the previous work makes many of the results incomparable. ii)
There is a lack of understanding of the learned structure itself, particularly regarding its homophily
and generalizability to other GNN backbones. iii) Apart from accuracy, understanding each method’s
computation and memory costs is imperative, yet often overlooked in the literature.

To bridge this gap, we introduce OpenGSL, the first comprehensive benchmark for GSL. OpenGSL
implements a wide range of GSL algorithms through unified APIs, while also adopting consistent data
processing and data splitting approaches for fair comparisons. Through benchmarking the existing
GSL methods on various datasets, we make the following contributions:

• Comprehensive benchmark. OpenGSL enables a fair comparison among twelve state-of-the-art
GSL methods by unifying the experimental settings across ten popular datasets of diverse types and
scales. Surprisingly, the empirical results reveal that GSL methods do not consistently outperform
the vanilla GNNs.

• Multi-dimensional analysis. We conduct a systematic analysis of GSL methods from various
dimensions, encompassing the homophily of the learned structure, the generalizability of the
learned structure across GNN backbones, and the time and memory efficiency of the existing
methods. Our key findings: i) Contrary to the common belief in the homophily assumption,
increasing the homophily of the structure does not necessarily translate into improved performance.
ii) The learned structures by GSL methods exhibit strong generalizability. iii) Most GSL methods
are time- and memory-inefficient, some of which require orders of magnitudes more resources than
vanilla GNNs, highlighting the pressing need for more efficient GSL approaches.

• Open-sourced benchmark library and future directions: We have made our benchmark library
publicly available on GitHub, aiming to facilitate future research endeavors. We have also outlined
potential future directions based on our benchmark findings to inspire further investigations.

To summarize, in this paper, we aim to create a comprehensive benchmark that facilitates the regular
evaluation of graph structure learning algorithms, encourages new research, and ultimately advances
the efficacy of the field as a whole.
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2 Formulations and Background

Notations. Let G = (V, E ,A,X) be a graph, where V is the set of N nodes and A ∈ RN×N is
the adjacent matrix. E denotes the edge set and X ∈ RN×d represents the corresponding feature
matrix with dimension d. Typically, a GNN model is often parameterized by a mapping function
f : (A,X) → H ∈ RN×l, which maps each node v ∈ V into a l-dimensional embedding vector hv .
In the semi-supervised setting, some nodes vi ∈ Vtrain are often associated with labels yi to guide
the GNNs training. Please note that in the traditional GNNs, the adjacent matrix A only serves as
input and is not updated along with the training of GNNs. In the GSL methods, a gradually updated
structure S ∈ RN×N is learned to replace the original structure A and optimize with respect to the
training process. This is the major difference between traditional GNNs and GSL methods.

Timeline of GSL methods through the lens of training procedures. To provide a global under-
standing of the literature, we provide a high-level overview of the existing GSL methods based on
their training procedure. Specifically, we identify two key components in GSL methods: structure
learning component and GNN component. Based on the interaction between these two components,
we partition existing GSL methods into three categories, depicted in bottom left corner of Figure 1: (a)
pre-training, (b) co-training, and (c) iter-training. Pre-training involves a two-stage learning process,
where the structure is learned through pre-training and then used to train GNNs in downstream tasks
[19, 16, 43]. In co-training methods [6, 1, 21], neural networks that generate the graph structure
are optimized together with GNNs. The iterative methods [33, 49, 31] involve training the two
components iteratively; they learn the structure from predictions or representations generated by an
optimized GNN and use it to train a new GNN model for the subsequent iteration.

Homophily and Heterophily. Homophily [24] and heterophily are two mutually exclusive measure-
ment based on similarity between connected node pairs, where two nodes are considered similar if
they share the same node label. The homophily of graph G can be formulated as:

homo(G) = 1

|E|
|{(vi, vj)|(vi, vj) ∈ E , yi = yj}| (1)

where |E| is the number of observed edges. Correspondingly, the heterophily of graph G is defined as
1− homo(G). The homophily of graphs have been widely assumed to be key motivation of designing
GNNs, although a few recent works [22, 20] have argued on it. Although some GSL methods [44, 33]
also claim to learn a graph structure with high homophily, the homophily of the graph structure
learned by GSL methods have not been studied.

3 Benchmark Design

We begin by introducing the datasets utilized in our benchmarking process, along with the algorithm
implementations. Then, we outline the research questions that guide our benchmarking study.

3.1 Datasets and Implementations

Datasets. In order to provide a comprehensive evaluation of existing GSL methods, we collect 10
graph datasets that have been widely used in the GSL literature. These selected datasets come from
different domains and exhibit different characteristics, enabling us to evaluate the generalizability of
existing methods across a range of scenarios. Specifically, we use three classic citation datasets [29],
namely Cora, Citeseer, Pubmed, as well as two representative social network datasets BlogCatalog
and Flickr [10]. Additionally, we include five datasets that have been proposed recently in [27], due
to their ability to overcome the drawbacks of the commonly used heterophilous datasets[25]. Table 1
shows the statistics of these datasets, which are divided into two groups according to whether their
edge homophily are higher than 0.5.

The data splitting methods in different GSL works are not consistent, bringing difficulties in conduct-
ing fair comparisons. We investigate various GSL works and choose the data splits that are most
commonly used. For three citation datasets, we use the classic split from [38, 13]. For BlogCatalog
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Table 1: Overview of the datasets used in this study.
group Dataset # Nodes # Edges # Feat. Avg. # degree # Classes # Homophily

ho
m

op
hi

lo
us Cora 2,708 5,278 1,433 3.9 7 0.81

Citeseer 3,327 4,552 3,703 2.7 6 0.74
Pubmed 19,717 44,324 500 4.5 3 0.80
Questions 48,921 153,540 301 6.3 2 0.84
Minesweeper 10,000 39,402 7 7.9 2 0.68

he
te

ro
ph

ilo
us BlogCatalog 5,196 171,743 8,189 66.1 6 0.40

Flickr 7,575 239,738 12,047 63.3 9 0.24
Amazon-Ratings 24,492 93,050 300 7.6 5 0.38
Roman-Empire 22,662 32,927 300 2.9 18 0.05
Wiki-cooc 10,000 2,243,042 100 448.6 5 0.34

and Flickr, we follow the split in [10, 44]. For five heterophilous datasets, we follow the original split
in [27]. More details about these datasets can be found in the supplemental materials.

Implementations. We consider a collection of state-of-the-art algorithms, including ProGNN [11],
IDGL [1], GRCN [40], GAug [44], SLAPS [5], GEN [33], GT [30], Nodeformer [34], CoGSL [17],
SUBLIME [19], STABLE [16], and SEGSL [49]. We rigorously reproduced all methods according
to their papers and source codes. To ensure a fair evaluation, we perform hyperparameter tuning with
the same search budget on the same dataset for all methods. More details on these algorithms and
implementations can be found in the supplemental materials and the GitHub repository.

3.2 Research Questions

We carefully design the OpenGSL to systematically evaluate existing methods and inspire future
research. Specifically, we aim to answer the following research questions.

RQ1: How much progress has been made by existing GSL methods?

Motivation. Previous research in GSL has been hindered by the use of different data preprocessing,
and splits, which make it difficult to fairly evaluate and compare the performance of different methods.
Given the fair comparison environment provided by OpenGSL, the first research question is to revisit
how much progress has been made by existing GSL methods. By answering this question, we aim to
gain a deeper understanding of the strengths and weaknesses of existing methods, and identify areas
that offer potential for further enhancements.

Experiment Design. Following the experimental setting of existing GSL methods, we conduct the
node classification experiments on all the datasets. For each method and dataset, we report the mean
performance and standard deviation of 10 runs. For binary classification datasets, we report ROC
AUC metric, while for other datasets, we report accuracy metric. Since most of the implemented GSL
methods have used GCN as backbone, we compare the performances of GSL methods with vanilla
GCN to verify the enhancement of learning structures.

RQ2: Does GSL benefit from learning graph structures with higher homophily?

Motivation. The homophily assumption has been a fundamental motivation of modern GNNs
designs, which has also been brought to the GSL scenarios. More specifically, some existing
GSL methods have attempted to learn the structure with higher homophily by introducing explicit
homophily-oriented objectives [44, 33]. However, the validity of these claims is questionable since
they have been evaluated only on a limited set of toy datasets [33], with little examination of their
generalizability. As researchers have started to question the homophily assumption on GNNs [22], it
becomes imperative to re-evaluate the significance of GSL methods in learning more homophilous
graph structures.

Experiment Design. To answer this question, we first compare the homophily of the structure
learned by GSL methods with the original one. Then we determine whether the reported performance
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improvements stem from a more homophilous graph structure by examining the correlation between
the homophily and node classification performance.

RQ3: Can the learned structures generalize to other GNN backbones?

Motivation. Although node classification tasks have been a popular means of evaluating GNNs
optimized by GSL methods, the quality of the learned graph structure has not been thoroughly
evaluated. It can be assumed that the learned graph structure is superior to the original one, which
could potentially benefit other GNN models. Therefore, it is crucial to conduct experiments using
both task-dependent and task-agnostic methods to evaluate the generalizability and expand the impact
of the learned graph structure.

Experiment Design. To answer this research question, we use the learned structure and original
features to create a new graph data G′ = (S,X), and train a new GNN method from scratch. By
comparing the performance of the GNNs on the original graph and the new graph, we can evaluate
the generalizability of the learned structure. To further verify the effectiveness of learned structure,
we also include two non-GNN methods, Label Propagation [47, 46] and LINK [45], that only take
graph structure as input for node classification.

RQ4: Are existing GSL methods efficient in terms of time and space?

Motivation. As the GSL methods simultaneously optimize the GNNs and graph structure, they
naturally consume more computational complexity and space than the GNNs. However, the efficiency
of GSL methods have been largely overlooked by existing methods. Although introducing the
structure learning may benefit the GNNs, the extra computational consumption has posed significant
requirements of trade-off between performance and efficiency. It is critical to understand the trade-off
for deploying the GSL in the practical applications.

Experiment Design. To answer this research question, we evaluate the efficiency of each GSL
method in terms of time and space. Specifically, we record the wall clock running time and peak GPU
memory consumption during each method’s training process. For a fair comparison, all experiments
in this part were conducted on a single NVIDIA A800 GPU.

4 Experiment Results and Analyses

4.1 Performance Comparison (RQ1)

We present the performance of all methods on 10 datasets in Table 2 and Table 3. Below are the key
findings from these tables.

① Many GSL methods works on homophilous graphs, while most methods cannot handle
imbalanced situations. Table 2 demonstrates that most GSL methods outperform vanilla GCN on
balanced homophilous graphs such as Cora, Citeseer, and Pubmed. Out of the 12 methods tested,
7 methods exceeded GCN on at least two datasets, and 9 methods outperformed GCN on at least
one dataset. However, some methods were unable to surpass vanilla GCN, suggesting that structure
learning might even degrade GNN performance. This result highlights the need to investigate the
general effectiveness of GSL methods further. In contrast, the results were vastly different on datasets
such as Questions and Minesweeper, where only a few methods showed an advantage over GCN. The
imbalanced nature of these datasets limited the power of GSL, indicating that their effectiveness is
constrained on such types of data. This fact suggests that as many real-world graphs are imbalanced,
evaluating the effectiveness of GSLs on imbalanced datasets should receive more attention in the
future research.

② GSL methods can also be effective on heterophilous graphs. Table 3 reveals that some GSL
methods, including IDGL, GAug, GEN, and SUBLIME, have the potential to exceed vanilla GCN on
heterophilous graphs such as BlogCatalog, Flickr, and Amazon-ratings. This finding is intriguing
because homophily is not well-preserved on these graphs, inspiring us to investigate the correlation
between homophily and structure learning. However, the results were different on Roman-empire
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Table 2: Node classification results on Cora, Citeseer, Pubmed, Questions and Minesweeper. Shown
is the mean ± s.d. of 10 runs with different random seeds. Highlighted are the top first, second, and
third results. – denotes out of memory or time limit exceeded.

Strategy Model Cora Citeseer Pubmed Questions Minesweeper
– GCN 81.95 ± 0.62 71.34 ± 0.48 78.98 ± 0.35 75.80 ± 0.51 78.28 ± 0.44

Co-training ProGNN 80.27 ± 0.48 71.35 ± 0.42 79.39 ± 0.29 – 51.43 ± 2.22
Co-training IDGL 84.19 ± 0.61 73.26 ± 0.53 82.78 ± 0.44 50.00 ± 0.00 50.00 ± 0.00
Co-training GRCN 84.61 ± 0.34 72.34 ± 0.73 79.30 ± 0.34 74.50 ± 0.84 72.57 ± 0.49
Co-training GAug(O) 83.43 ± 0.53 72.79 ± 0.86 78.73 ± 0.77 – 77.93 ± 0.64
Co-training SLAPS 72.29 ± 1.01 70.00 ± 1.29 70.96 ± 0.99 – 50.89 ± 1.72
Co-training GT 80.79 ± 1.14 68.50 ± 2.07 77.91 ± 0.58 75.36 ± 0.92 89.70 ± 0.28
Co-training Nodeformer 78.81 ± 1.21 70.39 ± 2.04 78.38 ± 1.94 72.61 ± 2.29 77.29 ± 1.71

Iter-training GEN 81.66 ± 0.91 73.21 ± 0.62 78.49 ± 3.98 – 79.56 ± 1.09
Iter-training CoGSL 81.46 ± 0.88 72.94 ± 0.71 – – –
Iter-training SEGSL 81.04 ± 1.07 71.57 ± 0.40 79.26 ± 0.67 – –

Pre-training SUBLIME 83.33 ± 0.73 72.44 ± 0.89 80.56 ± 1.32 67.21 ± 0.99 49.93 ± 1.36
Pre-training STABLE 83.25 ± 0.86 70.99 ± 1.19 81.46 ± 0.78 – 70.78 ± 0.27

Table 3: Node classification results on BlogCatalog, Flickr, Amazon-ratings, Roman-empire and
Wiki-cooc. Shown is the mean ± s.d. of 10 runs with different random seeds. Highlighted are the top
first, second, and third results. – denotes out of memory or time limit exceeded.

Strategy Model BlogCatalog Flickr Amazon-ratings Roman-empire Wiki-cooc
– GCN 76.12 ± 0.42 61.60 ± 0.49 45.24 ± 0.29 70.41 ± 0.47 92.03 ± 0.19

Co-training ProGNN 73.38 ± 0.30 52.88 ± 0.76 – 56.21 ± 0.58 89.07 ± 5.59
Co-training IDGL 89.68 ± 0.24 86.03 ± 0.25 45.87 ± 0.58 47.10 ± 0.65 90.18 ± 0.27
Co-training GRCN 76.08 ± 0.27 59.31 ± 0.46 50.06 ± 0.38 44.41 ± 0.41 90.59 ± 0.37
Co-training GAug(O) 76.92 ± 0.34 61.98 ± 0.67 48.42 ± 0.39 52.74 ± 0.48 91.30 ± 0.23
Co-training SLAPS 91.73 ± 0.40 83.92 ± 0.63 40.97 ± 0.45 65.35 ± 0.45 89.09 ± 0.54
Co-training GT 70.70 ± 5.62 43.19 ± 6.53 48.55 ± 0.34 76.49 ± 0.80 90.26 ± 1.24
Co-training Nodeformer 44.53 ± 22.62 67.14 ± 6.77 41.33 ± 1.25 56.54 ± 3.73 54.83 ± 4.43

Iter-training GEN 90.48 ± 0.99 84.84 ± 0.81 49.17 ± 0.68 – 91.15 ± 0.49
Iter-training CoGSL – – – – –
Iter-training SeGSL 75.03 ± 0.28 60.59 ± 0.54 – – –

Pre-training SUBLIME 95.29 ± 0.26 88.74 ± 0.29 44.49 ± 0.30 63.93 ± 0.27 76.10 ± 1.12
Pre-training STABLE 71.84 ± 0.56 51.36 ± 1.24 48.36 ± 0.21 41.00 ± 1.18 80.46 ± 2.44

and Wiki-cooc datasets, where only a few methods demonstrated an improvement over GCN. This
observation suggests that the heterophilous datasets may have informative structural patterns that
current GSL methods targeting homophily undermine. For more in-depth analysis, please refer to
section 4.2.

4.2 Correlation between Homophily and Structure Learning (RQ2)

To analyze the correlation between homophily and structure learning, we plot the homophily of the
learned structure and the node classification performance in the same figure. Figure 2 and Figure 3
show the results, from which we have the following observations:

③ The homophily of the learned structures varies on homophilous and heterophilous datasets.
The results presented in Figure 2 are intriguing. They demonstrate that on homophilous datasets, the
homophily of the learned structures is scarcely different from the original structure, and in some cases,
even lower. This is counterintuitive, considering that methods like GEN explicitly aim to increase the
homophily of the learned structures. However, on heterophilous datasets in Figure 3, the homophily
of the learned structures is significantly improved in most cases, possibly due to the starting level
of graph homophily. Because most GSL methods are trained with limited supervision signals, the
number of edges that can be recovered or removed by GSL is limited. Thus, on heterophilous datasets
where most edges do not fit the homophily assumption, these limited edges are more likely to be
updated. On the other hand, they are already satisfied on homophilous datasets, explaining the lack
of improvement there.
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Figure 2: Homophily of learned structures and performances on homophilous datasets. The methods
are ordered by homophily.
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Figure 3: Homophily of learned structures and performances on heterophilous datasets. The methods
are ordered by homophily.

④ Homophily is not a proper guidance for structure learning. As shown in both Figure 2 and
Figure 3, homophily is only significantly positively correlated with performance on two datasets,
i.e., BlogCatalog and Flickr. In most cases, we do not observe positive correlation between the
performance and the homophily. These findings suggest that homophily of structure is not a proper
guidance for GSL in all cases, which may break the common assumption and expect novel learning
objective. This can be somhow explained by the viewpoint that certain heterophilous structural
patterns can be leveraged by GNNs [22, 20], thereby guiding structure learning with homophily may
break these patterns and leading to suboptimal results.

4.3 Generalizability (RQ3)

We show the performance of several GNN models and simple non-GNN models using the structures
learned by GSL methods as inputs in Table 4 and 5, from which we have the following observations:

⑤ The structures learned by GSL methods exhibit strong generalizability. The results in
Table 4 and 5 demonstrate that many GNN backbones show improved performance on the learned
structure, marked in green, as compared to the original structure. This observation underscores
the generalizability of the learned structure and its potential to enhance numerous GNN methods.
Additionally, we observed that the structures learned by GSL methods also help to improve the
performance of two simple non-GNN methods - LPA and LINK - and in some instances, they
even outperform GNNs. The promising results strengthen the notion of the learned structure’s
generalizability, even without considering node features as input. In conclusion, the experimental
results provide strong evidence for the generalizability of the learned structure and call for further
exploration and applications of GSL methods.
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Table 4: Generalizability on Cora. Improvements over the original structure are marked green.
Structure source GCN SGC JKNet APPNP GPRGNN LPA LINK
A 81.95 ± 0.62 80.00 ± 0.14 80.40 ± 1.13 83.33 ± 0.33 83.51 ± 0.67 60.30 ± 0.00 50.06 ± 2.46
ProGNN 82.58 ± 0.47 82.10 ± 0.44 82.24 ± 0.85 83.38 ± 0.57 83.36 ± 0.40 75.85 ± 0.39 78.64 ± 0.22
IDGL 83.01 ± 0.56 83.44 ± 0.27 82.22 ± 0.59 84.34 ± 0.61 84.76 ± 0.66 77.31 ± 0.58 75.27 ± 1.66
GRCN 83.98 ± 0.35 84.66 ± 0.33 84.09 ± 0.46 83.35 ± 0.47 84.41 ± 0.81 79.03 ± 0.56 81.83 ± 0.24
GEN 81.74 ± 0.97 81.82 ± 1.27 81.92 ± 0.77 82.21 ± 0.97 82.16 ± 0.93 80.97 ± 1.47 79.12 ± 3.31
SUBLIME 82.69 ± 0.49 82.32 ± 0.48 81.98 ± 0.65 82.79 ± 0.61 83.59 ± 0.76 78.42 ± 1.08 81.25 ± 1.23

Table 5: Generalizability on BlogCatalog. Improvements over the original structure are marked green.
Structure source GCN SGC JKNet APPNP GPRGNN LPA LINK
A 76.12 ± 0.42 75.37 ± 0.08 74.17 ± 0.42 93.72 ± 0.10 93.82 ± 0.16 57.53 ± 0.00 64.47 ± 0.30
ProGNN 71.73 ± 0.88 75.20 ± 0.12 73.73 ± 0.69 93.71 ± 0.27 94.70 ± 0.26 53.66 ± 0.12 66.00 ± 0.79
IDGL 89.35 ± 0.23 75.20 ± 0.12 89.77 ± 0.32 94.90 ± 0.17 95.39 ± 0.17 73.84 ± 0.30 81.25 ± 0.17
GRCN 75.69 ± 0.34 74.77 ± 0.29 75.62 ± 0.28 93.45 ± 0.14 93.53 ± 0.24 59.68 ± 0.24 66.76 ± 0.54
GEN 90.01 ± 1.62 89.31 ± 2.97 90.23 ± 1.09 90.37 ± 1.16 90.40 ± 1.06 86.04 ± 9.31 86.29 ± 8.73
SUBLIME 95.01 ± 0.32 94.95 ± 0.34 73.73 ± 0.69 95.35 ± 0.20 94.51 ± 0.36 89.04 ± 1.09 86.45 ± 1.42
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Figure 4: Time and space consumption of different methods on Cora

4.4 Time and Memory Efficiency (RQ4)

The efficiency of all methods on Cora are presented in Figure 4. For complete statistics on other
datasets, please refer to the supplemental materials.

⑥ Most GSL methods have large time and space consumptions. The Figure 4 clearly demon-
strate that the current state-of-the-art GSL methods is struggling to achieve a satisfactory balance
between performance and efficiency. In particular, most existing GSL methods suffer from significant
efficiency issues, with many taking up to ten times longer to run than the GCN method. According
to the results, ProGNN is the slowest, requiring 190 times longer than GCN. Likewise, most GSL
methods consume an excessive amount of memory, with CoGSL consuming up to 66 times more.
The efficiency problem of GSL methods is especially pronounced on larger datasets, as discussed in
the Supplemental Materials. According to Table 2, several GSL methods run out of memory when
performing graph structure learning on the Questions dataset. Given these findings, it is vital to
address the efficiency problem to ensure that GSL methods can be deployed successfully in a wide
spectrum of real-world scenarios.

5 Future Direrctions

Drawing upon our empirical analyses, we point out some promising future directions for GSL and
discuss future work for the refinement of OpenGSL.

Rethinking the necessity of homophily in GSL. While current GSL methods commonly pursue
homophily within the refined graph structure, observations ③ and ④ suggest that performance
enhancements in GSL do not necessarily originate from increased homophily. Consequently, it is
essential to rethink the necessity of homophily in GSL and to explore alternative factors contributing
to the effectiveness of GSL.
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Designing adaptive GSL methods for diverse datasets. Observations ① and ② indicate that
current GSL method do not universally work well across diverse datasets. Thus, there is an evident
opportunity for creating innovative GSL method that adapt effectively to diverse datasets. In pursuit
of this goal, two critical questions arise: 1) What characteristics should learned structures exhibit
for disparate datasets? Our observation ④ highlights that a sole focus on homophily may not lead to
substantial advancements in certain datasets, suggesting the need to explore more crucial properties.
2) How can we incorporate these characteristics into the structure learning? Some properties might be
hard to evaluate or optimize, hence surrogate evaluators warrant further investigation. By answering
these questions, we can develop more effective and efficient GSL methods that are better suited for a
variety of real-world applications.

Developing task-agnostic GSL methods. Existing research efforts on GSL are mainly task-
motivated. However, real-world scenarios often necessitate the refinement of a graph structure
without accessing the downstream task. Although there are a few preliminary work on task-agnostic
GSL [19, 16, 43], they exhibit certain limtations on preserving the naive characteristics such as
proximity which is not sufficient in downstream tasks like graph clustering. The core challenge is
to extract semantic information from the graph data and to define optimality of the structure in the
absence of explicit labels.

Improving the efficiency of GSL methods. Observation ⑦ exposes the issue of efficiency in GSL,
requiring further attention in GSL research. The practical utility of current GSL methodologies is often
hampered by these efficiency issues. Although some attempts have been made to address this problem,
they commonly compromise the expressiveness of GSL. These compromises include limiting the
weights on pre-existing edges [5] or employing anchor points [1]. Drawing inspiration from the
successful adoption of sampling strategies in Graph Neural Networks (GNNs) for acceleration [18],
it would be promising to devise sophisticated sampling methodologies specifically tailored for GSL.

6 Conclusion and Future Work
This paper introduces the first comprehensive graph structure learning (GSL) benchmark, OpenGSL,
by applying and comparing twelve cutting-edge methods across ten renowned datasets covering
varying types and scopes. This unbiased comparison and comprehensive analysis unearthed several
key findings about this promising research topic. Firstly, we reevaluated the correlation between
homophily and structure learning, recommending innovative learning objectives. Second, we estab-
lished the robustness and broad applications of the acquired structure. Lastly, we highlighted the
efficiency predicaments of the existing methods, emphasizing the need for essential attention. We
believe that this benchmark will have an extensive positive impact on this emerging research domain.
We have released the code to the academic community and welcome further contributions of diverse
datasets and ground-breaking methods.

Despite conducting a comprehensive benchmark for GSL methods, OpenGSL plans to further enhance
its benchmarking process. We intend to achieve this goal by incorporating several improvements
in the following ways. To begin with, we plan to widen our range of datasets to establish a more
impartial comparison. Specifically, we aim to cater to heterogeneous information networks that are
used extensively in practical applications. Secondly, in view of the efficiency limitations associated
with current GSL methods, we are looking to integrate structure learning on large-scale datasets such
as OGB [9]. Thirdly and more importantly, we believe that it is crucial to provide universal solutions
such as subgraph sampling to develop new and more efficient GSL methods. Lastly, we intend to
expand OpenGSL’s support to other graph learning tasks as most of the current research only focuses
on node classification. We will update our repository to reflect all the potential new tasks, datasets, as
well as any improvement or correction. We are also open to suggestions and welcome any comments
to improve our benchmark and elevate its usability.
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A Additional Details on Benchmark

A.1 Datasets

Cora, Citeseer and Pubmed [29] are three citation networks commonly used in prior GSL
works [1, 11, 44, 33, 34, 19], with nodes representing papers and edges representing papers’ ci-
tation relationships. Node feature are bag-of-words feature vectors. The label of each node is its
category of research topic.

BlogCatalog [10] is a social network created from an online community where bloggers can follow
each other. The features associated with each user are generated based on the keywords in their blog
description, while the labels are chosen from a set of predefined categories based on interests of
bloggers.

Flickr [10] is a platform for sharing images and videos where users can follow each other, forming
a social network. In this dataset, user-specified interest tags are used to generate features, with the
groups they have joined serving as labels.

Five datasets from [27] are listed below.

Amazon-ratings is based on the Amazon product co-purchasing network dataset [15]. In this dataset,
nodes represent products while edges connect products that are frequently bought together. Node
features are the mean of FastText embeddings for words present in the product description. The
ratings of products are divided into five distinct classes as labels.

Roman-empire is based on the Roman Empire article from English Wikipedia. In this dataset, each
node corresponds to a single word in the text. When two words are consecutive in the text or are
connected by a dependency tree, an edge is created between them. Node features are FastText word
embeddings. The label of a node is its syntactic role.

Questions is based on a question-answering website. In this dataset nodes represent users, and two
users are connected if one user answered the other user’s question during a given time interval. Node
features are the mean of FastText embeddings for words in the user’s description. The label of a node
is whether the user remained active on the website. Notably, the dataset is highly imbalanced with
97% of users belonging to the active class.

Minesweeper is a synthetic dataset based on the Minesweeper game. Each node represents a square
in a 100 × 100 grid. Two nodes are connected if they are adjacent in the grid. 20% of the nodes
are randomly designated as mines for prediction. Node features are one-hot-encoded numbers of
neighboring mines, while for 50% of the selected nodes the features are set unknown to increase task
difficulty, indicated by a separate binary feature. Notably, the dataset is also imbalanced.

Wiki-cooc is based on the English Wikipedia. In this dataset, nodes represent unique words and
edges connect frequently co-occurring words. Node features are FastText word embeddings. The
label of a node is its part of speech.

A.2 Algorithms

Here we introduce all the GSL algorithms implemented in OpenGSL.

ProGNN [11] optimizes the adjacency matrix directly, which is set as an n× n parameter matrix.
Three properties, namely sparsity, low-rankness, and smoothness, are introduced to guide structure
learning.
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IDGL [1] models the structure as a weighted cosine function of node representations. To increase
efficiency for larger graphs, the paper proposes an anchor-based structure learning method.

GRCN [40] incorporates two GNNs, one for node classification and the other one for computing
node representations that are used to derive structure via a metric function. Both GNNs are optimized
simultaneously to minimize the task loss.

GAug [44] shares a similar architecture with GRCN, differing in that GAug employs a graph auto-
encoder to learn the structure, while structure learning is guided by an edge-prediction loss in addition
to the task loss.

SLAPS [5] explores the scenario where original structure is absent. It leverages a MLP to obtain node
representations to generate structure through a metric function. The overall architecture of SLAPS is
similar to GRCN, with an additional auto-denoising loss to guide structure learning. Specifically, the
corrupted features and the learned structure are fed into another GNN, and the output is expected to
reconstruct the original features.

GEN [33] assumes that the optimal structure is generated by an SBM model, and further assumes
that the similarity matrices of the node representations at different levels are observations of the
optimal structure. The EM algorithm is employed to learn the expected optimal structure given a
well-optimized GNN. GEN performs structural learning and task learning in an iterative way.

GT[30] is a transformer-based approach that performs structure learning before message aggregation
in each layer. Edge weights are computed in a similar way as in Transformer, and only weights on
pre-existing edges are calculated to reduce complexity.

Nodeformer [34] is a model that allows for layer-wise edge reweighting on all node pairs by utilizing
a kernelized Gumbel-Softmax operator, which reduces complexity from quadratic to linear with
respect to the number of nodes. To guide structure learning, an extra edge-level regularization is
implemented.

CoGSL [17] extracts two fundamental views from the original graph and refines them using a view
estimator. An adaptive fusion strategy is employed to obtain the final view. CoGSL maintains the
performance of three views while reducing the mutual information between every two views to
achieve a "minimal sufficient structure."

SUBLIME [19] presents an approach for unsupervised structure learning. It proposes a structure
bootstrapping contrastive learning framework, where an anchor structure is set up to provide super-
vision signals for the learner structure. Specifically, SUBLIME utilizes a GNN-based encoder to
obtain node representations from both views and optimizes the GNN encoder through a node-level
contrastive loss. During the training process, the anchor structure is updated every several epochs as
the interpolation between the anchor structure and the learner structure.

STABLE [16] obtains reliable node representations leveraging contrastive learning. The new structure
is computed as the similarity matrix of node representations. In addition, an advanced GCN is
proposed to enhance the robustness of the ordinary GCN.

SEGSL [49] introduces the concept of graph structural entropy. It starts by enhancing the structure
guided by the one-dimensional structural entropy maximization strategy. Then, an encoding tree is
constructed to capture the hierarchical information of the graph structure. Finally, SEGSL reconstructs
the graph structure from the encoding tree. The method performs structure learning and task learning
in an iterative way.
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Table 6: Hyper-parameter search space of all implemented methods.
Defense Hyper-parameter Search Space

General Settings
learning rate 1e-1, 1e-2, 1e-3, 1e-4
weight decay 5e-4, 5e-5, 5e-6, 5e-7, 0

GCN [13] number of layers 2, 3, 4, 5
hidden size 16, 32, 64, 128
dropout 0, 0.2, 0.5, 0.8

GRCN [40]
K for nearest neighbors 5, 50, 100, 200
learning rate for graph 1e-1, 1e-2, 1e-3, 1e-4

SLAPS [5]
learning rate of DAE 1e-2, 1e-3
dropout_adj1 0.25, 0.5
dropout_adj2 0.25, 0.5
k for nearest neighbors 10, 15, 20, 30
λ 0.1, 1, 10, 100, 500
ratio 1,5,10
nr 1, 5

GT [30]
number of layers 2, 3, 4, 5
hidden size 16, 32, 64, 128
number of heads 1, 2, 4, 8
dropout 0, 0.2, 0.5, 0.8

Nodeformer [34]
number of layers 2, 3, 4, 5
hidden size 16, 32, 64, 128
number of heads 1, 2, 4, 8
dropout 0, 0.2, 0.5, 0.8
number of samples for gumbel softmax sampling 5, 10, 20
weight for edge reg loss 1, 0.1, 0.01

GEN [33]
k for nearest neighbors 7, 8, 9, 10
tolerance for EM 1e-2, 1e-3, 1e-4
threshold for adding edges 0.5, 0.6, 0.7, 0.8

SEGSL [49]
K 2, 3, 4
se 2, 3, 4

ProGNN [11] learning rate for adj 1e-1, 1e-2, 1e-3, 1e-4

GAug [42]
α for interpolation 0, 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1
temperature 0.3, 0.6, 0.9, 1.2
epochs for warm up 0, 10, 20

IDGL [1]
number of anchors 300, 500, 700
number of heads in structure learning 2, 4, 6, 8
λ1 for interpolation 0.7, 0.8, 0.9
λ2 for interpolation 0.1, 0.2, 0.3

SUBLIME [19]
dropout rate for edge 0, 0.25, 0.5
τ for bootstrapping 0.99, 0.999, 0.9999

STABLE [16]
threshold for consine similarity 0.1, 0.2, 0.3
k for nearest neighbors 1, 3, 5, 7

B Additional Details on Experimental Settings

Running Experiments. Our experiments are mostly conducted on a Linux server with an Intel(R)
Xeon(R) Silver 4216 CPU @ 2.10GHz, 125 GB RAM, and an NVIDIA GTX 2080 Ti GPU (12GB).
However, as some methods may exceed GPU memory, we run partial experiments (including all
experiments related to efficiency) on another Linux server with an Intel(R) Xeon(R) Platinum 8358
CPU @ 2.60GHz, 1008 GB RAM, and an NVIDIA A800 GPU (80GB).

We have developed Open Graph Structure Learning (OpenGSL)1, which offers a comprehensive and
unbiased platform for evaluating GSL algorithms and facilitating future researches in this domain.

1https://github.com/OpenGSL/OpenGSL
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For more information about the involved packages, please refer to the README file in the Github
repository.

General Experimental Settings. We strive to adhere to the original implementation of various GSL
methods provided in their respective papers or source codes. To achieve this, we have integrated
different options into a standardized framework that includes feature normalization, parameter
initialization, training strategies, and so on. We choose not to augment the models with LayerNorm
as in [27], since this tchnique has not been adopted by GSL algorithms. Consequently, there may be
some discrepancies observed in the results for the five datasets from [27].

Hyperparamter. We conduct comprehensive hyperparameter tuning to ensure a thorough and
impartial evaluation of these GSL methods. When the paper and source code of a particular method
do not provide information on hyperparameter settings, we tune the corresponding hyperparameters.
Hyperparameter tuning is conducted via bayesian search using NNI2. The hyperparameter search
spaces of all methods are presented in Table 6. More detalis on hyperparameter settings for all the
methods can be found in our Github repository 3.

C Additional Results

C.1 Additional Results on the Properties of Learned Structure

In Section 4.2, we analyze the correlation between homophily and performance. The results show
that homophily is not always positively correlated with performance and therefore not a suitable
guidance in all scenarios. Here, we present additional results on two new measures named "adjusted
homophily" and "label informativeness", introduced by [26].

Adjusted homophily is proposed to overcome the sensitivity of commonly used homophily measures
to the number of classes and their balance. Specifically, the adjusted homophily of a graph G is
defined as follows:

adj_homo(G) =
homo(G)−

∑C
k=1 p(k)

2

1−
∑C

k=1 p(k)
2

(2)

where p(k) =
∑

vi:yi=k d(vi)

2|E| ,d(vi) is the degree of node vi.

Label informativeness measures the overall informativeness of neighbor’s labels for central node’s
labels in a graph. This metric, which goes beyond the homophily-heterophily dichotomy, can further
describe the degree of regularity in the connectivity patterns of heterophilous graphs. The label
informativeness of a graph G is defined as follows:

LI(G) = 2−
∑

c1,c2
p(c1, c2) log p(c1.c2)∑
c p(c) log p(c)

(3)

where p(c1, c2) =
|(u,v)|(u,v)∈E,yu=c1,yv=c2|

2|E| .

The adjusted homophily and label informativeness of structures learned by GSL methods on various
datasets are presented in Fig 5 and Fig 6, respectively.

The figures reveal a similarity in the patterns of adjusted homophily, label informativeness and
homophily for structures learned by GSL methods. Notably, adjusted homophily and label informa-
tiveness show significant positive correlations with performance only on blogcatalog and flickr, which
is the same as homophily. These results imply that the newly proposed measures are still unable to
effectively gauge structure quality and unsuitable for guiding structure learning on real data, despite
that they are found to be effective on synthetic data [26]. Further exploration is needed in this aspect.

2https://github.com/microsoft/nni/
3https://github.com/OpenGSL/OpenGSL/paper/configs
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Figure 5: Adjusted homophily of learned structures and performances on homophilous datasets. The
methods are ordered by homophily. Left to right on minesweeper: ProGNN, original, SUBLIME,
GEN, GRCN.
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Figure 6: Adjusted homophily of learned structures and performances on heterophilous datasets. The
methods are ordered by homophily. Left to right on wiki-cooc: ProGNN, original, GRCN, GEN,
SUBLIME.

cora citeseer pubmed minesweeper

0.25

0.00

0.25

0.50

0.75

1.00

la
be

l i
nf

or
m

at
iv

en
es

s

40

50

60

70

80

90

pe
rfo

rm
an

ce

original GRCN GEN SUBLIME ProGNN IDGL performance

Figure 7: Label informativeness of learned structures and performances on homophilous datasets.
The methods are ordered by homophily. Left to right on minesweeper: ProGNN, original, SUBLIME,
GEN, GRCN.
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Figure 8: Label informativeness of learned structures and performances on heterophilous datasets.
The methods are ordered by homophily.
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C.2 Additional Results on Generalizability

In addition to Section 4.3, we also assessed the generalizability of structures learned by various GSL
methods on other datasets where GSL methods have made progress. The results are presented in
Table 7 - 9.

These additional results are consistent with the conclusions drawn in Section 4.3. In most cases, the
learned structures exhibit strong generalizability. These learned structures frequently outperform the
original structures and impart additional advantages to various GNN models.

Table 7: Generalizability on Citeseer. Improvements over the original structure are marked green.
Structure source GCN SGC JKNet APPNP GPRGNN LPA LINK
A 71.34 ± 0.48 71.20 ± 0.00 68.26 ± 0.97 71.86 ± 0.35 71.14 ± 0.34 26.20 ± 0.00 34.70 ± 1.09
ProGNN 70.00 ± 0.66 69.02 ± 0.96 68.33 ± 1.39 71.14 ± 0.53 70.45 ± 0.98 64.46 ± 2.11 57.12 ± 1.71
IDGL 73.03 ± 0.82 73.20 ± 0.48 72.21 ± 1.01 73.82 ± 0.63 72.96 ± 1.05 64.17 ± 1.13 64.87 ± 0.93
GRCN 70.90 ± 0.38 71.44 ± 0.35 71.03 ± 1.49 73.33 ± 0.53 73.25 ± 0.51 70.43 ± 0.30 69.10 ± 0.88
GEN 72.83 ± 0.84 73.02 ± 0.79 72.67 ± 1.33 73.24 ± 0.70 73.27 ± 0.81 65.55 ± 5.35 68.20 ± 3.81
SUBLIME 71.22 ± 0.77 70.76 ± 0.57 68.17 ± 1.21 72.60 ± 0.66 71.64 ± 0.59 53.50 ± 0.79 55.00 ± 1.48

Table 8: Generalizability on Pubmed. Improvements over the original structure are marked green.
Structure source GCN SGC JKNet APPNP GPRGNN LPA LINK
A 78.98 ± 0.35 78.96 ± 0.05 78.00 ± 0.71 80.10 ± 0.27 79.05 ± 0.44 24.70 ± 0.00 44.71 ± 0.67
GEN 79.50 ± 0.81 79.23 ± 0.82 79.14 ± 0.96 79.83 ± 0.44 79.76 ± 0.93 51.61 ± 17.37 64.79 ± 12.11
ProGNN 78.74 ± 0.65 78.70 ± 0.11 76.97 ± 1.44 80.33 ± 0.29 79.10 ± 0.64 24.80 ± 0.00 44.23 ± 1.24
GRCN 79.15 ± 0.37 79.12 ± 0.09 77.92 ± 0.50 80.28 ± 0.28 79.41 ± 0.51 44.82 ± 0.30 44.57 ± 0.73
SUBLIME 79.24 ± 1.24 79.67 ± 1.10 78.90 ± 1.06 80.99 ± 0.80 80.49 ± 0.93 30.60 ± 1.72 49.58 ± 1.27

Table 9: Generalizability on Flickr. Improvements over the original structure are marked green.
Structure source GCN SGC JKNet APPNP GPRGNN LPA LINK
A 61.60 ± 0.49 60.72 ± 0.02 57.69 ± 0.64 83.58 ± 0.29 82.31 ± 0.30 39.22 ± 0.00 42.60 ± 0.07
ProGNN 47.28 ± 0.80 60.79 ± 0.24 61.63 ± 0.41 84.16 ± 0.49 86.14 ± 0.20 40.14 ± 0.19 50.15 ± 0.24
GRCN 61.14 ± 0.33 58.86 ± 0.57 60.52 ± 0.36 83.14 ± 0.24 82.11 ± 0.57 44.95 ± 0.49 50.79 ± 0.61
IDGL 85.98 ± 0.21 86.43 ± 0.18 84.97 ± 0.26 87.98 ± 0.33 88.75 ± 0.24 71.18 ± 0.28 39.95 ± 0.42
GEN 85.94 ± 0.55 85.93 ± 0.59 85.86 ± 0.72 84.16 ± 0.49 85.92 ± 0.66 84.15 ± 1.23 84.47 ± 1.02
SUBLIME 88.65 ± 0.26 88.20 ± 0.25 88.00 ± 0.36 89.55 ± 0.23 89.55 ± 0.31 77.74 ± 0.40 71.86 ± 0.51

C.3 Addtional Results on Efficiency

We record the efficiency of existing GSL methods on more datasets, and the results are displayed in
Fig 9- 13.

Based on these results, it is evident that the current GSL methods faces challenges on efficiency, and
the problem is more severe on large-scale graphs. Henceforth, there is a pressing demand for the
development of more efficient GSL methods capable of processing large-scale graph data.
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Figure 9: Time and space consumption of different methods on Citeseer
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Figure 10: Time and space consumption of different methods on Pubmed

103 104
space(MB)

70
75
80
85
90
95

100

Ac
cu

ra
cy

(%
)

GCN
GT ProGNN

GEN
IDGL

GRCN GAug

SLAPS
SUBLIME

STABLE

102 103
time(s)

70
75
80
85
90
95

100

GCN
GT ProGNN

GEN
IDGL

GRCNGAug

SLAPS
SUBLIME

STABLE

Figure 11: Time and space consumption of different methods on BlogCatalog
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Figure 12: Time and space consumption of different methods on Minesweeper
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Figure 13: Time and space consumption of different methods on Amazon-ratings

C.4 Addtional Results on Robustness

GSL is capable of refining the original suboptimal graph structure, which theoretically gives it
superior robustness compared to GCN. We conduct experiments to evaluate the robustness of some
GSL methods. Specifically, we add noisy edges to the original graph to introduce varying degrees
of perturbations. Homophily is defined as a measure of perturbations, and an edge with endpoints
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belonging to different classes is defined as a noisy edge. Below are performances of some GSL
methods on cora and citeseer with varying degrees of perturbations. Figure 14 demonstrates that
some GSL methods show a slower rate of decline than GCN, with SUBLIME and GEN displaying
superior levels of robustness amongst these methods.
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Figure 14: Robustness of GSL methods on Cora and Citeseer

D Reproducibility

All experimental results in OpenGSL are easily reproducible. We provide more detailed information
on reproducibility in the following aspects.

Accessibility. All the datasets, algorithm implementations, and experimental configurations can be
found in our open-sourced project at https://github.com/OpenGSL/OpenGSL without personal
request.

Datasets. All the datasets are publicly available. Specifically, Cora, Citeseer, Pubmed, Blogcatalog
and Flickr can be loaded with PyTorch Geometric4. The other five datasets can be found in the
repository5 of [27].

Code structure. We have organized the code structure to ensure fair experimental settings across
algorithms and easy reproduction of the experimental results. OpenGSL consists of the following
modules. The config module includes the yaml files that define the necessary hyperparameters and
settings for training and evaluation. The data module is used to load datasets. The method module
contains various GNN and GSL algorithms. The ExpManager module manages the learning process,
allowing for multiple independent runs.

Documentation and uses. We have made a concerted effort to offer users a README, ensuring
their seamless use of our library. We have also added necessary comments to ensure code readability.
In addition, we provide the necessary files to reproduce the experimental results, while also serving
as examples on how to use the library6. To run the code, the users simply need to run .py files with
specifies arguments such as data, method and gpu.

License. We use an MIT license for our open-sourced project.

Code maintenance. We are committed to continuously updating our code while proactively ad-
dressing user issues and feedback on a regular basis. Furthermore, we enthusiastically welcome
contributions from the community to enhance our library and benchmark algorithms. Nonetheless,
we will implement strict version control measures to ensure reproducibility during the mainteance.

4https://www.pyg.org
5https://github.com/yandex-research/heterophilous-graphs
6https://github.com/OpenGSL/OpenGSL/tree/main/paper
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